
SECURING COMPUTER NETWORKS: ACCESS CONTROL MANAGEMENT AND
ATTACK SOURCE IDENTIFICATION

By

MYUNGKEUN YOON

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2008

1

c© 2008 MyungKeun Yoon

2

Dedicated to my family

3

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to Prof. Shigang Chen, my

advisor, for his tireless guidance and encouragement throughout my graduate studies.

My special thanks also go to Prof. Sartaj Sahni, Prof. Jose Fortes, Prof. Ye Xia and

Prof. Dapeng Wu for their instructive comments and support during my years at the

University of Florida (UF).

I would like to thank all my colleagues in Prof. Chen’s research group, including Yong

Tang, Zhan Zhang, Liang Zhang, Ying Jian, Ming Zhang, Tao Li and Parbati Kumar

Manna, for providing a high level of research support.

Last but not least, I want to thank my family for their support, love, understanding

and many sacrifices they had to make throughout my graduate studies. I would like to say

that I love Joon-Sup, Joon-Ho and especially Hye-Jung.

4

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 8

LIST OF FIGURES . 9

ABSTRACT . 12

CHAPTER

1 INTRODUCTION . 14

2 MINIMIZING THE MAXIMUM FIREWALL RULE SET IN A NETWORK
WITH MULTIPLE FIREWALLS . 18

2.1 Motivation . 18
2.2 Related Works . 21
2.3 Problem Definition . 22

2.3.1 Network Model . 22
2.3.2 Notations . 22
2.3.3 Problems . 24
2.3.4 Rule Graph and Topology Graph 25
2.3.5 Robustness . 27

2.4 NP-Completeness . 27
2.4.1 k-Firewall Decision Problem ∈ NP 28
2.4.2 NP-Hardness . 28

2.5 HAF: A Heuristic Algorithm for FPP, Partial FPP, FRP, Partial FRP,
and Weighted FPP/FRP . 30
2.5.1 Overview . 30
2.5.2 Augmented Graph G

〈x,y〉
t and MinMax Path 31

2.5.3 Find the MinMax Path in G
〈x,y〉
t . 32

2.5.4 Insert the MinMax Path to Gt . 34
2.5.5 Ensuring Connectivity . 34
2.5.6 Complexity Analysis . 37
2.5.7 Modifying HAF for FRP, partial FRP, and Weighted FPP/FRP . . 37

2.6 Simulation . 37

3 A NOVEL INCREMENTALLY-DEPLOYABLE PATH ADDRESS SCHEME
FOR THE INTERNET . 49

3.1 Motivation . 49
3.2 Related Work . 52
3.3 Path Address Scheme . 55

3.3.1 Objectives . 55
3.3.2 Definition of Path Address . 56

5

3.3.3 Extending Routing Protocol for Path Address 57
3.3.4 New Fields in Packet Header and Path Address Verification 59
3.3.5 Alternative Version of Path Address against Router Compromise . . 62
3.3.6 Self-Completeness of PAS for Incremental Deployment 64

3.4 Evaluation . 66
3.4.1 Analysis . 66

3.4.1.1 Analytical model . 66
3.4.1.2 False-positive probability and false-negative probability of

PAS . 67
3.4.1.3 False-positive probability and false-negative probability of

Pi . 68
3.4.2 Simulations . 69

3.4.2.1 Simulation setup . 69
3.4.2.2 Performance evaluation with respect to attacker ratio . . . 71
3.4.2.3 Performance evaluation with respect to network topology . 71
3.4.2.4 Performance comparison with respect to r 72
3.4.2.5 Performance evaluation under incremental deployment . . 72

4 FIT A SPREAD ESTIMATOR IN A SMALL MEMORY 78

4.1 Motivation . 78
4.2 Existing Spread Estimators . 81
4.3 Design of Compact Spread Estimator (CSE) 83

4.3.1 Motivation for Virtual Vectors . 83
4.3.2 CSE: Storing Contacts in Virtual Vectors 84
4.3.3 CSE: Spread Estimation . 85
4.3.4 System Architecture . 88

4.4 Analysis . 89
4.4.1 Mean and Variance of k̂1 and k̂2 . 89
4.4.2 Estimation Bias and Standard Deviation 92

4.5 Experiments . 93
4.5.1 Experiment Setup . 94
4.5.2 Accuracy of Spread Estimation . 95
4.5.3 Impact of Different s Values on Performance of CSE 96
4.5.4 Impact of Different Column Sizes on Performance of OSM 97
4.5.5 An Application: Detecting Address Scan 97

5 REAL-TIME DETECTION OF INVISIBLE SPREADERS 103

5.1 Motivation . 103
5.2 Invisible-Spreader Detection . 105

5.2.1 Invisible-Spreader Detection Filter (ISD) 106
5.2.2 Parameter Configuration . 107

5.3 Experiment . 109
5.3.1 Traffic Trace and Implementation Details 110
5.3.2 Experimental Results . 111

6

6 CONCLUSION . 115

REFERENCES . 116

BIOGRAPHICAL SKETCH . 121

7

LIST OF TABLES

Table page

2-1 Frequently-used notations . 41

2-2 Default simulation parameters . 41

4-1 Bias with respect to s and k . 99

4-2 False positive ratio and false negative ratio with respect to memory size. 102

4-3 With ε = 10%, false positive ratio and false negative ratio with respect to memory
size. 102

4-4 With ε = 20%, false positive ratio and false negative ratio with respect to memory
size. 102

5-1 Parameter configuration examples (c = 10) . 113

8

LIST OF FIGURES

Figure page

2-1 Two topologies that connect domains, x, u, v and y, via firewalls, f1, f2 and f3,
whose numbers of interfaces are 2, 3 and 2, respectively. 41

2-2 Rule matrix, rule graph, and topology graph . 42

2-3 High-availability solutions . 42

2-4 Pseudo code of HAF . 43

2-5 Pseudo code of HAF Dijkstra . 44

2-6 (a) Augmented graph G
〈x,y〉
t , where f2 has one free interface and two virtual links;

(b) Shortest path returned by Shortest Path(G
〈x,y〉
t , x, y), where the relaxation

is performed from y along the path to x; (c) Shortest path returned by Shortest Path(G
〈x,y〉
t , y, x),

where the relaxation is performed from x along the path to y. The best path is
(x, f1, v1, f2, y). 45

2-7 Shortest path when f2 has two free interfaces. 45

2-8 Shortest path when f2 and f3 each have one free interface. 45

2-9 Pseudo code of Insert Optimal Path . 46

2-10 Size of maximum rule set with respect to number n of domains. 10 ≤ n ≤ 120,
m = 40, e(f) = 4, r(i, j) = 10, p = 0.7. 47

2-11 Size of maximum rule set with respect to number m of firewalls. n = 100, 35 ≤
m ≤ 59, e(f) = 4, r(i, j) = 10, p = 0.7. 47

2-12 Size of max rule set with respect to avg number e(f) of network interfaces per
firewall. n = 100, m = 40, 3.5 ≤ e(f) ≤ 6, r(i, j) = 10, p = 0.7. 47

2-13 Size of maximum rule set with respect to avg number r(i, j) of rules per domain
pair. n = 100, m = 40, e(f) = 4, 10 ≤ r(i, j) ≤ 50, p = 0.7. 47

2-14 Size of maximum rule set with respect to probability p. n = 100, m = 40,
e(f) = 4, r(i, j) = 10, 0.3 ≤ p ≤ 1.0. 48

2-15 Size of maximum rule set in sparse network. 10 ≤ n ≤ 120, m = (n− 1)/(e(f)−
1), e(f) = 4, r(i, j) = 50, p = 1.0. 48

3-1 Pi cannot be used for path address. 73

3-2 Local numbers of the interdomain routers. 74

9

3-3 Addresses for the routing paths from the routers to AS1. For example, R8.paddr(AS1) =
01001010. It is the XOR of all local numbers on the routing path R8 → R7 →
R6 → R5 → R4 → R3 → R2 → R1. Alternatively it can be viewed as the XOR
of R8’s local number and R7.paddr(AS1). 74

3-4 Received values of the paddr and verification fields are shown beside each router.
The two fields are set to zeros by the sender. The first interdomain router sets
these fields with appropriate values. The path address field stays unchanged at
the subsequent hops, but the verification field is XORed by the local number
at each hop. The verification field should be zero when the packet reaches its
receiver. 74

3-5 Malicious host in AS4 sets the paddr/verification fields arbitrarily with the P
flag being one. As long as it does not know R6.paddr(AS1), the attack packets
to AS1 will be classified as abnormal, which is indicated by a cross below V in
the figure. 75

3-6 Path address between AS3 and AS1 should be artificially made different from
the address between AS6 and AS1. 75

3-7 Left: false positive ratios with respect to attacker ratio. Right: false negative
ratios with respect to attacker ratio. 76

3-8 Left: false positive ratios with respect to fraction of degree-one nodes. Right:
false negative ratios with respect to fraction of degree-one nodes. 76

3-9 Left: false positive ratios with respect to r. Right: false negative ratios with respect
to r. 76

3-10 Left: false positive ratios with respect to deployment ratio. Right: false negative
ratios with respect to deployment ratio. 77

4-1 The approximation error is very small when s is reasonably large. 99

4-2 Traffic distribution: each point shows the number of sources having a certain
spread value. 99

4-3 m = 0.5MB. Each point in the first plot (CSE) or the second plot (OSM) represents
a source, whose x coordinate is the true spread k and y coordinate is the estimated
spread k̂. The third plot shows the bias of CSE and OSM, which is the measured
E(k̂−k) with respect to k. The fourth plot shows the standard deviation, which

is the measured

√
V ar(k̂)

k
for CSE and OSM, together with the numerically-calculated

standard deviation for CSE based on (4–26) and (4–24). 100

4-4 m = 1M. See the caption of Fig. 4-3 for explanation. 100

4-5 m =2MB. See the caption of Fig. 4-3 for explanation. 100

4-6 m =4M. See the caption of Fig. 4-3 for explanation. 100

10

4-7 Left plot shows the bias of CSE, which is the measured E(k̂ − k) with respect
to k. Right plot shows the standard deviation of CSE, which is the measured√

V ar(k̂)

k
. 101

4-8 Left plot shows the bias of OSM, which is the measured E(k̂ − k) with respect
to k. Right plot shows the standard deviation of OSM, which is the measured√

V ar(k̂)

k
. 101

4-9 Left plot shows the distribution of (k, k̂) for all sources under OSM when r =
64, where k and k̂ are the true spread and the estimated spread, respectively.
Right plot shows the distribution of (k, k̂) under OSM when r = 256. 101

5-1 Cumulative ratios of the numbers of distinct sources and distinct source/destination
tuples with respect to source spread . 113

5-2 Cumulative ratios of the numbers of distinct destinations and distinct source/destination
tuples with respect to destination spread . 113

5-3 Number of false negatives when M=256KB . 114

5-4 Number of false positives when M=256KB . 114

5-5 Number of false negatives when M=1MB . 114

5-6 Number of false positives when M=1MB . 114

11

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

SECURING COMPUTER NETWORKS: ACCESS CONTROL MANAGEMENT AND
ATTACK SOURCE IDENTIFICATION

By

MyungKeun Yoon

December 2008

Chair: Shigang Chen
Major: Computer Engineering

We study the problem of securing computer networks. We mainly focus on two issues:

managing access control lists of multiple firewalls and identifying attack sources. As the

number of firewalls increases in computer networks, it is crucial to deploy the firewalls

and to build an efficient access control list on each of them. Multiple firewalls cooperate

to implement the access control by filtering out unwanted packets. The source address

of a packet is a decisive parameter when the filtering is carried out. For example, edge

firewalls between the intranet and the Internet may use dynamic filters, which can block

packets of suspicious source addresses in order to defeat denial of service attacks. However,

wily attackers may play tricks to give false information about their source addresses.

Therefore, attack sources should be exactly identified before the filtering is applied. In this

dissertation, we propose three novel techniques.

First, we study the problem of placing multiple firewalls in an enterprise network. A

firewall’s complexity is known to increase with the size of its access control list, i.e. rule

set. When designing a security-sensitive network, it is critical to construct the network

topology and its routing structure carefully in order to reduce the firewall rule sets, which

helps lower the chance of security loopholes and prevent performance bottleneck. We

study the problems of how to place the firewalls in a topology during network design and

how to construct the routing tables during operation, such that the maximum firewall rule

set can be minimized.

12

Second, we study the problem of identifying attack sources on the Internet. It is

crucial to find out attacker’s unique address before the corresponding filtering rule is

activated at the edge firewalls. On the current Internet, not only is a host free to send

packets to any destination address, but also it is free to forge any source address that it

does not own. This freedom creates a huge security problem. The victims under attack

do not know where the malicious packets are actually from and which sources should be

blocked because, with forged source addresses, the malicious packets may appear to come

from all over the Internet. We propose a path address scheme to identify attackers even

when they use spoofed source addresses. Under this scheme, each path on the Internet

is assigned a path address. IP addresses are owned by the end hosts; path addresses are

owned by the network, which is beyond the reach of the hosts.

Third, we study the problems of spread estimation and spreader detection. The

spread of a source host is the number of distinct destinations that it has sent packets to

during a measurement period. A spread estimator is a software/hardware module on a

router that inspects the arrival packets and estimates the spread of each source. It has

important applications in detecting port scans and DDoS attacks, measuring the infection

rate of a worm, assisting resource allocation in a server farm, determining popular web

contents for caching, to name a few. We design a new spread estimator that delivers good

performance in tight memory space where all existing estimators no longer work.

We also study the problem of detecting spreaders. We call an external source address

a spreader if it connects to more than a threshold number of distinct internal destination

addresses during a period of time (such as a day). We note that none of the current

intrusion detection systems can identify spreaders in real-time if the attacker slows down

in sending attack packets. We call such an attacker an invisible spreader. We observe

that normal traffic has strong skewness especially in an enterprise (or university campus)

network. We propose a new scheme to detect invisible spreaders by exploiting the traffic

skewness.

13

CHAPTER 1
INTRODUCTION

As computer networks play vital roles in companies or institutions, securing them is

crucial. Once an enterprise network is compromised, it causes a severe financial loss and

a decline of public trust. On the other hand, enterprise networks are good targets of wily

attackers who willingly spare no pains in breaking into the networks. Therefore, enterprise

networks require a high level of security. It means that people are willing to trade off

efficiency for enhanced security unless the efficiency degradation is significant.

An enterprise network consists of domains (subnets) that are connected with each

other through firewalls. Each firewall has an interdomain access control list, i.e. rule

set, which prevents unwanted packets from traversing different domains. At least one

of the firewalls connects to the Internet for providing Internet services. As enterprise

networks evolve, the number of domains and firewalls increases. A firewall’s complexity

is known to increase with the size of its rule set. Empirical studies show that, as the rule

set grows larger, the number of configuration errors on a firewall increases sharply, while

the performance of the firewall degrades. When designing a security-sensitive network, it

is critical to construct the network topology and its routing structure carefully in order

to reduce the firewall rule sets, which helps lower the chance of security loopholes and

prevent performance bottleneck. In Chapter 2, we study the problems of how to place

the firewalls in a topology during network design and how to construct the routing tables

during operation, such that the maximum firewall rule set can be minimized. These

problems have not been studied adequately despite their importance. We have two major

contributions. First, we prove that the problems are NP-complete. Second, we propose a

heuristic solution and demonstrate the effectiveness of the algorithm by simulations. The

results show that the proposed algorithm reduces the maximum firewall rule set by 2 ∼ 5

times when comparing with other algorithms.

14

A firewall filters out unwanted packets after comparing their five-tuple values

or subset values against its rule set. The five-tuple value consists of source address,

destination address, source port number, destination port number and protocol type.

However, wily attackers may play tricks to give false information about their source

addresses. Therefore, identifying attack sources is required before the filtering is applied.

Otherwise, the firewall may block legal users or may not prevent attackers.

On the current Internet, not only is a host free to send packets to any destination

address, but also it is free to forge any source address that it does not own. This freedom

creates a huge security problem. The victims under attack do not know where the

malicious packets are actually from and which sources should be blocked because, with

forged source addresses, the malicious packets may appear to come from all over the

Internet. One important question is, if the source addresses from the attack packets are

not reliable, what other kind of information is necessary. In Chapter 3, we propose a

path address scheme to identify attackers even when they use spoofed source addresses.

Under this scheme, each path on the Internet is assigned a path address. IP addresses

are owned by the end hosts; path addresses are owned by the network, which is beyond

the reach of the hosts. The path address carried in a packet is set by the network and

reliably points out where the packet is from. Blocking a path address filters out the

packets from an attack source. The victims may even require path-address based filters to

be pushed into the network and all the way to the attack source. The path address scheme

has desirable features that the previous works do not have. First, it can simultaneously

keep false-positive (normal hosts misclassified as attackers) and false-negative (attackers

misclassified as normal hosts) ratios to almost zero. Second, malicious packets can be

blocked near the attackers. Third, attackers cannot gain any advantage by residing near

the victims. By analysis and simulations, we show that the path address scheme is very

effective in filtering out malicious packets.

15

In some cases, changing the source address, IP spoofing, is of no benefit to attackers.

When they want to receive any feedback from the victim, the attackers should use the

same source address. Otherwise, the reply packet will be sent to the spoofed address on

the Internet and never come back. Using the same source address increases the risk of

detection. However, wily attackers can evade the intrusion detection systems without

changing their source addresses. Detecting such attackers is a challenging problem. We

study the problems of spread estimation and spreader detection, which helps detect such

attackers.

The spread of a source host is the number of distinct destinations that it has sent

packets to during a measurement period. A spread estimator is a software/hardware

module on a router that inspects the arrival packets and estimates the spread of each

source. It has important applications in detecting port scans and DDoS attacks, measuring

the infection rate of a worm, assisting resource allocation in a server farm, determining

popular web contents for caching, to name a few. The main technical challenge is to fit

a spread estimator in a fast but small memory (such as SRAM) in order to operate it at

the line speed in a high-speed network. In Chapter 4, we design a new spread estimator

that delivers good performance in tight memory space where all existing estimators

no longer work. The new estimator not only achieves space compactness but operates

more efficiently than the existing ones. Its accuracy and efficiency come from a new

method for data storage, called virtual vectors, which allow us to measure and remove the

errors in spread estimation. We perform experiments on real Internet traces to verify the

effectiveness of the new estimator.

We call an external source address a spreader if it connects to more than a threshold

number of distinct internal destination addresses during a period of time (such as a

day). Detecting spreaders helps intrusion detection systems identify potential attackers.

The existing work can only detect aggressive spreaders that scan a large number of

distinct addresses in a short period of time. However, stealthy spreaders may perform

16

scanning deliberately at a low rate. We observe that these spreaders can easily evade

the detection because their small traffic footprint will be covered by the large amount

of background normal traffic that frequently flushes any spreader information out of the

intrusion detection system’s memory. In Chapter 5, we propose a new streaming scheme to

detect stealthy spreaders that are invisible to the current systems. The new scheme stores

information about normal traffic within a limited portion of the allocated memory, so

that it will not interfere with spreaders’ information stored elsewhere in the memory. The

proposed scheme is light weight; it can detect invisible spreaders in high-speed networks

while residing in SRAM. Through experiments using real Internet traffic traces, we

demonstrate that our new scheme detects invisible spreaders efficiently while keeping both

false-positives (normal sources misclassified as spreaders) and false-negatives (spreaders

misclassified as normal sources) to low level.

17

CHAPTER 2
MINIMIZING THE MAXIMUM FIREWALL RULE SET IN A NETWORK WITH

MULTIPLE FIREWALLS

A firewall’s complexity is known to increase with the size of its rule set. Empirical

studies show that, as the rule set grows larger, the number of configuration errors on a

firewall increases sharply, while the performance of the firewall degrades. When designing

a security-sensitive network, it is critical to construct the network topology and its routing

structure carefully in order to reduce the firewall rule sets, which helps lower the chance of

security loopholes and prevent performance bottleneck. This chapter studies the problems

of how to place the firewalls in a topology during network design and how to construct

the routing tables during operation, such that the maximum firewall rule set can be

minimized. These problems have not been studied adequately despite their importance.

We have two major contributions. First, we prove that the problems are NP-complete.

Second, we propose a heuristic solution and demonstrate the effectiveness of the algorithm

by simulations. The results show that the proposed algorithm reduces the maximum

firewall rule set by 2 ∼ 5 times when comparing with other algorithms.

2.1 Motivation

Firewalls are the cornerstones of corporate network security. Once a company acquires

firewalls, the most crucial management task is to correctly configure the firewalls with

security rules [1]. A firewall’s configuration contains a large set of access control rules,

each specifying source addresses, destination addresses, source ports, destination ports, one

or multiple protocol ids, and an appropriate action. The action is typically “accept” or

“deny.” Some firewalls can support other types of actions such as sending a log message,

applying a proxy, and passing the matched packets into a VPN tunnel [2]. For most

firewalls, the rule set is order-sensitive [3]. An incoming packet will be checked against the

ordered list of rules. The rule that matches first decides how to process the packet. Other

firewalls (such as early versions of Cisco’s PIX) use the best-matching rule instead.

18

Due to the multi-dimensional nature of the rules (including source/destination

addresses and ports), the performance of a firewall degrades as the number of rules

increases. Commercially deployed firewalls often carry tens of thousands of rules, creating

performance bottlenecks in the network. More importantly, the empirical fact shows that

the number of configuration errors on a firewall increases sharply in the size of the rule set

[4]. A complex rule set can easily lead to mistakes and mal-configuration. After analyzing

the firewall rule sets from many organizations including telecommunication companies and

financial institutes, Wool [4] quantified the complexity of a rule set as R + O + I×(I−1)
2

,

where R is the number of rules in the set, O is the number of network objects referenced

by the rules, and I is the number of network interfaces on the firewall. The number of

network objects and the number of interfaces are normally much smaller than the number

of rules. Therefore, it is very important to keep a firewall’s rule set as small as possible in

order to lower the chance of security loopholes [4]. In a network with multiple firewalls,

reducing the number of rules requires not only local optimization at individual firewalls

but also global optimization across all firewalls. This chapter studies how to minimize

the maximum rule set among all firewalls in the network, which has not been adequately

studied despite its importance in practice.

We investigate a family of related problems. The first one is about how to place the

firewalls in a topology during network design. The so-called firewall placement problem

(FPP) is to find the optimal placement of firewalls that connects a set of domains in such

a way that minimizes the maximum number of rules on any firewall. The second problem,

called partial FPP, is to expand an existing topology with new firewalls and domains such

that the maximum rule set remains minimized. This problem arises during incremental

deployment or in case that a partial network topology has been determined based on more

important performance criteria before firewall rule sets are considered. FPP is a special

case of partial FPP (with an empty existing topology).

19

We now move to operational networks whose topologies have already been fully

established. Our third problem, called firewall routing problem (FRP), is to establish

the optimal routing paths on an existing network topology such that the maximum

number of rules on any firewall is minimized. The fourth problem is called partial FRP.

It assumes that the routing tables in the network have been partially populated based on

other performance criteria (such as reliability and bandwidth utilization). For example,

if bandwidth is the most important criterion, some routing entries should be selected

to optimize the use of bottleneck links, but the choice of other entries may be flexible if

alternative paths after bottleneck links are allowed (since end-to-end bandwidth is solely

decided by the bottleneck). In this case, we can determine those routing entries by using

the secondary criterion of minimizing the maximum firewall rule set.

Our fourth and fifth problems are called weighted FPP/FRP. We assign each rule a

weight (possibly representing the volume of traffic covered by this rule), and assign each

firewall a weight (possibly representing the capacity of the firewall). The goal is to find

the optimal network topology and/or routing paths that minimize the maximum weighted

number of rules at any firewall. The solutions to the weighted problems take not only

the number of rules but also traffic distribution, firewall performance and possibly other

factors into consideration.

We have two major contributions. First, by reducing the well-known set-partition

problem to the above problems, we prove that they are NP-complete. Second, we propose

a heuristic algorithm to solve the FPP problem approximately. Not only does it construct

a network topology among domains and firewalls, but also identify routing paths that

minimize the maximum firewall rule set. The algorithm can be easily modified to solve

partial FPP, FRP, partial FRP, weighted FPP, and weighted FRP. Hence, the algorithm

can be used to construct a new topology, complete a topology that has been partially

constructed (based on other performance criteria), expand an existing topology, or work

on an established topology to build a new routing structure or complete an existing

20

routing structure that has been partially populated (based on other performance criteria).

We demonstrate its effectiveness by simulations, which show that the proposed algorithm

achieves far better results than two other solutions. The maximum size of all firewall rule

sets produced by our algorithm is 2 ∼ 5 times smaller than those produced by others.

The rest of the chapter is organized as follows. Section 3.2 defines the network model

and the problems to be solved. Section 2.4 proves that the problems are NP-complete.

Section 5.2 proposes a heuristic algorithm. Section 3.4.2 presents the simulation results.

Section 2.2 surveys the related work.

2.2 Related Works

Gouda and Liu developed a sequence of five algorithms that can be applied to

generate a compact rule set while maintaining the consistency and completeness of the

original rule set [5]. They also proposed a method for diverse firewall design and presented

algorithms to detect discrepancies between two rule sets [6]. Recently Liu et al. proposed

a novel algorithm for minimizing security policies of a firewall [7].

Wool investigated the direction-based filtering in firewalls [8]. Fulp studied the

problem of reducing the average number of rules that must be examined for each packet

[9]. Al-Shaer and Hamed identified anomalies that exist in a single- or multi-firewall

environment, and presented a set of techniques to discover configuration anomalies

in centralized and distributed legacy firewalls [10]. Smith et al. studied the problem

of how to place a set of firewalls in a complex network to minimize cost and delay

[11] and the problem of how to increase comprehensiveness and level of confidence in

protection [12]. El-Atawy et al. proposed to optimize packet filtering performance by

traffic statistical matching [13]. Hamed et al. designed algorithms that maximize early

rejection of unwanted packets and utilize traffic characteristics to minimize the average

packet matching time [14].

Packet filtering can be viewed as a special case of packet classification [15], which is

to determine the first matching rule for each incoming packet at a router. Much work has

21

focused on solving the problem of how to find matching rules as quickly as possible by

using sophisticated data structures or hardware-driven approaches [16–19]. Other work

proposed algorithms for removing redundancy in packet classifiers [20, 21].

2.3 Problem Definition

2.3.1 Network Model

We consider a security-sensitive enterprise network consisting of domains (subnets)

that are connected with each other through firewalls. We assume that intradomain

security is appropriately enforced. This chapter focuses on interdomain access control.

We further assume dynamic routing is turned off on firewalls while static routes are

used to direct interdomain traffic, which is today’s common practice in banks or other

institutions that have high-level security requirements. In fact, some popular firewalls

(such as many Cisco PIX models) do not support dynamic routing protocols. With static

routes, robustness is achieved by using dual firewalls, which will be discussed shortly.

Using static routes on firewalls is a direct consequence of the high complexity in managing

the security of a mesh network. It has a number of practical advantages. First, it ensures

that traffic flows are going through their designated firewalls where appropriate security

policies are enforced. Second, predictable routing paths simplify the security analysis in

a complex network environment and consequently reduce the chance of error in firewall

configuration. Third, most existing dynamic routing protocols are not secure. Counterfeit

routing advertisement can divert traffic through insecure paths where the packets may be

copied or tampered. Note that dynamic routing is still used inside each domain as long as

it does not cross an inter-domain firewall.

2.3.2 Notations

Let N be a set of n domains and M a set of m firewalls. Each firewall has two or

more network interfaces. Different firewalls may have different numbers of interfaces. A

network interface can be connected to any domain, forming a physical link between the

firewall and the domain. In our model, two firewalls do not directly connect with each

22

other because otherwise we would treat them as one firewall with combined interfaces; two

domains do not directly connect with each other because otherwise we would treat them

as one domain. Let e be the total number of network interfaces available on all firewalls.

The maximum number of links in the topology is bounded by e. A network interface that

has not been used to connect a domain is called a free interface.

Each domain has one address prefix. Static routes are defined to route interdomain

traffic, which ensures that each traffic flow has a specific path going through certain

firewall(s) where the security policy governing this flow will be enforced. In order to

support stateful inspection, routing symmetry is assumed. It means that the routing

path from domain x to domain y is the same as the path from y to x, ∀x, y ∈ N . This

assumption is made to comply with Cisco’s CBAC (context-based access control) and

other firewalls’ stateful inspection mechanisms, which allow the system administrator to

only specify the rules for traffic from clients to servers, while the firewall automatically

inserts the rules for the return traffic on the fly. CBAC requires that a connection uses

the same (interdomain) path for two-way communication. We want to stress that this

assumption is made only for practical reasons. Our analysis and algorithm design can be

easily modified to work for asymmetric routing.

For each pair of domains x, y ∈ N , there is a set R(x, y) of access control rules,

defining the traffic flows that are permitted from domain x to domain y. The optimization

of the rule set is beyond the scope of this dissertation. Let r(x, y) = |R(x, y)|. Similarly

the number of rules from y to x is denoted as r(y, x). The total number of rules between

the two domains is r(x, y) + r(y, x). Once the routing path between x and y is determined,

these rules will be enforced on the firewalls along the path. Each firewall may sit in the

routing paths between many pairs of domains, and its rule set will be the aggregate of

all rules between those domains. We want to construct the network topology and/or lay

out the routing paths to avoid creating large firewall rule sets in the network. We assume

that wild-card rules are processed separately. For example, if a domain requires to deny all

23

external packets from reaching an internal subnet, a wild-card deny rule for that subnet

will be installed at all firewalls adjacent to the domain. Since wild-card rules typically

account for a small portion of a large rule set, for simplicity, when we compute the size of

a firewall rule set, we ignore the contribution of wild-card rules in this dissertation.

For any firewall f ∈ M , let W (f) be the set of access control rules to be enforced by

f . Let w(f) = |W (f)|. If f sits in the routing path from domain x to domain y, then it

enforces all rules between them and thus R(x, y) ⊆ W (f); otherwise, it does not enforce

those rules and thus R(x, y)
⋂

W (f) = ∅. Let Π(f) be the set of domain pairs, 〈x, y〉, with

the routing path from x to y passing through f . We have

W (f) =
⋃

〈x,y〉∈Π(f)

R(x, y)

w(f) =
∑

〈x,y〉∈Π(f)

r(x, y)

(2–1)

Some frequently-used notations are listed in Table 2-1 for quick reference.

2.3.3 Problems

As the example in Fig. 2-1 shows, there are many ways to connect a set of domains

via a set of firewalls. For any network topology, there are different ways to lay out the

routing paths. In general, the rule sets to be enforced on the firewalls will be different

when we change the network topology or the routing paths.

Definition 1. The firewall placement problem (FPP) is to (a) optimally connect a set of

domains via a set of firewalls to form a network topology and (b) establish optimal inter-

domain routing tables on this topology, such that the maximum number of access control

rules on any firewall, i.e., maxf∈M{w(f)}, is minimized.

Definition 2. The partial FPP is the same as FPP except that it works on a given

partially-constructed topology that allows limited freedom in the way that the topology can

be expanded.

In practice, the network topology is often fixed and cannot be changed. By optimizing

routing paths, we can still reduce the maximum rule set.

24

Definition 3. The firewall routing problem (FRP) is to construct optimal inter-domain

routing tables on an existing topology to minimize the maximum number of access control

rules on any firewall.

Definition 4. The partial FRP problem is to complete the partially-populated routing

tables to minimize the size of the maximum firewall rule set.

Moreover, we can introduce weights into the problem definition. Suppose each rule

is assigned a weight, representing the expected traffic volume covered by this rule. The

higher the traffic volume, the larger the weight. Suppose each firewall is also assigned a

weight, representing the firewall’s capacity (such as processing speed). The higher the

capacity, the larger the weight. We define the weight of a firewall rule set to be the total

weight of all rules in the set multiplied by the firewall’s weight. The weighted version of

the above problems is to minimize the maximum weight of any firewall rule set in the

network. This allows us to model firewall performance more accurately. For example, in

the solutions of the weighted FPP/FRP problems, a firewall with a larger capacity are

likely to take more rules or those rules with heavier traffic.

We will prove that all the above problems are NP-complete, and we will design a

heuristic algorithm for them. Instead of enumerating over all problems, our presentation

will focus on FPP for analysis and algorithm design. We will show that the results can

be trivially extended to other problems. Focusing on FPP is only a presentation choice

because it is easier to extend the solution for FPP to other problems. This presentation

choice does not mean that our solution is only designed for topology construction in the

network design phase. The solution can also be used for topology expansion and routing

optimization in the operation phase, which is probably the more common scenario of

application.

2.3.4 Rule Graph and Topology Graph

We use Fig. 2-2 to illustrate a few concepts. There are eight domains with ids from

1 to 8. The rule matrix, (r(x, y), x, y ∈ N), is shown in Fig. 2-2 (a). We construct a

25

rule graph (denoted as Gr) in Fig. 2-2 (b), where each node is a domain and there is an

undirected edge 〈x, y〉 if r(x, y) + r(y, x) > 0. The number of access control rules to be

enforced between the two domains, i.e., r(x, y) + r(y, x), is shown beside the link. Gr is a

graphical representation of the rule matrix, specifying the security requirement. It will be

the input to the algorithm that solves FPP and other problems (approximately because

they are NP-complete).

For the output of the algorithm, we define a topology graph (denoted as Gt), which

consists of a network topology and a routing structure. A node in Gt is either a domain

or a firewall. An undirected link (x, f) represents a physical connection between a domain

x and a firewall f . Note that we use the term “link (x, f)” in Gt, in contrast to the term

“edge 〈x, y〉” in Gr. Each node has a routing table consisting of routing entries, each

specifying the next hop for a destination domain.

Suppose there are five firewalls, each having three network interfaces. Fig. 2-2 (c)

shows the topology graph returned by the algorithm to be proposed in this dissertation.

The number of access control rules enforced on a firewall is shown inside the box that

represents the firewall. The routing tables are interpreted as follows. “rt(1, 2) = f3”

means the routing table at domain 1 has an entry for destination domain 2 with the next

hop being firewall f3. In reality, the gateway in domain 1 which connects to firewall f3

must advertise within the domain that it can reach domain 2. Consequently, the routing

tables at the internal routers will each have an entry for domain 2, pointing towards that

gateway. “rt(f1, 1) = 1” means that the routing table at firewall f1 has an entry for

domain 1 with the next hop being domain 1. It implies that f1 is directly connected to a

gateway in domain 1. Of course, the actual routing entry uses that gateway as the next

hop. “rt(f1, 2) = 3” means that the routing table at firewall f1 has an entry for domain

2 with the next hop being domain 3. It implies that f1 is directly connected to a gateway

in domain 3. The actual routing entry uses that gateway as the next hop and the address

26

prefix of domain 2 as the destination. The other routing entries in the figure should be

interpreted similarly.

Given a rule graph Gr and a set M of firewalls, for each feasible topology graph Gt,

we can calculate w(f),∀f ∈ M . The topology graph that minimizes maxf∈M{w(f)} is the

solution. FPP has the largest set of feasible topology graphs; partial FPP has a smaller set

due to the restriction of a given partial topology. FRP has only one feasible topology with

many possible routing structures, while partial FRP gives less freedom in constructing a

routing structure.

2.3.5 Robustness

Robustness against node failure is an important issue in network design. While

dynamic routing is used inside each domain, we must guard against firewall failure. The

most common way to achieve high availability is to use dual firewalls. The state-synchronization

solution and the load-balancing solution [22–24] are prevalent in practice. Fig. 2-3 shows

one example for each approach. In both cases, firewalls in parallel disposition have the

same rule set so that one of them can continue the service when the other fails. Identical

co-located firewalls can be logically treated as one in our solution. Therefore, we will not

explicitly discuss the use of dual firewalls in the sequel.

2.4 NP-Completeness

In this section, we prove that FPP is NP-complete. The same process can be used to

prove the NP-completeness of partial FPP, FRP, partial FRP, and weighted FPP/FRP,

which is omitted to avoid excessive repetition.

FPP is an optimization problem. We define the corresponding decision problem as

follows: Given a rule graph and a set of firewalls, the k-firewall decision problem is to

decide whether there exists a topology graph such that w(f) ≤ k, ∀f ∈ M , where k is an

arbitrary, positive integer. To prove the NP-completeness of FPP, it is sufficient to prove

its decision problem is NP-complete.

27

The proof consists of two steps. First, we show the k-firewall decision problem ∈
NP. Second, we show it is NP-hard by reducing the set-partition problem (known to be

NP-complete [25]) to the k-firewall decision problem in polynomial time.

2.4.1 k-Firewall Decision Problem ∈ NP

To show the decision problem belongs to NP, we need to give a verification algorithm

that can verify a solution Gt of the problem in polynomial time. Gt is a topology graph,

specifying the network topology and the routing paths between domains. The verification

algorithm is described as follows. Initially, w(f) = 0, ∀f ∈ M . For each edge 〈x, y〉 in

Gr, we traverse the routing path between domain x and domain y in Gt. For each firewall

f on the path, w(f) := w(f) + r(x, y) + r(y, x). There are O(n2) edges in Gr and the

length of a routing path is O(n + m). Therefore, it takes O(n2(n + m)) time to calculate

w(f), ∀f ∈ M . After that, it takes O(m) time to verify w(f) ≤ k, f ∈ M .

2.4.2 NP-Hardness

We show that the set-partition problem can be reduced to the k-firewall decision

problem in polynomial time. In that case, because the set-partition problem is NP-hard

[25], the k-firewall decision problem is also NP-hard.

Given a finite set A of positive integers, the set-partition problem is to determine

whether there exists a subset A′ ⊆ A such that
∑

a∈A′ a =
∑

a∈A−A′ a. We reduce it to the

k-firewall decision problem as follows.

First, for each member a ∈ A, we associate it with a pair of two domains 〈xa, ya〉, and

let the number of access control rules from xa to ya be a. In total, there are 2|A| domains.

N = {xa, ya | a ∈ A}. For domain pairs 〈xa, ya〉, ∀a ∈ A, r(xa, ya) = a, and for all other

domain pairs 〈x, y〉, r(x, y) = 0.

Second, we use two firewalls, denoted as f1 and f2. The number of network interfaces

of each firewall is 2× |A|. k is set to be
∑

a∈A a

2
.

28

The reduction from the set-partition problem to the above k-firewall decision problem

can be done in polynomial time since we only need to convert |A| integers into |A| domain

pairs with the rule matrix (r(x, y), x, y ∈ N) appropriately set.

Next, we prove that the set-partition problem is satisfiable if and only if the

corresponding k-firewall decision problem is satisfiable.

First, suppose the set-partition problem is satisfiable, i.e., there exists a subset

A′ ⊆ A such that
∑

a∈A′ a =
∑

a∈A−A′ a =
∑

a∈A a

2
. We construct a topology graph as

follows. For each member a in A′, we connect both xa and ya to f1, insert a routing path

xa → f1 → ya, and add r(xa, ya), which equals a, to w(f1). For each member a ∈ A − A′,

we connect both xa and ya to f2, insert a routing path xa → f2 → ya, and add r(xa, ya),

which equals a, to w(f2). Finally, we use the remaining free interfaces to make the graph

connected. The constructed topology graph has the following property.

w(f1) =
∑

a∈A′
r(xa, ya) =

∑

a∈A′
a =

∑
a∈A a

2
= k

w(f2) =
∑

a∈A−A′
r(xa, ya) =

∑

a∈A−A′
a =

∑
a∈A a

2
= k

(2–2)

Therefore, the k-firewall decision problem is also satisfiable.

Second, suppose the k-firewall decision problem is satisfiable, i.e., there exists a

topology graph such that w(f1) ≤ k and w(f2) ≤ k. Recall that k =
∑

a∈A a

2
. We have

w(f1) + w(f2) ≤ 2k =
∑
a∈A

a (2–3)

Each rule has to be enforced by f1, f2, or both. Therefore,

w(f1) + w(f2) ≥
∑
a∈A

r(xa, ya) =
∑
a∈A

a (2–4)

By (4–11) and (2–4), we have

w(f1) + w(f2) =
∑
a∈A

a (2–5)

29

Consider an arbitrary member a ∈ A. The routing path from xa to ya must only pass

either f1 or f2 but not both because otherwise the above equation could not hold.

Let Π(f) be the set of domain pairs, 〈xa, ya〉, whose routing path passes a firewall

f . Π(f1)
⋂

Π(f2) = ∅. Because w(f1) ≤ k and w(f2) ≤ k, by (2–5), we have

w(f1) = w(f2) =
∑

a∈A a

2
. Consider w(f1) and we have the following equation.

∑

〈xa,ya〉∈Π(f1)

r(xa, ya) =

∑
a∈A a

2
(2–6)

Let A′ = {a | 〈xa, ya〉 ∈ Π(f1)}. The above equation can be rewritten as follows.

∑

a∈A′
r(xa, ya) =

∑

a∈A′
a =

∑
a∈A a

2
(2–7)

Therefore, the set-partition problem is also satisfiable.

2.5 HAF: A Heuristic Algorithm for FPP, Partial FPP, FRP, Partial FRP,
and Weighted FPP/FRP

We propose HAF — a Heuristic Algorithm to approximately solve the Firewall

problems defined in Section 2.3.3. Our description of the algorithm centers around FPP. In

Section 2.5.7, we show that the algorithm can be used to solve other problems.

2.5.1 Overview

The input of HAF is a rule graph Gr and a set M of firewalls and an initial topology

graph Gt, which has no link for FPP, but is a partial or full topology for other problems.

The output of HAF is a completed topology graph Gt, which consists of domains and

firewalls as nodes, links connecting domains and firewalls, and routing tables.

We have shown that the global optimization problem of FPP, which is to find the

optimal topology and routing paths that minimize the maximum firewall rule set in

the network, is NP-complete. However, constructing an optimal routing path between

one pair of domains is a polynomial problem. The basic idea behind HAF is to process

the domain pairs one at time and iteratively insert the optimal routing path for each

domain pair into a topology graph Gt. After the paths for all domain pairs are inserted,

30

Gt is an approximate solution to the FPP problem. HAF is particularly useful when the

physical network is gradually expanding. After the algorithm produces a topology Gt for

the current domains, when a new domain is added to the network, the algorithm can be

naturally invoked to process the new domain pairs on top of the existing topology.

The pseudo code of the HAF algorithm is given in Fig. 2-4. For FPP, Gt is initially a

topology graph of n domain nodes and m firewall nodes with no link. For each edge 〈x, y〉
in Gr, the subroutine Insert Optimal Path(Gt, x, y) is called to perform the following three

tasks.

1. Define the set of feasible routing paths between domain x and domain y.

2. Find the optimal routing path between x and y that minimizes the maximum rule

set among all feasible routing paths.

3. Insert the optimal routing path to Gt.

The loop of Lines 2-3 processes the set of edges 〈x, y〉 in Gr in the descending order

of (r(x, y) + r(y, x)), which is the total number of rules between domain x and domain

y. The topology graph Gt keeps growing as the loop inserts one routing path to Gt in

each iteration. In the following, we show how to implement the above three tasks of

Insert Optimal Path.

2.5.2 Augmented Graph G
〈x,y〉
t and MinMax Path

To define the set of feasible paths between domain x and domain y, we first construct

an augmented graph G
〈x,y〉
t from Gt as follows. The links already in Gt are called physical

links. For each firewall f with one or more free interfaces, we add a new link between

f and x if they are not already connected. Similarly, we add a new link between f and

y if they are not already connected. These new links are called virtual links. A virtual

link may be turned into a physical one if needed. Gt and the virtual links together form

the augmented graph G
〈x,y〉
t . A routing path between x and y in the augmented graph is

feasible if the following three conditions are satisfied.

31

• Routing Condition: The routing path must be consistent with the routing tables at

nodes on the path. For an arbitrary link (v, u) on the path, if v already has a routing

entry for destination y but the next hop is not u, then the path is not feasible.

• Interface Condition: When all virtual links on the path are turned into physical

ones, no firewall uses more network interfaces than it has. Suppose a firewall f has

only one free interface and both (f, x) and (f, y) are virtual links in G
〈x,y〉
t . A path

(x, f, y) is not feasible because we cannot turn both (x, f) and (f, y) into physical

links.

• Connectivity Condition: After the path is turned physical, Gt should still have enough

free interfaces to turn itself into a connected graph. Initially, Gt is not a connected

graph. In the end, it has to be a connected graph. During the execution of HAF,

there should always be enough free interfaces to make new links that are able to

connect all separated topological components in Gt. Therefore, if a routing path uses

too many free interfaces that makes Gt no longer connectable, then the path is not

feasible.

In other words, a path is feasible if we can turn it into a physical path without

violating the current routing structure in Gt, exceeding the interface limitation of any

firewall, or rendering Gt not connectable.

Definition 5. The MinMax path in G
〈x,y〉
t is the optimal feasible path between x and y that

minimizes the maximum rule set on the path.

Based on the construction of G
〈x,y〉
t , all virtual links either connect to x or connect to

y. Therefore, only the first and last links on the MinMax path may be virtual links.

2.5.3 Find the MinMax Path in G
〈x,y〉
t

We transform the problem of finding the MinMax path to a variant of the shortest-path

problem. We define a cost metric on nodes. The cost of a firewall is the size of its rule set,

i.e., w(f) as defined in (2–1). The cost of a domain is zero. The cost of a path is the

maximum cost (instead of the sum of the costs) of all nodes on the path. One path is

32

shorter than another path if the cost of the former is smaller or the costs of the two paths

are the same but the former has a fewer number of hops. By this definition, the shortest

path between x and y must also be the MinMax path.

We design an algorithm, called HAF Dijkstra, to find the shortest path between x and

y in G
〈x,y〉
t . It is an all-source single-destination variant of Dijkstra’s algorithm, designed

for a graph with 1) virtual links (subject to the interface condition stated in the previous

subsection), 2) routing restrictions, 3) node costs instead of link costs, and 4) path length

defined as the maximum node cost instead of the sum of the node costs on the path.

Satisfying the connectivity condition is a rather complex task, which will be ignored for

now and addressed in the next subsection, where we will modify the construction of G
〈x,y〉
t

to include only those virtual links that do not make Gt unconnectable.

Before giving the pseudo code of the algorithm, we define the following variables.

rt[v, d] is the routing table entry at node v for destination d. Its value is inherited from

Gt. If Gt does not have such a routing entry, the value of rt[v, d] is NIL. c[v] is the cost

of node v. cost[v, d] is the estimated cost of the shortest path from v to d. hops[v, d] is

the estimated number of hops on the shortest path from v to d. These two variables are

initialized to ∞ and then improved by the algorithm until reaching the optimal values.

next[v, d] stores the next hop after v on the shortest path to d. Q is the set of nodes

whose shortest paths to d have been found. Extract Min(Q) and Relax(v, u) are two

standard subroutines in Dijkstra’s algorithm. Extract Min(Q) finds the node u in Q that

has the smallest cost[u, d] value and, when there is a tie, has the smallest hops[u, d] value.

After the shortest path from u to d is found, Relax(v, u) propagates this information to

all adjacent nodes v. The pseudo code of the HAF Dijkstra algorithm is given in Fig. 2-5.

“:=” is the assignment sign. s is the source node, and d is the destination node.

Routing Condition(v, u, d) and Interface Condition(v, u, s, d) make sure that the

Relax subroutine is performed on link (v, u) only when both the routing condition and

the interface condition are satisfied. By the construction of Shortest Path(G
〈x,y〉
t , s, d), the

33

Routing Condition and Interface Condition subroutines are executed iteratively for all

links of the shortest path, and therefore, the returned shortest path must be feasible.

HAF Dijkstra first uses x as the source node and y as the destination node to find the

shortest path by calling Shortest Path(G
〈x,y〉
t , x, y). Then it uses y as the source node and

x as the destination node to find the shortest path by calling Shortest Path(G
〈x,y〉
t , y, x).

Finally it returns the shorter one between these two paths. The reason for calling the

Shortest Path subroutine twice is due to the asymmetry caused by virtual links, which is

illustrated in Fig. 2-6, assuming each node only has routing entries for directly connected

nodes. The clouds, blocks, solid lines, dashed lines, and bold lines represent domains,

firewalls, physical links, virtual links, and the shortest paths, respectively. If f2 has two

free interfaces, the shortest path is shown in Fig. 2-7. Another more complicated example

is shown in Fig. 2-8, where f2 and f3 each have one free interface.

2.5.4 Insert the MinMax Path to Gt

After finding the MinMax path for 〈x, y〉, we insert the path to Gt. The following

operations are performed.

• Convert each virtual link on the MinMax path to a physical link.

• For each firewall f on the MinMax path, increase the size of its rule set by r(x, y) +

r(y, x).

• Let the path be (v1, v2, ..., vl), where v1 = x and vl = y. For 1 ≤ i < l, add a

routing entry at vi for each destination, vi+1 , ..., vl, with the next hop being vi+1.

For 1 < i ≤ l, add a routing entry at vi for each destination, v1, ..., vi−1, with the

next hop being vi−1. This will keep the routing symmetry during the execution of

the HAF algorithm.

2.5.5 Ensuring Connectivity

Gt may not be a connected graph. A component of Gt is a connected subgraph that is

not contained by a larger connected subgraph. Let c be the number of components in Gt.

34

Let φ be the total number of free interfaces of all firewalls. Note that a physical link can

be inserted into the graph for each free network interface.

Property 2: Gt can be turned into a connected graph if and only if φ ≥ c− 1.

Proof: We first prove that φ ≥ c − 1 is a necessary condition for Gt to be turned

into a connected graph. Gt has c components. For Gt to be turned into a connected graph,

we must reduce c to one by adding at least c− 1 new links, which means there must be at

least c− 1 free interfaces.

Next we prove φ ≥ c − 1 is a sufficient condition. First, we consider a simple case

where all domains belong to one component. The remaining components must be single

firewalls, each having at least two free interfaces. To form a connected graph, we can

simply connect these firewalls to any domains.

Second, consider the case where the domains belong to at least two components.

φ ≥ c − 1 ≥ 1. There must be a firewall with a free interface. The firewall belongs to a

component. There must be another component that has a domain. Connect the firewall

and the domain, which uses one free interface and reduces the number of components by

one. Therefore, the condition φ ≥ c − 1 remains true. Repeat the above process until all

domains belong to one component. For this case, we have already proved that the graph

can be made connected.

Therefore, φ ≥ c − 1 is a necessary and sufficient condition for Gt to be turned into a

connected graph. ∇

Only the first and last links on the MinMax path may be virtual links. By inserting

the MinMax path to Gt, we consume at most two free network interfaces. However, if the

number of free interfaces is limited, the MinMax may be restricted to consume less than

two free interfaces in order to leave enough free interfaces to ensure the connectivity of the

graph. Assume the condition φ ≥ c − 1 holds in Gt before the insertion of the MinMax

path. We want to keep the condition true after the insertion. There are three cases.

35

• Case 1: φ ≥ c + 1 before insertion. The MinMax path is allowed to consume two

free interfaces.

• Case 2: φ = c before insertion. The MinMax path is allowed to consume one free

interface or two free interfaces if the path connects two components into one.

• Case 3: φ = c − 1 before insertion. The MinMax path is allowed to consume

one free interface if the path connects two components into one, or consume two free

interfaces if the path connects three components into one.

In order to enforce the above restrictions, we have to carefully redesign the subroutine

of Insert Optimal Path, which is Line 3 of the HAF algorithm. Let Com(x) be the

component in Gt that contains x. The pseudo code of Insert Optimal Path is given in

Fig. 2-9. We give a brief explanation below.

Lines 1-5 implement Case 1. There are plenty of free interfaces. For each firewall

f with a free interface, the algorithm adds a virtual link between f and x (or y) if they are

not already connected. It then runs the HAF Dijkstra algorithm on the augmented graph

to find the shortest path.

Lines 6-21 implement Case 2. Lines 7-12 add virtual links that connect different

components. More specifically, for each firewall f with a free interface, if f and x (or y)

belong to different components in Gt, add a virtual link between f and x (or y). When

any one of these links is turned into a physical one, it consumes one free interface and also

reduces the number of components by one.

Because φ = c in Gt, we are allowed to consume one free interface without reducing

the number of components. In other words, the MinMax path is allowed to use a virtual

link within the component that contains x, or a virtual link within the component that

contains y, but not both. Lines 13-16 find the shortest path that may use a virtual link

within the component of x’s. Lines 17-20 find the shortest path that may use a virtual link

within the component of y’s. Line 21 returns the better of the two paths.

36

Lines 22-29 implement Case 3. Because φ = c − 1 in Gt, we can use a virtual

link only when it reduces the number of components by one. It means that the augmented

graph can only have virtual links that connect different components.

2.5.6 Complexity Analysis

The time complexity of the Shortest Path subroutine is the same as the complexity

of Dijkstra’s algorithm, which is O(e + (n + m) log(n + m)). The complexities of the

HAF Dijkstra and Insert Optimal Path subroutines are the same as that of Shortest Path.

HAF executes the Insert Optimal Path subroutine for at most O(n2) times. Therefore, the

total time complexity is O(n2e + n2(n + m) log(n + m)).

2.5.7 Modifying HAF for FRP, partial FRP, and Weighted FPP/FRP

To solve partial FPP, we simply initialize Gt as the existing partial network topology.

To solve FRP, we initialize Gt as the existing network topology and set the number of

free interfaces to be zero for all firewalls. For partial FRP, we further initialize the route

entries rt[v, d] whose values are known. The rest of HAF remains the same. To solve

weighted FPP/FRP, we only need to change the definition of r(x, y) and w(f), while

leaving the algorithm intact. Instead of r(x, y) = |R(x, y)| as defined in Section 2.3.2,

r(x, y) should now be the sum of the weights of all rules in R(x, y). Instead of w(f) =
∑

〈x,y〉∈Π(f) r(x, y) as in (2–1), w(f) should now be interpreted as the weight of the rule set

at f and defined as

w(f) =

∑
〈x,y〉∈Π(f) r(x, y)

the weight of firewall f

2.6 Simulation

In this section, we evaluate the performance of the HAF algorithm for FPP. The

results for FRP and weighted FPP/FRP are omitted due to space limitation. To the

best of our knowledge, this is the first work that studies the FPP problem. We do not

have existing algorithms to compare with. In our simulations, we implement two simple

algorithms, called the tree topology algorithm (TREE for brevity) and the full topology

algorithm (FULL for brevity), respectively.

37

For a given FPP problem, the TREE algorithm first constructs a tree topology,

which defines unique routing paths between any two domains. To construct a tree, the

algorithm begins with one domain as the root. A number of firewalls are selected to be the

children of the root at the second level of the tree. We select firewalls in the descending

order of their numbers of interfaces. For each second-level firewall, a number of domains

are selected to be the children at the third level. We repeat this until the tree includes

all domains or firewalls. The even levels of the tree are firewalls while the odd levels

are domains. The number of children of a firewall is limited by its number of network

interfaces. We also restrict the average number of children per domain to be the same as

the average number of children per firewall.

The FULL algorithm first constructs a tree topology in the same way as the TREE

algorithm does. It then fully utilizes all remaining free interfaces on the firewalls by

making a link from each free interface to an arbitrary domain. After that, we run a

shortest-path algorithm to find the least-hops routing path between each pair of domains.

The tree topology with cross-links are often seen in organizations with hierarchical

administrative structures.

The default simulation parameters are shown in Table 2-2. The simulations will

change the default values of the parameters one at a time. n is the number of domains.

m is the number of firewalls. Let e(f) be the number of network interfaces on firewall f .

e(f) is the average number of network interfaces per firewall. The value of e(f), ∀f ∈ M ,

is generated from [2..2e(f)− 2] uniformly at random. r(x, y) is the average value of r(x, y)

among domain pairs 〈x, y〉 with r(x, y) > 0. p is the probability of r(x, y) + r(y, x) > 0

for an arbitrary domain pair 〈x, y〉. When r(x, y) > 0, its actual value is generated from

[1..2r(x, y)− 1] uniformly at random.

Fig. 2-10-2-15 show the simulation results. In all figures, the y axis is the size of

the maximum rule set (maxf∈M{w(f)}) at any firewall. We abbreviate “the size of the

maximum firewall rule set” as “the MFRS size”. The x axis is one of the parameters.

38

The figures compare the MFRS sizes achieved by the three algorithms under different

parameter values.

In Fig. 2-10, we vary the number n of domains in the simulation. When n is very

small, the numbers of firewalls and interfaces are relatively plentiful such that most

domain pairs are one firewall away from each other and the rules are well spread on the

firewalls. The MFRS size is small for all three algorithms. As n increases, HAF performs

far better than others. When n = 120, the MFRS size achieved by HAF is just 35.06% of

that achieved by FULL, and 24.78% of that achieved by TREE.

In Fig. 2-11, we vary the number m of firewalls in the simulation. TREE is insensitive

to the value of m because the tree topology can not take full advantage of the increased

number of firewalls. HAF performs much better than TREE and FULL. When m = 35,

the MFRS size achieved by HAF is 35.31% of that achieved by FULL, and 24.90% of that

achieved by TREE.

In Fig. 2-12, we vary the average number e(f) of network interfaces per firewall. HAF

performs best among the three. When e(f) = 3.5, the MFRS size achieved by HAF is

43.02% of that achieved by FULL, and 31.34% of that achieved by TREE.

In Fig. 2-13, we vary the average number r(x, y) of rules per domain pair. As r(x, y)

increases, the MFRS size increases proportionally for all three algorithms. When r(x, y) =

100, the MFRS size achieved by HAF is 37.05% of that achieved by FULL, and 18.74% of

that achieved by TREE.

In Fig. 2-14, we vary the probability p for a domain pair 〈x, y〉 to have one or more

rules. The value of p determines the density of the rule graph Gr. As p increases, the

MFRS size increases for all three algorithms. HAF performs better than the other two

algorithms for all p values used in the simulation. When p = 1, the MFRS size achieved by

HAF is 37.37% of that achieved by FULL, and 18.19% of that achieved by TREE.

In Fig. 2-15, we study sparse network topologies with m = (n − 1)/(e(f) − 1), which

means the number of firewalls is just enough to keep the topology connected. During the

39

simulation, we discard the runs that have too few firewalls to form a connected topology.

The figure shows that HAF works far better than others as n increases. When n = 120,

the MFRS size achieved by HAF is 34.98% of that achieved by FULL, and 24.57% of that

achieved by TREE.

40

Table 2-1. Frequently-used notations

N the set of domains
n the number of domains, i.e., n = |N |
M the set of firewalls
m the number of firewalls, i.e., m = |M |
e the total number of network interfaces of all firewalls
r(x, y) the number of access control rules for flows from domain x to domain y

w(f) the number of access control rules to be enforced on a firewall f

x u v yf f f 1 2 3

x u v yf f f 1 2 3

Figure 2-1. Two topologies that connect domains, x, u, v and y, via firewalls, f1, f2 and
f3, whose numbers of interfaces are 2, 3 and 2, respectively.

Table 2-2. Default simulation parameters

n m e(f) r(x, y) p

100 40 4 10 0.7

41

(a) r(x,y)

1

2

3 4

5

6

7

8

r(1,2)+r(2,1)
=30

50

40

20

20

20

20

30

30

10 10

10

1

2

3 4

5

6

7

8 50

60

70 80

70

: firewall

f 1

f 3

f 2

f 5

f 4

routing tables of domains

rt(1,2)=f
rt(1,3)=f
rt(1,5)=f
rt(1,6)=f
rt(1,7)=f

rt(2,1)=f
rt(2,3)=f
rt(2,5)=f

rt(3,1)=f
rt(3,4)=f
rt(3,2)=f
rt(3,5)=f

rt(4,3)=f
rt(4,5)=f

rt(5,1)=f
rt(5,2)=f
rt(5,3)=f
rt(5,4)=f
rt(5,7)=f
rt(5,8)=f

rt(6,1)=f
rt(6,7)=f

rt(7,6)=f

rt(8,5)=f

routing tables of firewalls

rt(f ,1)=1
rt(f ,2)=3
rt(f ,3)=3
rt(f ,4)=3
rt(f ,5)=5

rt(f ,1)=1
rt(f ,5)=5
rt(f ,6)=1
rt(f ,7)=7

rt(f ,1)=1
rt(f ,2)=2
rt(f ,6)=6
rt(f ,7)=1

rt(f ,2)=2
rt(f ,3)=3
rt(f ,4)=4
rt(f ,5)=3

rt(f ,5)=5
rt(f ,7)=7
rt(f ,8)=8

 1 2 3 4 5 6 7 8
1 0 11 40 0 11 10 0 0
2 19 0 17 0 8 0 0 0
3 10 3 0 16 5 0 0 0
4 0 0 14 0 8 0 0 0
5 29 2 5 2 0 0 12 6
6 10 0 0 0 0 0 1 0
7 0 0 0 0 18 19 0 0
8 0 0 0 0 14 0 0 0

y
x

3

1

2

3

2

3

4

4

1

4

4

1

2

1

1

1

5

5

4

4

3

3

2

5

1

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

: domain ii

(b) Rule graph Gr

(c) Topology graph Gt

w(f)

Figure 2-2. Rule matrix, rule graph, and topology graph

(b) L o a d b a l a n c e r s o l u t i o n

(a) S t a t e - s y n c h r o n i z a t i o n s o l u t i o n

y x

1
f

2
f

s y n c h r o n i z a t i o n
s e s s i o n 1

s e s s i o n 1

f a i l o v e r f i r e w a l l

y x
l o a d

b a l a n c e r

l o a d
b a l a n c e r

1
f

2
f

l o a d -
b a l a n c i n g

s e s s i o n 1

s e s s i o n 2

Figure 2-3. High-availability solutions

42

HAF(Gr, Gt, M)
1. for each 〈x, y〉 of Gr in descending order of (r(x, y) + r(y, x)) do
2. Insert Optimal Path(Gt, x, y)
3. return Gt

Figure 2-4. Pseudo code of HAF

43

Routing Condition(v, u, d)
1. if rt[v, d] = NIL or rt[v, d] = u then
2. return true
3. else
4. return false

Interface Condition(v, u, s, d)
1. if v = s ∧ next[u, d] = d and both (s, u) and (u, d) are virtual

links but u has only one free interface then
2. return false
3. else
4. return true

Relax(v, u, d)
1. if max{c[v], cost[u, d]} < cost[v, d] or max{c[v], cost[u, d]}

= cost[v, d] ∧ hops[u, d] + 1 < hops[v, d] then
2. cost[v, d] := max{c[v], cost[u, d]}
3. hops[v, d] := hops[u, d] + 1
4. next[v, d] := u

Shortest Path(G
〈x,y〉
t , s, d)

1. for each node v ∈ N
⋃

M do
2. cost[v, d] := ∞, hops[v, d] := ∞, next[v, d] := NIL

3. cost[d, d] := 0, hops[d, d] = 0
4. Q := N

⋃
M

5. while Q 6= ∅ do
6. u := Extract Min(Q)
7. if u = s then
8. break out of the while loop
9. Q := Q− {u}
10. for every adjacent node v of u in G

〈x,y〉
t do

11. if Routing Condition(v, u, d) and Interface Condition(v, u, s, d) then
12. Relax(v, u,d)
13. return the shortest path from s to d stored in the next variable

HAF Dijkstra(G
〈x,y〉
t , x, y)

1. p1 := Shortest Path(G
〈x,y〉
t , x, y)

2. p2 := Shortest Path(G
〈x,y〉
t , y, x)

3. return the better one between p1 and p2

Figure 2-5. Pseudo code of HAF Dijkstra

44

x v v yf f f 1 1 2 2 3

(a) two virtual links from f with one free interface 2

x v v yf f f 1 1 2 2 3

(b) the shortest path when y is set as the destination

x v v yf f f 1 1 2 2 3

(c) the shortest path when x is set as the destination

w(f) = 20 1

w(f) = 20 1

w(f) = 20 1

w(f) = 10 2

w(f) = 10 2

w(f) = 10 2

w(f) = 40 3

w(f) = 40 3

w(f) = 40 3

Figure 2-6. (a) Augmented graph G
〈x,y〉
t , where f2 has one free interface and two virtual

links; (b) Shortest path returned by Shortest Path(G
〈x,y〉
t , x, y), where the

relaxation is performed from y along the path to x; (c) Shortest path returned

by Shortest Path(G
〈x,y〉
t , y, x), where the relaxation is performed from x along

the path to y. The best path is (x, f1, v1, f2, y).

x v v yf f f 1 1 2 2 3

w(f) = 20 1 w(f) = 10 2 w(f) = 40 3

Figure 2-7. Shortest path when f2 has two free interfaces.

x v v f f f 1 1 2 2 3

w(f) = 30 1 w(f) = 10 2 w(f) = 10 3

yf 4

w(f) = 40 4

3 v

Figure 2-8. Shortest path when f2 and f3 each have one free interface.

45

Insert Optimal Path(Gt, x, y)
1. if φ ≥ c + 1 in Gt then

2. initialize G
〈x,y〉
t to be Gt

3. for each firewall f with a free interface do

4. add a virtual link in G
〈x,y〉
t between f and x (or y)

if they are not already connected

5. p := HAF Dijkstra(G
〈x,y〉
t , x, y)

6. else if φ = c in Gt then
7. initialize G′

t to be Gt

8. if Com(x) 6= Com(y) then
9. for each firewall f with a free interface, Com(f) 6= Com(x) do
10. add a virtual link in G′

t between f and x
11. for each firewall f with a free interface, Com(f) 6= Com(y) do
12. add a virtual link in G′

t between f and y

13. initialize G
〈x,y〉
t to be G′

t

14. for each firewall f with a free interface, Com(f) = Com(x) do

15. add a virtual link in G
〈x,y〉
t between f and x

16. p1 := HAF Dijkstra(G
〈x,y〉
t , x, y)

17. initialize G
〈x,y〉
t to be G′

t

18. for each firewall f with a free interface, Com(f) = Com(y) do

19. add a virtual link in G
〈x,y〉
t between f and y

20. p2 := HAF Dijkstra(G
〈x,y〉
t , x, y)

21. p := the better one between p1 and p2

22. else if φ = c− 1 in Gt then

23. initialize G
〈x,y〉
t to be Gt

24. if Com(x) 6= Com(y) then
25. for each firewall f with a free interface, Com(f) 6= Com(x) do

26. add a virtual link in G
〈x,y〉
t between f and x

27. for each firewall f with a free interface, Com(f) 6= Com(y) do

28. add a virtual link in G
〈x,y〉
t between f and y

29. p := HAF Dijkstra(G
〈x,y〉
t , x, y)

30. Insert p to Gt

Figure 2-9. Pseudo code of Insert Optimal Path

46

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 20 40 60 80 100 120

Si
ze

 o
f

M
ax

im
um

 R
ul

e
Se

t

n

HAF
TREE
FULL

Figure 2-10. Size of maximum rule set with
respect to number n of
domains. 10 ≤ n ≤ 120,
m = 40, e(f) = 4, r(i, j) = 10,
p = 0.7.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 35 40 45 50 55

S
iz

e
 o

f
M

a
x
im

u
m

 R
u
le

 S
e
t

m

HAF

TREE

FULL

Figure 2-11. Size of maximum rule set with
respect to number m of
firewalls. n = 100,
35 ≤ m ≤ 59, e(f) = 4,
r(i, j) = 10, p = 0.7.

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 3.5 4 4.5 5 5.5 6

Si
ze

 o
f

M
ax

im
um

 R
ul

e
Se

t

E(e(f))

HAF
TREE
FULL

Figure 2-12. Size of max rule set with
respect to avg number e(f) of
network interfaces per firewall.
n = 100, m = 40,
3.5 ≤ e(f) ≤ 6, r(i, j) = 10,
p = 0.7.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 10 15 20 25 30 35 40 45 50

S
iz

e
o
f

M
ax

im
u
m

 R
u
le

 S
et

E(r(i,j))

HAF
TREE
FULL

Figure 2-13. Size of maximum rule set with
respect to avg number r(i, j)
of rules per domain pair.
n = 100, m = 40, e(f) = 4,
10 ≤ r(i, j) ≤ 50, p = 0.7.

47

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Si
ze

 o
f

M
ax

im
um

 R
ul

e
Se

t

p

HAF
TREE
FULL

Figure 2-14. Size of maximum rule set with
respect to probability p.
n = 100, m = 40, e(f) = 4,
r(i, j) = 10, 0.3 ≤ p ≤ 1.0.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 20 40 60 80 100 120

S
iz

e
 o

f
M

a
x
im

u
m

 R
u
le

 S
e
t

n

HAF

TREE

FULL

Figure 2-15. Size of maximum rule set in
sparse network. 10 ≤ n ≤ 120,
m = (n− 1)/(e(f)− 1),
e(f) = 4, r(i, j) = 50, p = 1.0.

48

CHAPTER 3
A NOVEL INCREMENTALLY-DEPLOYABLE PATH ADDRESS SCHEME FOR THE

INTERNET

The research community has proposed numerous network security solutions, each

dealing with a specific problem such as address spoofing, DoS attacks, DoQ attacks,

reflection attacks, viruses, or worms. However, due to the lack of fundamental support

from the Internet, individual solutions often share little common ground in their design,

which causes a practical problem: deploying all these vastly-different solutions will add an

exceedingly high complexity to the Internet. In this chapter, we propose a simple, generic

extension to the Internet, providing a new type of information, called path addresses,

that simplify the design of security systems for packet filtering, fair resource allocation,

packet classification, IP traceback, filter push-back, etc. IP addresses are owned by

end hosts; path addresses are owned by the network core, which is beyond the reach of

the hosts. We describe how to enhance the Internet protocols for path addresses that

meet the uniqueness requirement, completeness requirement, safety requirement, and

incrementally-deployable requirement. We evaluate the performance of our scheme both

analytically and by simulations.

3.1 Motivation

After thirty years of accumulative development, the Internet is full of security

challenges: address spoofing, denial-of-service attacks, denial-of-quality attacks, reflection

attacks, viruses, worms, to name a few. The research community has proposed numerous

detection/mitigation solutions [26–34], each dealing with a specific problem in its own

unique way. The vast solution space, if viewed as a whole, seems able to handle many

security problems, but deploying all these solutions can be practically infeasible. A major

obstacle is that individual solutions often share little common ground in their design.

Many solutions heuristically work around the limitations imposed by the legacy Internet

protocols and demand orthogonal changes on routers. Their combined complexity added

to the Internet will be exceedingly high. In this dissertation, we take a different angle to

49

study Internet security. We ask the following question: Can we identify a simple extension

to the Internet protocols, which will provide certain new, critical information that is

fundamental to solving many security problems? Such information, once being created

inside the network, will be made accessible at the network edge, allowing various security

applications to be developed. With most complexity remaining at the edge, the network

core, which provides application-independent information, can be kept simple and stable.

What is the critical information that the network can provide to assist the development

of security applications? There can be many. The one we propose here is called path ad-

dresses. A host on the Internet is identified by an IP address; a routing path on the

Internet will be identified by a path address. The big question is, can path addresses help

us in ways that IP addresses can not? Below we use a few examples to illustrate their

differences.

In the first example, suppose a server under denial-of-service (DoS) attack attempts

to identify the IP addresses of flooding sources and block the packets carrying those

addresses. However, this approach will fail if malicious packets carry forged source

addresses or a reflection attack is used to cover the true sources. In the second example,

imagine a server under denial-of-quality (DoQ) attack tries to distribute its processing

capacity fairly among the clients. It cannot perform such distribution based on IP

addresses because there are too many of them. A certain kind of aggregation will be

necessary. In the last example, suppose a victim has managed to capture an attack packet

(say, containing a virus). Based on this single packet, how can the victim trace across the

Internet back to the attacker, given that the source address in the packet may be a forged

one? All above problems cannot be reliably solved based on IP addresses in the packet

header, which are set by the sender and may not be genuine. We need address information

that is beyond the reach of end hosts. This new address should be set and verified by the

routers in the network. If each routing path is assigned a path address, which is carried

in the header of packets routed on the path, then a server under DoS attack can block

50

packets based on path addresses that identify attack paths, a server under DoQ attack

can distribute its capacity among packet groups classified based on path addresses, each

representing an aggregate of client traffic, and a victim can use path address to find out

the attack path and therefore the attack source at the end of the path.

We propose an incrementally-deployable path address scheme (PAS) that meets the

following requirements: (1) Each routing path to a certain destination has a unique path

address (with very high probability), which is called the uniqueness requirement. It ensures

that path addresses accurately point out where packets are coming from. Blocking a path

address filters out the packets from an attack source without causing significant collateral

damage. (2) Each packet carries the address of the path it traverses; the packet has to

carry that address from the first router all the way to the destination, which is called the

completeness requirement. It gives the flexibility of classifying or blocking packets of a

given path address anywhere along the path. (3) The path address in a packet’s header

can only be correctly set by the routers in the network; a host will not be able to forge

the path address carried in its packets without being caught, which is called the safety

requirement. (4) Any viable path address scheme must support incremental deployment on

the existing Internet. It should bring benefit when only a portion of routers are upgraded

for path addresses, which is called the incrementally-deployable requirement. This chapter

describes in details how the Internet protocols may be enhanced to include path addresses

based on the above requirements. We demonstrate that the proposed PAS scheme satisfies

the self-completeness property for incremental deployment. We evaluate the performance

of PAS both analytically and by simulations.

The addition of path addresses requires relatively small changes in Internet protocols.

On the other hand, it may potentially have a large impact on how security systems will be

designed. When a victim’s intrusion detection system identifies malicious packets, it may

extract the path addresses from the packets and pay special attention to future packets

carrying the same path addresses, or even block such packets. If the victim has a mapping

51

table between path addresses and source IP address prefixes — which can learn from the

normal packets received in the past, then it can trace back to the source domain based on

the path address of a captured attack packet. Path addresses can also make the pushback

mechanism [35] more powerful. After the victim identifies a set of path addresses from

malicious packets, it may push these addresses into the network for blocking. When the

first-hop router receives a packet from a neighbor router and finds that the packet carries

a blocked path address, it drops the packet and then pushes the address to the neighbor.

Eventually the addresses will be pushed all the way back to the edge of the domains where

the attack hosts reside.

While the focus of this dissertation is on network security, the path address scheme

can be used in other network functions, such as packet classification, resource reservation,

and service differentiation. For example, instead of per-flow queueing, packet queues can

be queued based on path addresses, allowing trunk resource reservation to be made for all

flows sharing the same path between two ASes.

The rest of the chapter is organized as follows. Section 3.2 discusses the related work.

Section 3.3 presents the design of our path address scheme. Section 4.4 and Section 3.4.2

evaluate PAS by analysis and simulations, respectively.

3.2 Related Work

The research community has proposed numerous solutions to prevent address

spoofing, mitigate DoS attacks, filter malicious packets, control access to critical resources,

and perform trackback. While tremendous progress has been achieved, most solutions

have their own limitations. More importantly, these solutions are designed based on

vastly different mechanisms and, as an aggregate, will impose enormous complexity on

the Internet. Hence, to make them practically viable, we must seek ways to reduce such

complexity with new, generic assistance from the network. We believe path address is a

good candidate for achieving this goal. Below we survey the related work, many of which

may benefit if path-address information becomes available.

52

Research on preventing address spoofing has brought a number of technical

breakthroughs. Cryptographic cookies [36] allow a server to stay stateless until the address

of a client is verified. Examples are SYN cookies [27] and http redirection cookies [37].

One problem is that it is more expensive for the server to generate/verify cookies than the

attacker to forge request packets. The client-puzzle solutions [28, 38–40] require clients to

solve cryptographic puzzles before their connections are established. However, significant

computation overhead is placed not only on malicious hosts but also on legitimate clients.

The route-based packet filtering scheme [29] requires each router to drop packets that

are not supposed to pass a link. As the paper points out, it is very difficult to reliably

determine the set of source-destination pairs whose packets will pass a link. The spoofing

prevention method (SPM) [30] requires pairwise secure communication channels among

ASes to synchronize their keys. Ingress filtering [31] requires the edge routers of stub

networks to inspect outbound packets and discard those packets whose source addresses

do not belong to the local networks. This approach requires the participation of all edge

routers on the Internet; it does not work well for incremental deployment, which will be

elaborated in Section 3.3.6.

Many systems have been proposed to mitigate DoS attacks. SOS [32] is a secure

overlay service designed to protect emergency services from DoS attacks. Mayday [41] is

a generalization of SOS. They both assume a closed group of trusted clients. WebSOS

[42] applies the SOS architecture to the web service using graphic turing tests [43].

CenterTrack [44] is an IP overlay formed among a mesh of special tracking routers to trace

the flooding sources.

In recent years, the IP traceback problem is intensively studied [26, 33, 45–47].

The goal is to find the origins of the packets with spoofed source addresses. Many

traceback schemes incur considerable computation overhead [26], storage overhead [47],

or communication overhead [46] in order to keep track of the routers that the packets

53

traverse. Moreover, they identify the attack paths but do not provide a means for the

victim to block the attack packets.

The most related work is Pi [34, 45], which requires each router to insert an n-bit

mark in the IP identification field, where n is typically 2. The marks inserted by Pi in the

packet header is not suitable to serve as path address. Particularly, Pi does not satisfy

the uniqueness, completeness and safety requirements (defined in Section 3.1). First, in

Figure 3-1 (a), for packets coming from a long path, marks inserted by remote routers

will be overwritten due to the limit size of the path identifier. Consequently, all packets

arriving at R8, even though they may come from different paths further upstream,1 will

have the same path identifier when they reach the receiver. This violates the uniqueness

requirement. To block an attacker behind R9 based on the path identifier, all normal

users behind R9 will also have to be blocked. Second, marks are inserted one at a time

by the intermediate routers. Hence, a packet will not carry the same address information

in the IP identification field along its route, which violates the completeness requirement.

Third, in Figure 3-1 (b), if a router (such as R8) has more than 2n links, then there will

not be enough mark values to uniquely distinguish where packets are from. On the other

hand, if a router has less than 2n links, it will leave some mark values unused. Fourth,

in Figure 3-1 (c), if a zombie host is close to the receiver, only a few bits in the path

identifier will be marked by routers, and the rest bits will carry arbitrary values set by the

attacker, which violates the safety requirement. To block the attacker, the receiver has

to block all path identifiers that carry the same value in those few bits, which means one

sixteenth of all normal traffic will be mistakenly blocked in this example. If the zombie

is one hop away from the receiver, then one fourth of all normal traffic will have to be

1 One must imagine a whole tree of upstream routing paths rooted at R8, in which R9
is just one internal node.

54

mistakenly blocked. The problem is very serious because a single zombie close to the

receiver can cause such significant collateral damage.

3.3 Path Address Scheme

This section presents the detailed design of the path address scheme.

3.3.1 Objectives

We are only concerned with the interdomain routing paths at the AS level.2 Because

the discussions are exclusively about interdomain subjects, we will sometimes refer to

an “interdomain router” (e.g., a BGP router) simply as a “router” and an “interdomain

routing protocol” (e.g., BGP) as a “routing protocol”.3 We will use “AS” and “domain”

interchangeably.

We propose a path address scheme (PAS), which assigns each path an address. There

is an inherent difference between IP addresses and path addresses. The IP addresses are

owned by the hosts, which are given the full responsibility of setting the source addresses

in their packets. The path addresses are owned by interdomain routers and kept secret

to the hosts. Therefore, only routers are able to set path addresses appropriately in the

packet header.

We will answer the following questions: How to define the address of a routing path?

How to extend the routing protocols to keep track of the path addresses? What new fields

should be introduced in the packet header for path addresses? How can the receiver verify

the authenticity of the path address carried in a packet?

A packet carrying the authentic address of its routing path is called a normal packet;

a packet carrying a false path address is called an abnormal packet. Our goal is to enable

2 Technically, a similar scheme of path addresses may be introduced at the intra-domain
level, especially for large ASes.

3 The legacy names for interdomain router and interdomain routing protocol are
exterior gateway and exterior gateway protocol, respectively.

55

the receiving host, as well as the intermediate routers, to classify the packets into these

two categories. To fulfil this goal, the design of path addresses should meet the following

objectives.

• Objective 1: All legitimate packets will carry the authentic path addresses and

therefore be classified as normal packets.

• Objective 2: All malicious packets will either carry the authentic path addresses or

otherwise be classified as abnormal packets.

The second objective needs more explanation. An attack host may inject malicious

packets into a routing path. It has two choices, falsifying or not falsifying path addresses

in the packet header. If the attack host sets false path addresses in its packets, the

false addresses will be detected and the packets will be classified as abnormal ones. If

the attack host lets the router set the authentic path address, all its packets will share

a common characteristic: the same path address can be used for traceback or packet

filtering.

3.3.2 Definition of Path Address

Each interdomain router generates a random number, called local number, which is

l bits. The path address of a routing path is defined as the XOR of the local numbers of

the routers on the path. An example is given in Figures 3-2 and 3-3, where only the first

8 bits of the local numbers are shown. Figure 3-2 shows the AS-level topology and the

local numbers of nine interdomain routers. We denote the local number of a router Rx,

x ∈ [1..9], as Rx.loc. Figure 3-3 shows the addresses of the routing paths to AS1. We

denote the address of the routing path from Rx to a domain y as Rx.paddr(y), which is

called the path address from Rx to y.

In Figure 3-3, the path from R1 to AS1 contains only one router, R1. Hence,

R1.paddr(AS1) = R1.loc = 10101101. The path from R2 to AS1 contains two routers, R2

and R1. Hence, R2.paddr(AS1) = R1.loc ⊕ R2.loc = 10101101 ⊕ 00010111 = 10111010.

The path addresses of all other routing paths to AS1 are similarly determined.

56

The local numbers are independent random numbers. Any two (undirected) paths

have at least one different router.4 Their addresses have at least one different local

number in the XOR calculation. Therefore, the path addresses are also independent

random numbers. Given a destination domain, we want the path addresses from

all routers to be different with high probability, as illustrated in Figure 3-3, where

R1.paddr(AS1) through R9.paddr(AS1) are all different.

Because the path address will be carried in the packet header, its length represents

a performance/overhead tradeoff. Let p be the number of bits in a path address. The

probability for two paths to have the same address is 1
2p , which diminishes rapidly as p

increases. The current number of domains on the Internet is less than 216 because the AS

identifier is 16 bits long. Therefore, there are no more than 216 interdomain routing paths

to a given destination domain. Suppose a victim server decides to temporarily block a

path address carried by identified malicious packets in a SYN-flood attack. The expected

number of other domains whose routing paths to the victim happen to have the same

address is bounded by 216−p, and the expected fraction of legitimate packets that are

mistakenly blocked is 216−p

216 = 2−p, which is only related to the value of p and not related

to the number of ASes (or the size of AS identifer). The above two numbers are 2−16 and

2−32, respectively, if p = 32. We expect the value of p to be set reasonably large.

3.3.3 Extending Routing Protocol for Path Address

The interdomain routing protocol (BGP) establishes a routing table at each router

Rx, which has an entry for every reachable domain y. A path address field is added to

the routing entry, storing Rx.paddr(y), the address of the current routing path to y. The

routing protocol can be easily extended to keep track of the path addresses as the routes

4 There may be more than one communication link between two neighboring routers. If
two paths have the same sequence of routers but use different links, we treat them as the
same path.

57

change. First, the routers nearest to a destination y know the path addresses, which are

simply their local numbers. Second, consider an arbitrary router Rx and let Rz be the

next hop on its routing path to y. If Rz knows the correct value of Rz.paddr(y), Rx

will be able to calculate its path address to y by Rx.paddr(y) = Rz.paddr(y) ⊕ Rx.loc.

Therefore, by induction, the correct addresses for all paths will be found after the routes

stabilize, assuming the neighboring routers exchange their knowledge about path addresses

together with the classical routing information.5 To guard against eavesdrop or injection

attacks, this exchange may be protected by a secure inter-domain routing protocol such as

secure BGPs [48, 49]. We also want to point out that the above distributed computation

of path addresses does not assume symmetric routing.

The additional overhead (one integer for each routing entry) is very small, comparing

with what today’s BGP already stores: the whole interdomain path to a destination

domain for each routing entry.

Incremental deployment can be achieved as follows: Define a new optional transitive

path attribute in BGP for path address. For a BGP router that is upgraded to support

PAS, when it advertises its routes to neighbors via UPDATE messages, it inserts the new

transitive attribute in UPDATE to carry the path address of each route. When a BGP

router that does not support PAS receives such UPDATE messages, according to the

protocol of BGP [50], it will pass the received transitive attribute (i.e., path addresses) to

its neighbors when the received routes are advertised. When a BGP router that supports

PAS receives UPDATE messages with the new transitive attribute, it will extract the path

addresses, update the routing table for new routes and new path addresses (by XORing

the received path addresses with the local number). When it advertises the new routes,

it inserts their path addresses as transitive attribute. Under incremental deployment, the

5 Only the new information in the routing tables, including the path addresses, is
exchanged periodically, while the full tables are exchanged in much longer time intervals.

58

address of a path calculated by the above protocol will be the XOR of the local numbers

of the routers that have been upgraded to support PAS. The legacy routers are left out of

the distributed calculation process.

A multi-homing domain has more than one path to each destination. Each of its BGP

routers stores a different set of routes. The traffic from this domain may be split among

those BGP routers, carrying different path addresses and following different routes to

a destination. If an attack (such as DoS) is launched from this domain, the victim will

identify more than one (most frequently appearing) path address associated with the

attack.

BGP stability is of primary importance to the overall stability of the Internet

[51]. Route flap damping techniques have been proposed and implemented to stabilize

inter-domain routes [52]. Although route change is infrequent among BGP routers overall,

it does happen occasionally due to link failure or other reasons. Before new routes are

stabilized, some path addresses may be temporarily out-of-sync, causing a burst of packets

to be classified as abnormal. Therefore, not all abnormal packets should be dropped

automatically. Only when a victim is under attack and the need to immediately block out

malicious packets outweights the collateral damage due to the small possibility of ongoing

inter-domain route change, the victim may decide to block out all abnormal packets. Even

when such misblocking happens, it is temporary. We want to point out that route change

also poses similar challenge to Pi [45], IP trackback [26, 45–47], and other related work

[29].

3.3.4 New Fields in Packet Header and Path Address Verification

PAS places two new fields and one new flag in the packet header: paddr field, ver-

ification field, and P flag. The paddr field carries the address of the routing path that

the packet traverses. For example, in Figure 3-3, the packets from AS5 to AS1 will carry

01001010 in the paddr field if they are routed via R8. To routers, the P flag indicates

whether the paddr field has been appropriately set or not. The purpose of the verification

59

field is to prevent a malicious host from falsifying the path addresses. In Figure 3-3, a

malicious host in AS4 may forge packets with 01001010 in the paddr field and pretend

that the packets are coming from AS5. When the forged packets arrive at R6, they are

mixed with the legitimate packets from AS5, R6 must be able to classify the forged ones

as abnormal packets. This is accomplished with the help of the verification field. We will

explain the actual operations shortly. The problems of where to place these fields and how

to operate under incremental deployment will be addressed at the end of this subsection.

The source host does not know the path address of its routing path. It sets the

P flag to zero, and sends the packet, which arrives at the first interdomain router.

When the router receives a packet, if the P flag is zero, the router knows that it is

the first hop on the path and is responsible to assign the appropriate values for the

paddr/verification fields. After that is done, the router will change the P flag to one so

that the subsequent routers will not change the path address carried in the packet, which

satisfies the completeness property.

An example is given in Figure 3-4, where the received packet is shown beside the

router. When the first interdomain router, R8, receives the packet, it finds that the P flag

is zero. R8 sets the paddr field to be R8.paddr(AS1), which is the path address from itself

to the destination. It sets the verification field to be R8.paddr(AS1)⊕ R8.loc, which gives

the path address from the next hop router to the destination. Finally it sets the P flag to

one before forwarding the packet. When the next-hop router, R7, receives the packet, it

keeps the path address field intact but updates the verification field by XORing it with

the local number. The new value of the verification field is the path address from the yet

next hop (R6) to the destination. Consequently, each intermediate router Rx is able to

verify the authenticity of the path address in the paddr field by matching the received

value in the verification field against Rx.paddr(AS1), which can be found in the routing

table. If the two matches, then the packet is a normal one. Otherwise, it is classified as

60

an abnormal one. The verification process must be carried out at each hop because forged

packets may be injected anywhere.

When a packet reaches the receiver, the verification field is zero if it is a normal

packet and non-zero if it is an abnormal packet. Because the path address should be kept

secret from the end host, the last hop router will disguise the path address by performing

a keyed hash on the paddr field. All normal packets traversed the same routing path will

have the same hash value in the paddr field when reaching the receiver.

So far we have described the normal behavior. Next, we study what a malicious host

can do. In Figure 3-5, a malicious host resides in AS4. When producing attack packets,

it has two choices, either setting the P flag to zero or to one. (1) If it sets the P flag to

zero, R6 will insert the path address in the packet header. Because the packets carry the

correct path address, they will be classified as normal (by definition) all the way to the

receiver. When the receiver finds itself is under attack, it tries to mitigate the attack by

filtering out the malicious packets. Recall that the last hop router will hash the paddr

field. Without knowing the actual path address, the receiver performs filtering based on

the hashed path address carried in those packets. (2) To hide itself, a malicious host may

set the P flag to one and the paddr field to an arbitrary value. However, it does not know

the correct value for the verification field, which must be the path address from R6 to the

destination. If it sets this value wrong, all intermediate routers will classify the packets

as abnormal. An example is given in Figure 3-5, where both paddr and verification fields

of an attack packet are initially set to 01001010, representing a false source of AS5. The

packet is classified as abnormal by all routers on the path.

The new fields can be easily incorporated into IPv6 by adding an extension header.

The new fields may also be embedded in the IPv4 header for backward compatibility by

creating a new IP option or using the 16 bits from the IP identification field, 1 bit from

the flag field, and 13 bits from the offset field, as many other works [26, 45–47] do. The

verification field can be made shorter than the paddr field, which provides flexibility of

61

making performance tradeoff under space constraint. In this case, only a subset of paddr

bits are verified.

During incremental deployment, some routers are upgraded to support PAS, while

others are not. The former will process the packets as described above. The latter will

simply forward the packets without PAS-related operations. Because the path address

is the XOR of the local number of the upgraded routers, the verification process will be

performed successfully.

3.3.5 Alternative Version of Path Address against Router Compromise

A serious problem arises when the attacker compromises interdomain routers. It is

unlikely that this problem will happen frequently because interdomain routers, as critical

infrastructure, are closely watched. But if an attacker gains the control of an interdomain

router, it can do a variety of harms, such as causing inconsistent routing tables, producing

false routes, and injecting forged packets. Our focus is on path address. In Figure 3-5,

if the malicious host compromises R6, it knows the key and learns the path addresses

from R6 to all destinations. The malicious host can instruct R6 to forge packets with

arbitrary values in the paddr field but correct values in the verification field, which allows

the packets to pass the verification along the routing paths. Router compromise poses

similar challenge to Pi [45], IP trackback [26, 45–47], and other related work [29], even

though most did not consider this issue. There is no way one can save the legitimate

packets arriving at the compromised R6 because R6 can corrupt or even drop them. But

it is possible for us to enhance the design of path addresses so that packets from R6 can

be separated from packets forwarded on other paths. The basic intuition is that, if the

subsequent routers after R6 are not compromised, they should construct a portion of the

path address that is beyond the control of R6. If necessary, this portion of the address can

be used by the receiver to classify the packets from R6.

The new way of constructing a path address performs shifted XOR, instead of XOR,

on the local numbers of the routers. Let the routing path from Rx to a destination domain

62

y be Rx → R[x − 1]... → R1 → y. The distance from Rx to y is x. Let d be a small

integer. To calculate Rx.paddr(y), when we XOR the local numbers, we shift R2.loc to the

right by d bits, R3.loc to the right by 2d bits, ..., and Rx.loc to the right by (x − 1)d bits.

Hence, the enhanced version of path address is defined as follows.

Rx.paddr(y) =
⊕

i∈[1..x]

(Ri.loc À (i− 1)d)

= R[x− 1].paddr(y) ⊕ (Rx.loc À (x− 1)d) (3–1)

where À is the right shift operator. It is easy for a routing protocol to keep track of the

new path address if Rx knows its distance to a destination y and knows the path address

from its next hop (denoted as R[x − 1]) to y. Below we give a few examples based on the

local numbers in Figure 3-2. Let d = 2.

R1.paddr(y) = R1.loc = 10101101...

R2.paddr(y) = R1.paddr(y)⊕ (R2.loc À 2)

= 10101101...⊕ 0000010111...

= 10101000...

R3.paddr(y) = R2.paddr(y)⊕ (R3.loc À 4)

= 10101000...⊕ 000011010011...

= 10100101...

...

where the bold zeros are inserted due to right-shift operations, and the italic bits in a

path address will not change in the subsequent computations. The leftmost d bits of a

path address are determined by the last hop (R1) on the routing path, the next d bits are

determined by the last two hops, and so on. If Ri is compromised, it has no impact on the

leftmost (i− 1)d bits in the path address.

The procedure for setting the values in the paddr/verification fields is similar to what

has been described in Section 3.3.4, except that shifted XOR is used. The verification is

63

however different. When an intermediate router Ri receives the packet, it classifies the

packet as normal only if the verification field matches Ri.paddr(y) and the leftmost (i× d)

bits of the paddr field match those in Ri.paddr(y).

If a malicious host compromises Ri, it cannot set the leftmost (i − 1)d bits in the

paddr field to arbitrary values because they have to match those in R[i − 1].paddr(y) in

order to pass the verification of the next hop. Consequently, all attack packets from Ri

will carry the same (i − 1)d bits in the paddr field. A defense system may be designed

based on this property. What about the attacker compromises R1, the last hop router to

the destination? Because the packets from all over the Internet are fully mixed there, it is

no longer possible to separate the legitimate packets from the malicious ones if that router

is compromised, unless the legitimate packets are protected by end-to-end cryptographic

schemes.

Shifted XOR shares superficial similarity with the operation of Pi [45]. In Pi, each

router can only set 2 bits in the IP identification field. A malicious host that is one hop

away from the victim can arbitrarily set other bits in that field. In shifted XOR, each

router has much more impact. For example, the last hop router will influence all bits in

the path address. The malicious host one hop away cannot set any bit in the path address

without being detected.

3.3.6 Self-Completeness of PAS for Incremental Deployment

During incremental deployment, let C be the set of ASes that have deployed a defense

system and C ′ the set of ASes that have not. The system is said to be self-complete

if it is fully functional among ASes in C even when attacks are launched from C ′. A

self-complete system must defeat both the “internal” attackers from C, which are within

the defense coverage, and the “external” attackers from C ′, which are outside of the

defense coverage.

Many existing defense systems are not self-complete. Take ingress filtering [31] as

an example. Suppose all networks in C perform ingress filtering and those in C ′ do not.

64

The attackers from C ′ can forge any source addresses and pretend to be from C. A victim

cannot distinguish such attack packets from legitimate packets from C, and has to drop

both. Hence, ingress filtering is not self-complete. SYN-dog [53] is not self-complete by a

similar analysis. It can be shown that the IP traceback systems [26, 45–47] are also not

self-complete.

When an AS deploys a system that is not self-complete, it essentially takes a good-

citizen strategy to help in a global effort for defeating a certain network threat. But the

benefits for itself arrives only after other organizations on the Internet are also good

citizens and, moreover, implementing the same defense. On the contrary, if an AS joins

a self-complete system such as PAS, it immediately receives the full defense function for

traffic between itself and other ASes that also deployed the system. This has a significant

practical impact: Immediate benefit during incremental deployment gives incentive for

ASes to deploy such a system.

An AS is PAS-aware if it deploys PAS on all its BGP border routers; otherwise, it

is PAS-unaware. We are not concerned with the uniqueness for the address of a path

whose source or destination is PAS-unaware. However, for our scheme to be self-complete,

we must ensure that the path address from a PAS-aware source AS to a PAS-aware

destination AS (denoted as x) must have a negligibly small probability to be the same

as the address from another source AS to x, regardless of whether that source AS is

PAS-aware or not. This is generally true, as illustrated in Fig. 3-6, where black circles

are routers supporting PAS and white circles are routers not supporting PAS. The path

address from AS3 to AS1 is R3.paddr(AS1) = R3.loc ⊕ R1.loc. It is different from the

path addresses from other domains to AS1, with one exception: the address from the

PAS-unaware AS6 to AS1 is also R3.loc⊕R1.loc. To solve this problem, when R3 receives

a packet from an external interface (connecting AS6) with the P flag being zero, it will

set the paddr field to be R3.paddr(AS1) ⊕ R3.loc ⊕ r = R1.loc ⊕ r, where r is a random

number associated with the external interface. It sets the verification field to be the paddr

65

field XORed with r, which ensures that the verification process will be successful down

the path. When the destination AS1 receives packets from AS6, it will see path address

R1.loc⊕ r, instead of R3.loc⊕R1.loc.

There is one additional operation. Before a router forwards a packet destined to

another AS, if the router’s path address to the destination AS is equal to its local number,

the router knows that it is the last AS-aware router on the path. In this case, it should

disguise the paddr field by hashing before forwarding the packet.

3.4 Evaluation

We evaluate our path address scheme both analytically and by simulations, and

compare our scheme with the most related work, Pi [45].

3.4.1 Analysis

Our analytical results reveal some interesting properties of PAS and Pi.

3.4.1.1 Analytical model

We consider an attack involving one malicious host. The case of multiple malicious

hosts will be studied by simulations. Suppose the malicious host has already launched

an attack, the intrusion detection system at the victim has identified the attack, and it

has extracted a path identifier (if the Pi scheme is deployed) or a path address (if the

PAS scheme is deployed) from the attack packet. Hoping to block the malicious host, the

victim decides to filter all packets carrying the path identifier (or path address). With this

scenario, we try to quantify the false-positive probability and the false-negative probability

of PAS (and Pi).

When a normal host sends a legitimate packet to the victim, if the packet is

mistakenly filtered, we call the event a false positive. The probability for that to happen

is called false-positive probability. Clearly, it is equal to the percentage of all legitimate

packets that are filtered, traditionally called false-positive ratio.

66

When the malicious host launches a new attack, if the attack packet is not filtered,

we call the event a false negative. The probability for that to happen is called false-

negative probability. It is equal to the percentage of all attack packets that are not filtered,

traditionally called false-negative ratio.

Let h be the number of routers that have been upgraded to support PAS (or Pi) on

the path from the malicious host to the victim. In the analysis, we ignore routers that do

not support PAS (or Pi). Let m be the number of bits used to store the path identifier in

Pi or the paddr/verification fields and the P flag in PAS. For Pi, let n be the number of

bits in any mark inserted to the path identifier by a router. For PAS, let p be the number

of bits in the paddr field and v the number of bits in the verification field. p + v = m − 1.

If v is chosen smaller than p, then only v bits in the paddr field are verified.

3.4.1.2 False-positive probability and false-negative probability of PAS

Suppose the victim has identified a previous attack packet and it begins to block the

path address extracted from the packet. The fact that the attack packet was not classified

as an abnormal packet means that the path address to be blocked must be the authentic

one.

Consider a legitimate packet from a normal host. The design of PAS is completely

different from that of Pi. Each router contributes a full p-bit local number to the path

address. As long as the routing path from the normal host to the victim has one router

that is not in the path from the malicious host to the victim, the addresses of the two

paths may differ in any of the p bits. Hence, the chance for these two path addresses to be

the same, i.e., the false-positive probability, is

FPPAS(p) =
1

2p
(3–2)

Next, consider an attack packet from the malicious host. If the malicious host does

not falsify the path address carried in the packet and lets the routers on the path set

the address, then the address will be the authentic one, matching the blocked path

67

address. To produce a false negative, the malicious host has to falsify the values in the

paddr/verification fields and set the P flag to be one. By the design of PAS, for any path,

there exists only one value for the verification field that can pass the verification process.

The chance for a random value in the verification field to pass the verification, i.e., the

false-negative probability is

FNPAS(v) =
1

2v
(3–3)

Because p + v = m − 1, if m is fixed, we can tune the values of p and v to make

tradeoff between the false-positive probability and the false-negative probability. However,

we are able to lower both probabilities if m can be increased. If m is large enough (e.g.,

30), we can lower both to almost zero. Finally, by (3–2)-(3–3), neither false-positive nor

false-negative probabilities depends on the distance h from the malicious host to the

normal host.

3.4.1.3 False-positive probability and false-negative probability of Pi

Suppose the victim has identified a previous attack packet and it begins to block the

path identifier extracted from the packet.

Consider a legitimate packet from a normal host. Suppose the routing path from the

normal host to the victim shares the last c hops with the routing path from the malicious

host. The path identifier carried in the legitimate packet must share c × n common bits

with the blocked identifier. The packet will be mistakenly filtered if the other (m − c × n)

bits happen to also have the same value as the blocked identifier. Hence, the false-positive

probability is

FPPi(m,n, c) =

1
2m−n×c if n× c < m

1 if n× c ≥ m
(3–4)

Next, consider an attack packet from the malicious host. This new attack packet

follows the same path as the previous one. Hence, the path identifier carried in the packet

shares h × n common bits with the blocked identifier. The other (m − h × n) bits

68

are randomly set by the malicious host. The packet will not be filtered if any of those

(m−h×n) bits is different from the one in the blocked identifier. Hence, the false-negative

probability is

FNPi(m, n, h) =

1− 1
2m−n×h if n× h < m

0 if n× h ≥ m
(3–5)

Pi has two design parameters, m and n. (3–4)-(3–5) reveal some interesting properties

of Pi. First, we show a counter-intuitive result. It is not true that a larger size for path

identifier always leads to better performance. From (3–4)-(3–5), increasing m reduces the

false-positive probability, but increases the false-negative probability when n × h < m.

Decreasing m has the opposite effect. Second, increasing n reduces the false-negative

probability, but increases the false-positive probability. Decreasing n has the opposite

effect. Third, the false-negative probability increases exponentially as the distance h from

the malicious host to the victim decreases.

We can tune the values of m and n to make tradeoff between the false-positive

probability and the false-negative probability, but we cannot simultaneously drive them

down. Another way to reduce the false-negative probability is to add a path identifier to

the blocked list whenever the intrusion detection system identifies an attack packet that

is not filtered. However, as the number of blocked path identifiers is increased, the chance

for a normal packet to match one of them, i.e., the false-positive probability, will also be

increased.

3.4.2 Simulations

We use simulations to evaluate PAS and compare it with Pi in terms of false-positive

ratio and false-negative ratio.

3.4.2.1 Simulation setup

The simulation network has 10,000 nodes (ASes). The nodes are inter-connected

through their gateways (inter-domain routers). A node is said to be normal if it does not

69

have an attack host; it is malicious if it does. A certain number of nodes are randomly

selected to be malicious. The attacker ratio is defined as the number of malicious nodes

divided by the total number of nodes (which is 10,000). The default attacker ratio is

0.1, but we will vary it in the simulation. A single victim is randomly selected from the

network. The network topology is generated based on the Power-Law Internet model [54].

The attack model used in our simulations is similar to that in [45]. There are

two phases. The first is called the learning phase, and the second is called the at-

tack phase. In the learning phase, we assume that an intrusion detection system

identifies the attack packets and extracts the path identifiers or path addresses (e.g.,

the most-frequently-received ones under a DoS attack) for blocking. How to design an

intrusion detection system in general is beyond the scope of this chapter. Suppose, after

this phase, the victim learns the path address from each malicious node to the victim, or if

Pi is used, it learns up to r path identifiers for each malicious node. In Figure 3-1 (c), we

have showed that there can be multiple path identifiers from an attacker if it resides near

the victim. The default value for r is one, but we will vary it in the simulation.

In the attack phase, the victim filters all packets carrying the path identifers or path

addresses learned in the previous phase. For Pi, the malicious nodes generate attack

packets with random initial values in the path-identifier field. For PAS, the malicious

nodes generate attack packets with random initial values in the paddr/verification fields

and one for the P flag. We measure the false-positive ratio, which is the fraction of

legitimate packets from all sources that are mistakenly filtered, and the false-negative

ratio, which is the fraction of attack packets that are not filtered in this phase.

Since Pi uses no more than 30 bits in the packet header for its path identifier,

including 16 bits from the IP identification field, 1 bit from the flag field, and 13 bits

from the offset field. We allow the same number of bits for PAS in our simulations for

fair comparison. PAS uses 16 bits for the paddr field, 1 bit for the P flag, and 13 for

the verification field. Pi uses all 30 bits for the path identifier. We have learned from

70

Section 4.4 that, in Pi, the number n of bits for a mark represents a tradeoff between the

false-positive ratio and the false negative ratio. We let n be 2, 3, 5, or 6 in the simulations.

Pi with these n values are denoted as Pi(2), Pi(3), Pi(5) and Pi(6), respectively.

3.4.2.2 Performance evaluation with respect to attacker ratio

In the first simulation, we vary the attacker ratio from 0.05 to 0.3. That means the

number of malicious nodes ranges from 500 to 3,000. Figure 3-7shows the false-positive

ratios and the false-negative ratios, respectively. Both false-positive ratio and false-negative

ratio of PAS are near zero, varying between 0 and 0.0002. The attacker ratio has

hardly any impact on PAS. None of Pi(2)-Pi(6) has a low false-positive ratio and a low

false-negative ratio at the same time. The false-positive ratios of Pi(2) and Pi(3) are close

to zero, but their false-negative ratios are almost one. Note that the simulation in [45]

did not include malicious nodes close to the victim, but the simulation in this dissertation

does, which reveals the above serious performance problem. Figure 3-7 also confirms our

analytical result in Section 4.4 that increasing n reduces the false-negative ratio of Pi but

increases the false-positive ratio. For the same value of n, as the attacker ratio increases,

the false-positive ratio increases while the false-negative ratio decreases. The reason is

that, the more the attackers, the more the number of blocked path identifiers (identified

in the learning phase), the higher the chance of misblocking normal packets, and the lower

the chance of not blocking attack packets.

3.4.2.3 Performance evaluation with respect to network topology

In the second simulation, we study the impact of network topology on the performance

of PAS and Pi. We change the density in network connectivity by varying the fraction of

degree-one nodes from 0.1 to 0.5. Figure 3-8 shows the false-positive ratios and the

false-negative ratios, respectively. PAS has very small false-positive and false-negative

ratios, ranging between 0.0001 and 0.0002. Topology variation has little impact on

its performance. For Pi, however, as the fraction of degree-one nodes increases, the

false-positive ratios increase while the false-negative ratios decrease. The reason is that

71

increasing degree-one nodes reduces the number of links in the network, which has two

consequences. First, it increases the lengths (denoted as c) of common subpaths shared

by attack packets and normal packets, and hence increases the false-positive ratio due to

(3–4) in Section 4.4. Second, it increases the path length (denoted as h) and thus increases

the false-negative ratio due to (3–5).

3.4.2.4 Performance comparison with respect to r

In the third simulation, we vary r from 1 to 101. Recall that r is the maximum

number of path identifiers per malicious node learned in the first phase. Figure 3-9 shows

the false-positive ratios and the false-negative ratios, respectively. It is a parameter for

Pi, and thus has no impact on PAS. The larger the value of r, the larger the number of

blocked path identifiers in the second phase, the higher the chance of misblocking normal

packets, and the lower the chance of not blocking attack packets. Therefore, as r increases,

the false-positive ratio of Pi increases and the false-negative ratio decreases.

We also run the above simulations on shifted XOR. Its performance is very

close but slight worse than PAS. We do not plot it in the figures because it almost

completely overlaps with the curve of PAS except for the left plot of Figure 3-9, where the

false-positive ratio of shifted XOR would be half a percentage higher than that of PAS.

3.4.2.5 Performance evaluation under incremental deployment

Let the deployment ratio be the fraction of all routers that support PAS (or Pi).

In the last simulation, we vary the deployment ratio from 0.1 to 1.0, and randomly

select ASes to be PAS/Pi-aware. Figure 3-10 shows the false-positive ratios and the

false-negative ratios for packets from all PAS/Pi-aware ASes to a PAS/Pi-aware victim.

The false-negative and positive ratios of PAS are near zero due to PAS’s self-completeness

(Section 3.3.6). To the contrary, the false negative ratio of Pi is very high when the

deployment ratio is small.

72

R . . .

receiver

0011011001110010 0011xxxxxxxxxxxx 00xxxxxxxxxxxxxx1011011001110010

mark first two bitsmark next two bitsmark last two bitsoverwrite first two bits

1 R 2 R 8 R 9(a)

R . . .

receiver

1 R 2 R 8(b)

00
01

11

10

11

attacker

normal users

R

receiver

00xxxxxxxxxxxxxx0010xxxxxxxxxxxx

mark first two bitsmark second bits

1 R 2(c) attacker

Figure 3-1. Pi cannot be used for path address.

73

AS1
R1.loc

10101101

AS6

AS7

AS5

AS2

AS4

AS3

R2.loc
 00010111

R3.loc
 11010011

R4.loc
01100100

R5.loc
10110010

R6.loc
 00111010 R7.loc

11100010

R8.loc
 00101101

R9.loc
11100101

Figure 3-2. Local numbers of the interdomain routers.

AS1
R1.paddr(AS1)

10101101

AS6

AS7

AS5

AS2

AS4

AS3

R2.paddr(AS1)
10111010

R3.paddr(AS1)
 01101001

R4.paddr(AS1)
00001101

R5.paddr(AS1)
10111111

R6.paddr(AS1)
10000101 R7.paddr(AS1)

01100111

R8.paddr(AS1)
01001010

R9.paddr(AS1)
11101000

Figure 3-3. Addresses for the routing paths from the routers to AS1. For example,
R8.paddr(AS1) = 01001010. It is the XOR of all local numbers on the routing
path R8 → R7 → R6 → R5 → R4 → R3 → R2 → R1. Alternatively it can be
viewed as the XOR of R8’s local number and R7.paddr(AS1).

AS1
R1 <10101101>

AS5

AS2

AS4

AS3

R2 <10111010>

R3 <01101001>

R4 <00001101>
R5 <10111111>

R6 <10000101>

R7 <01100111>

R8 <01001010>

P: 00000000
 V: 00000000

P: 01001010
 V: 01100111

P: 01001010
 V: 10000101

P: 01001010
 V: 10111111 P: 01001010

 V: 00001101

P: 01001010
 V: 10001001

P: 01001010
 V: 10111010

P: 01001010
 V: 10101101

receiver

sender

 P: h(01001010)
 V: 00000000

P: the paddr field
 V: the verification field

 Note: Rx.paddr(AS1) is given after Rx in <...>, for x in [1..9]

P flag: 0

P flag: 1

P flag: 1

P flag: 1

P flag: 1
P flag: 1

P flag: 1
P flag: 1

P flag: 0

Figure 3-4. Received values of the paddr and verification fields are shown beside each
router. The two fields are set to zeros by the sender. The first interdomain
router sets these fields with appropriate values. The path address field stays
unchanged at the subsequent hops, but the verification field is XORed by the
local number at each hop. The verification field should be zero when the
packet reaches its receiver.

74

AS1
R1 <10101101>

AS5

AS2

AS4

AS3

R2 <10111010>

R3 <01101001>

R4 <00001101>
R5 <10111111>

R6 <10000101>

R7 <01100111>

R8 <01001010>

P: 01001010
 V: 01001010

P: 01001010
 V: 01110000 P: 01001010

 V: 11000010

P: 01001010
 V: 10100110

P: 01001010
 V: 01100010

P: 01001010
 V: 00000000

receiver

sender

malicious host

P: 01001010
 V: 01110101

P: the paddr field
 V: the verification field

 Note: Rx.paddr(AS1) is given after Rx in <...>, for x in [1..9]

: verification failure

P flag: 1

Figure 3-5. Malicious host in AS4 sets the paddr/verification fields arbitrarily with the P
flag being one. As long as it does not know R6.paddr(AS1), the attack packets
to AS1 will be classified as abnormal, which is indicated by a cross below V in
the figure.

AS1 R1

AS6

AS7AS2

AS4

AS3

R2

R3

R4
R6

R5

Figure 3-6. Path address between AS3 and AS1 should be artificially made different from
the address between AS6 and AS1.

75

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.05 0.1 0.15 0.2 0.25 0.3

Fa
ls

e
Po

si
tiv

e
R

at
io

Attacker Ratio

PAS
Pi(2)
Pi(3)
Pi(5)
Pi(6)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05 0.1 0.15 0.2 0.25 0.3

Fa
ls

e
N

eg
at

iv
e

R
at

io

Attacker Ratio

PAS
Pi(2)
Pi(3)
Pi(5)
Pi(6)

Figure 3-7. Left: false positive ratios with respect to attacker ratio. Right: false negative
ratios with respect to attacker ratio.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5

Fa
ls

e
Po

si
tiv

e
R

at
io

Fraction of degree-one nodes

PAS
Pi(2)
Pi(3)
Pi(5)
Pi(6)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5

Fa
ls

e
N

eg
at

iv
e

R
at

io

Fraction of degree-one nodes

PAS
Pi(2)
Pi(3)
Pi(5)
Pi(6)

Figure 3-8. Left: false positive ratios with respect to fraction of degree-one nodes. Right:
false negative ratios with respect to fraction of degree-one nodes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 11 21 31 41 51 61 71 81 91 101

Fa
ls

e
Po

si
tiv

e
R

ar
io

Number of fake packets from each attacker

PAS
Pi(2)
Pi(3)
Pi(5)
Pi(6)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 11 21 31 41 51 61 71 81 91 101

Fa
ls

e
N

eg
at

iv
e

R
at

io

Number of fake packets from each attacker

PAS
Pi(2)
Pi(3)
Pi(5)
Pi(6)

Figure 3-9. Left: false positive ratios with respect to r. Right: false negative ratios with
respect to r.

76

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fa
ls

e
Po

si
tiv

e
R

at
io

Deployment Ratio

PAS
Pi(2)
Pi(3)
Pi(5)
Pi(6)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fa
ls

e
N

eg
at

iv
e

R
at

io

Deployment Ratio

PAS
Pi(2)
Pi(3)
Pi(5)
Pi(6)

Figure 3-10. Left: false positive ratios with respect to deployment ratio. Right: false
negative ratios with respect to deployment ratio.

77

CHAPTER 4
FIT A SPREAD ESTIMATOR IN A SMALL MEMORY

The spread of a source host is the number of distinct destinations that it has sent

packets to during a measurement period. A spread estimator is a software/hardware

module on a router that inspects the arrival packets and estimates the spread of each

source. It has important applications in detecting port scans and DDoS attacks, measuring

the infection rate of a worm, assisting resource allocation in a server farm, determining

popular web contents for caching, to name a few. The main technical challenge is to fit

a spread estimator in a fast but small memory (such as SRAM) in order to operate it at

the line speed in a high-speed network. In this chapter, we design a new spread estimator

that delivers good performance in tight memory space where all existing estimators

no longer work. The new estimator not only achieves space compactness but operates

more efficiently than the existing ones. Its accuracy and efficiency come from a new

method for data storage, called virtual vectors, which allow us to measure and remove the

errors in spread estimation. We perform experiments on real Internet traces to verify the

effectiveness of the new estimator.

4.1 Motivation

Traffic measurement in high-speed networks has many challenging problems [55–59].

In this chapter, we study the problem of spread estimation, which is to estimate the

number of distinct destinations to which each source has sent packets that are of all or

certain specific types.

We define a contact as a pair of source and destination, for which the source has sent

a packet to the destination. In the most general terms, the source or destination can be

an IP address, a port number, or a combination of them together with other fields in the

packet header. The spread of a source is the number of distinct destinations contacted

by the source during a measurement period. A spread estimator is a software/hardware

module on a router (or firewall) that inspects the arrival packets and estimates the spread

78

of each source. It must implement two functions. The first function is to store the contact

information extracted from the arrival packets. The second function is to estimate the

spread of each source based on the collected information. Although our discussion will

focus on the source’s spread, we may change the role of source and destination and use the

same spread estimator to measure the spread of a given destination, which is the number

of distinct sources that have contacted the destination.

A spread estimator has many important applications in practice. Intrusion detection

systems can use it to detect port scans [60], in which an external host attempts to

establish too many connections to different internal hosts or different ports of the same

host. It can be used to detect DDoS attacks when too many hosts send traffic to a receiver

[61], i.e., the spread of a destination is abnormally high. It can be used to estimate the

infection rate of a worm by monitoring how many addresses the infected hosts will each

contact over a period of time. A large server farm may use it to estimate the spread

of each server (as a destination) in order to assess how popular the server’s content is,

which provides a guidance for resource allocation. An institutional gateway may use it to

monitor outbound traffic and determine the spread of each external web server that has

been accessed recently. This information can also be used as an indication of the server’s

popularity, which helps the local proxy to determine the cache priority of the web content.

The major technical challenge is how to fit a spread estimator in a small high-speed

memory. Today’s core routers forward most packets on the fast forwarding path

between network interfaces that bypasses the CPU and main memory. To keep up

with the line speed, it is desirable to operate the spread estimator in fast but expensive,

size-limited SRAM [62]. Because many other essential routing/security/performance

functions may also run from SRAM, it is expected that the amount of high-speed

memory allocated for spread estimation will be small. Moreover, depending on the

applications, the measurement period can be long, which requires the estimator to store an

enormous number of contacts. For example, to measure the popularity of web servers, the

79

measurement period is likely to be hours or even days. Hence, it is critical to design the

estimator’s data structure as compact as possible.

The past research meets the above challenge with several spread estimators [62–64]

that process a large number of contacts in an ever smaller space. This dissertation adds

a new member that not only requires far less memory than the best known one but also

operates much more efficiently. It is able to provide good estimation accuracy in a tight

space where all existing estimators fail. Our major contribution is a new methodology for

contact storage and spread estimation based on virtual vectors, which use the available

memory more efficiently for tracking the contacts of different sources.

Do we need a new spread estimator when there are already several? Consider the

following scenario. Collected from the main gateway at the University of Florida on a

day in 2005, the Internet traffic trace that we used in our experiments has around 10

million distinct contacts from 3.5 million distinct external sources to internal destinations.

We expect that today’s traffic on the Internet core routers will exceed these figures by

far. Now assume the router can only allocate 1MB SRAM for the spread estimator. On

average there are only 2.3 bits allocated for tracking the contacts from each source. We

classify the existing estimators into several categories based on how they store the contact

information: 1) storing per-flow information, such as Snort [65] and FlowScan [61], 2)

storing per-source information, such as Bitmap Algorithms [64] and One-level/Two-level

Algorithms1 [63], and 3) mapping sources to the columns of a bit matrix, where each

column stores contacts from all sources that are mapped to it, such as On-line Streaming

Module (OSM) [62]. Obviously the first two categories will not work here because 2.3 bits

1 Venkatataman et al. [63] used a probabilistic sampling technique to reduce the
number of contacts that are input to the estimator (at the expense of estimation
accuracy). Naturally, it also reduces the number of sources appearing in input contacts.
This technique can be equally applied to other estimators such as those in [64] and the one
to be proposed in this dissertation. When we say per-source state, we refer to sources that
appear in the contacts after sampling (if the sampling technique is used).

80

are not enough to store the contacts of a source. As we will discuss shortly, OSM is also

ineffective in this scenario because mapping multiple sources to one column introduces

significant unremovable errors in spread estimation. Our new estimator uses a simple

one-dimension bit array. A virtual bit vector is constructed from the array for each

source. The virtual vectors share bits uniformly at random and introduce uniform errors

in spread estimation that can be measured and removed. Based on virtual vectors, a

spread estimator is mathematically developed and analyzed. The new estimator requires

much less computation and fewer memory accesses than OSM, yet it can work in a very

small memory where OSM cannot. Its performance is evaluated by experiments using real

Internet traffic traces.

4.2 Existing Spread Estimators

Snort [65] maintains a record for each active connection and a connection counter for

each source IP. Keeping per-flow state is too memory-intensive for a high-speed router,

particularly when the fast memory allocated to the function of spread estimation is small.

One-Level/Two-Level Algorithms [63] maintain two hash tables. One stores all

distinct contacts occurred during the measurement period, including the source and

destination addresses of each contact. The other hash table stores the source addresses

and a contact counter for each source address. A probabilistic sampling technique is used

to reduce the number of contacts to be stored. However, instead of storing the actual

source/destination addresses in each sampled contact, one can use bitmaps [64] to save

space. Each source is assigned a bitmap where a bit is set for each destination that the

source contacts. One can estimate the number of contacts stored in a bitmap based on

the number of bits set [64]. An index structure is needed to map a source to its bitmap.

It is typically a hash table where each entry stores a source address and a pointer to

the corresponding bitmap. However, such a spread estimator cannot fit in a tight space

where only a few bits are available for each source — not enough for a bitmap to work

appropriately.

81

If we make each bitmap sufficiently long, we will have to reduce the number of them

and there will not be enough bitmaps for all sources. One solution is to share each bitmap

among multiple sources. Consider a simple spread estimator that uses a bit matrix whose

columns are bitmaps. Sources are assigned to columns through a hash function. For

each contact, the source address is used to locate the column and, through another hash

function, the destination address is used to determine a bit in the column to be set. One

can estimate the number of contacts stored in a column based on the number of bits

set. However, the estimation is for contacts made by all sources that are assigned to the

column, not for the contacts of a specific source under query.

The information stored for one source in a column is the noise for others that are

assigned to the same column. One must remove the noise in order to estimate the spread

correctly. To solve this problem, OSM (Online Streaming Module) [62] assigns each source

randomly to l (typically three) columns through l hash functions, and it sets one bit

in each column when storing a contact. A source will share each of its columns with a

different set of other sources. Consequently the noise (i.e., the bits set by other sources)

in each column will be different. Based on such difference, a method was developed to

remove the noise and estimate the spread of the source [62].

OSM also has problems. Not only it increases the overhead by performing l + 1 hash

operations, making l memory accesses and using l bits for storing each contact, but the

noise can be too much to be removed in a compact memory space where a significant

fraction of all bits (e.g., above 50%) are set. The columns that high-spread sources are

assigned to have mostly ones; they are called dense columns, which present a high level

of noise for other sources.2 The columns that only low-spread sources are assigned to

are likely to have mostly zeros; they are called sparse columns. As we observe in the

experiments, in a tight space, dense columns will account for a significant fraction of all

2 Note that each high-spread source produces l dense columns.

82

columns. The probability for a low-spread source to be assigned to l dense columns is

not negligible. Since these dense columns will have many bits set at common positions,

the difference-based noise removal will not work, and hence the spread estimation will be

wrong. We will confirm the above analysis by the experimental results in Section 4.5.

Also related is the detection of stealthy spreaders using online outdegree histograms

in [66], which detects the event of collaborative address scan by a large number of sources,

each scanning at a low rate. It is able to estimate the number of participating sources and

the average scanning rate, but it cannot perform the task of estimating the spread of each

individual source in the arrival packets.

4.3 Design of Compact Spread Estimator (CSE)

We first motivate the concept of virtual vectors that are used to store the contact

information. We then design our compact spread estimator (CSE). Finally we discuss how

to store source addresses.

4.3.1 Motivation for Virtual Vectors

Existing estimators divide the space into bitmaps and then allocate the bitmaps to

sources. If we use per-source bitmaps and each bitmap has a sufficient number of bits,

then the total memory requirement will be too big. If we share bitmaps, it is hard to

remove the noise caused by sources that are assigned to the same bitmap. Resolving this

dilemma requires us to look at space allocation from a new angle.

Our solution is to create a virtual bit vector for each source by taking bits uniformly

at random from a common pool of available bits. In the previous estimators, two bitmaps

do not share any bit. Two sources either do not cause noise to each other, or cause severe

noise when they share a common bitmap — they share all bits in the bitmap. Each

source experiences a different level of noise that cannot be predicted. In our estimator,

two virtual vectors may share one or more (which is very unlikely) common bits. While

each source has its own virtual vector to store its contacts, noise still occurs through the

common bit between two vectors. However, there is a very nice property: Because the bits

83

in virtual vectors are randomly picked, there is an equal probability for any two bits from

different vectors to be the same physical bit. The probability for the contacts of one source

to cause noise to any other source is the same. When there are a large number of sources,

the noise that they cause to each other will be roughly uniform. Such uniform noise can

be measured and removed. This property enables us to design a spread estimator for a

tight space where the previous estimators will fail. The new estimator is not only far more

accurate in spread estimation but also much more efficient in its online operations.

4.3.2 CSE: Storing Contacts in Virtual Vectors

Our compact spread estimator (CSE) consists of two components: one for storing

contacts in virtual vectors, and the other for estimating the spread of a source. The first

component will be described below, and the second will be in the next subsection.

CSE uses a bit array B of size m, which is initialized to zeros at the beginning of

each measurement period. The ith bit in the array is denoted as B[i]. We define a virtual

vector X(src) of size s for each source address src, where s ¿ m. It consists of s bits

pseudo-randomly selected from B.

X(src) = (B[H0(src)], B[H1(src)], ..., B[Hs−1(src)]), (4–1)

where Hi, 0 ≤ i ≤ s − 1, are different hash functions whose range is [0..m − 1]. They can

be generated from a single master hash function HM .

Hi(src) = HM(src⊕R[i]) (4–2)

where R is an array of s different random numbers and ⊕ is the XOR operator.

When a contact (src, dst) is received, CSE sets one bit in B and the location of the

bit is determined by both src and dst. More specifically, the source address src is used to

identify a virtual vector X(src), and the destination address dst is used to determine a bit

location i∗ in the virtual vector.

i∗ = HM(dst) mod s (4–3)

84

From equations 4–2 and 4–3, we know that the i∗th bit in vector X(src) is at the following

physical location in B:

Hi∗(src) = HM (src⊕R[i∗]) = HM (src⊕R[HM (dst) mod s]).

Hence, to store the contact (src, dst), CSE performs the following assignment:

B[HM(src⊕R[HM(dst) mod s])] := 1. (4–4)

We stress that setting one bit by equation 4–4 is the only thing that CSE does when

storing a contact. It takes two hash operations and one memory access. The source’s

virtual vector, as defined in equation 4–1, is never explicitly computed until the spread

estimation is performed on an offline machine (to be described shortly). The bit, which is

physically at location HM(src ⊕ R[HM(dst) mod s]) in B, is logically considered as a bit

at location (HM(dst) mod s) in the virtual vector X(src). Note that duplicate contacts

will be automatically filtered because they are setting the same bit and hence have no

impact on the information stored in B. Multiple different contacts may set the same

physical bit. This is embodied in the probabilistic analysis when we derive the spread

estimation formula.

4.3.3 CSE: Spread Estimation

At the end of the measurement period, one may query for the spread of a source src

(i.e., the number of distinct contacts that src makes in the period). Let k be the actual

spread of src. The formula that CSE uses to compute the estimated spread k̂ of src is

k̂ = s · ln(Vm)− s · ln(Vs) (4–5)

where Vm is the fraction of bits in B whose values are zeros and Vs is the fraction of bits

in X(src) whose values are zeros. The value of Vm and Vs can be easily found by counting

zeros in B and X(src), respectively. The first item, (−s · ln(Vm)), captures the noise, which

is uniformly distributed in B and thus does not change for different sources. The second

85

item, (−s · ln(Vs)), is the estimated number of contacts that are stored in X(src), including

the contacts made by src and the noise.

We expect that queries are performed after B is copied from the router’s high-speed

memory to an offline computer in order to avoid interfering with the online operations.

Below we will derive equation 4–5 mathematically. Its accuracy and variance will be

analyzed in the next section.

Some additional notations are given as follows. Let n be the number of distinct

contacts from all sources during the measurement period, Um be the random variable for

the number of ‘0’ bits in B, and Us be the random variable for the number of ‘0’ bits in

the virtual vector X(src). Clearly, Vm = Um

m
and Vs = Us

s
.

Let Aj be the event that the jth bit in X(src) remains ‘0’ at the end of the

measurement period and 1Aj
be the corresponding indicator random variable. We first

derive the probability for Aj to occur and the expected value of Us. For an arbitrary bit

in X(src), each of the k contacts made by src has a probability of 1
s

to set the bit as one,

and each of the contacts made by other sources has a probability of 1
m

to set it as one. All

contacts are independent of each other when setting bits in B. Hence,

Prob{Aj} = (1− 1

m
)n−k(1− 1

s
)k, ∀j ∈ [0..s− 1]

Since Us is the number of ‘0’ bits in the virtual vector, Us =
∑s−1

j=0 1Aj
. Hence,

E(Vs) =
1

s
E(Us) =

1

s

s−1∑
j=0

E(1Aj
) =

1

s

s−1∑
j=0

Prob{Aj}

= (1− 1

m
)n−k(1− 1

s
)k (4–6)

' e−
n−k
m e−

k
s , as (n− k),m, k, s →∞

' e−
n
m
− k

s as k ¿ m (4–7)

86

The above equation can be rewritten as

k ' −s · n

m
− s · ln(E(Vs)). (4–8)

Since the bits in any virtual vector are selected from B uniformly at random, the process

of storing n contacts in the virtual vectors is to set n bits randomly selected (with replace-

ment) from a pool of m bits. The mathematical relation between n and m has been given

in [67] (in a database context) as follows.

n ' −m · ln(E(Vm)) (4–9)

where E(Vm) = (1− 1

m
)n (4–10)

Hence, equation 4–8 can be written as

k ' s · ln(E(Vm))− s · ln(E(Vs)). (4–11)

We have a few approximation steps above. In practice, n and m are likely to be very

large numbers, the spread values (k) that are of interest are likely to be large, and s will

be chosen large. The approximation errors that are accumulated in equation 4–11 can be

measured as

|s · ln(E(Vm))− s · ln(E(Vs))− k|
k

= |s · ln(
1− 1

m

1− 1
s

)− 1|

which is independent of n and k. This error is very small when s is reasonably large. For

example, when m = 1MB, as shown in Fig. 4-1, the error is only 0.25% when s is 200.

Let k1 = −s · ln(E(Vm)) and k2 = −s · ln(E(Vs)). Eq (4–11) is rewritten as

k ' −k1 + k2.

Replacing E(Vm) and E(Vs) by the instance values, Vm and Vs, that are obtained from

B and X(src) respectively, we have the following estimation for k1, k2 and k.

k̂1 = −s · ln(Vm) (4–12)

87

k̂2 = −s · ln(Vs) (4–13)

k̂ = −k̂1 + k̂2 (4–14)

According to Theorem A4 in [67], k̂1 is the maximum likelihood estimator (MLE)

of k1. Following a similar analysis, it is straightforward to see that k̂2 and k̂ are the

maximum likelihood estimators of k2 and k, respectively. k̂1 is the noise, the estimated

number of contacts made by others but inserted in X(src) due to bit sharing between

virtual vectors, and k̂2 estimates the total number of contacts stored in X(src), including

the noise.

4.3.4 System Architecture

The spread estimation system consists of a sampling module, CSE, and a module for

Storing distinct Source Addresses, denoted as SSA. CSE has two sub-modules: one for

Storing Contacts, denoted as CSE-SC, and the other for Spread Estimation, denoted as

CSE-SE, which have been described in the previous two subsections. CSE-SC is located in

the high-speed memory (such as SRAM) of a router, and CSE-SE is located on an offline

computer answering spread queries.

The sampling module is used to handle the mismatch between the line speed and

the processing speed of CSE-SC. In case that CSE-SC cannot keep up with the line

speed, the source/destination addresses of each arriving packet will be hashed into a

number in a range [0, N). Only if the number is greater than a threshold T (< N), the

contact is forwarded to CSE-SC. The threshold can be adjusted to match CSE-SC with

the line speed. The final estimated spread of a source will become k̂N
T

. The focus of this

dissertation is on CSE, assuming an incoming stream of contacts, regardless whether it

comes from a sampling module or not.

Most applications, such as those we discuss in the previous section, are interested

in high-spread sources. For them, we do not have to invoke SSA for each packet. When

CSE-SC stores a contact at a bit in B, only if the bit is set from ‘0’ to ‘1’, the source

address is passed to the SSA module, which checks whether the address has already been

88

stored and, if not, keeps the address. Comparing with CSE-SC, SSA operates infrequently.

First, numerous packets may be sent from a source to a destination in a TCP/UDP

session, only the first packet may invoke SSA because the rest packets will set the same

bit. Second, while a source may send thousands or even millions of packets through a

router, the number of times its address is passed to SSA will be bounded by s (which is

the number of bits in the source’s virtual vector). Hence, SSA can be implemented in the

main memory, thanks to its infrequent operation.

For CSE-SE to work, m and s should be chosen large enough such that the noise

introduced by other sources does not set all (or most) bits in a virtual vector. Hence,

it is unlikely that the address of a high-spread source will not be stored in SSA. For

example, even when only 10% of the bits in a virtual vector are not set by noise, for a

source making 100 distinct contacts, the probability for none of its contacts being mapped

to those 10% bits is merely (1− 10%)100 = 2.65× 10−5.

4.4 Analysis

We first study the mean and variance of k̂1 and k̂2, based on which we analyze the

accuracy of the spread estimation k̂.

4.4.1 Mean and Variance of k̂1 and k̂2

After setting n bits randomly selected from a pool of m bits, Whang [67] uses

n̂ = −m ln Vm to estimate the value of n and gives the following results.

E(n̂) = E(−m ln Vm) ' n +
e

n
m − n

m
− 1

2

V ar(n̂) = V ar(−m ln Vm) ' m(e
n
m − n

m
− 1)

Since k̂1 = −s · ln(Vm), we have

E(k̂1) ' s

m
(n +

e
n
m − n

m
− 1

2
) (4–15)

V ar(k̂1) ' s2

m
(e

n
m − n

m
− 1). (4–16)

89

If we choose an appropriate memory size m such that m = O(n) and e
n
m − n

m
− 1 is

negligible when comparing with n, then E(k̂1) ' s n
m

, which is indeed the average noise

that a virtual vector of size s will receive when all n contacts are evenly distributed across

the space of m bits. When m is large, the standard deviation, which is the square root of

V ar(k̂1), is insignificant when comparing with the mean.

Next we study k̂2. Let α = n
m

+ k
s
. Equation 4–7 can be rewritten as

E(Vs) ' e−α. (4–17)

We derive V ar(Vs), and it is

V ar(Vs) ' 1

s
(e−α − e−2α − k

s
· e−2α). (4–18)

Proof. The probability for Ai and Aj, ∀i, j ∈ [0..s− 1], i 6= j, to happen simultaneously is

Prob{Ai ∩Aj} = (1− 2
m

)n−k(1− 2
s
)k.

Since Vs = Us

s
and Us =

∑s
j=1 1Aj

, we have

E(V 2
s) =

1
s2

E((
s∑

j=1

1Aj)
2)

=
1
s2

E(
s∑

j=1

12
Aj

) +
2
s2

E(
∑

1≤i<j≤s

1Aj1Aj)

=
1
s
(1− 1

m
)n−k(1− 1

s
)k +

s− 1
s

(1− 2
m

)n−k(1− 2
s
)k.

90

Based on equation refequ100 and the equation above, we have

V ar(Vs) = E(V 2
s)− E(Vs)2

=
1
s
(1− 1

m
)n−k(1− 1

s
)k +

s− 1
s

(1− 2
m

)n−k(1− 2
s
)k

− (1− 1
m

)2(n−k)(1− 1
s
)2k

=
1
s
((1− 1

m
)n−k(1− 1

s
)k − (1− 2

m
)n−k(1− 2

s
)k)

+ (1− 2
m

)n−k(1− 2
s
)k − (1− 1

m
)2(n−k)(1− 1

s
)2k

' 1
s
(e−α − e−2α) + e−2n−k

m
−2 k

s (
−k

s2
)

' 1
s
(e−α − e−2α − k

s
e−2α).

In equation 4–13, k̂2 is a function of Vs. We expand the right-hand side of equation

4–13 by its Taylor series about q = E(Vs) ' e−α.

k̂2(Vs) = s · (α− Vs − q

q
+

(Vs − q)2

2q2
− (Vs − q)3

3q3
+ ...) (4–19)

Since q = E(Vs), the mean of the second term in equation 4–19 is 0. Therefore, we keep

the first three terms when computing the approximated value for E(k̂2).

E(k̂2) ' s · (α +
1

2q2
E((Vs − q)2))

E((Vs − q)2)) = V ar(Vs) by definition. Applying equation 4–18, we have

E(k̂2) = s · (α +
eα − 1− k

s

2s
) (4–20)

If s is large enough such that
eα−1− k

s

2s
is negligible, then E(k̂2) ' sα = s n

m
+ k. Recall

that E(k̂1) ' s n
m

. Hence, E(k̂) = −E(k̂1) + E(k̂2) ' k. In the next subsection, we will

characterize more precisely the mean of k̂ and how much it deviates from the true value of

k.

91

To derive the variance of k̂2, we keep the first two items on the right-hand side of

equation 4–19.

V ar(k̂2) ' s2 · V ar(α− Vs − q

q
)

=
s2

q2
· V ar(Vs) ' s(eα − k

s
− 1) (4–21)

The combined impact of V (k̂1) and V (k̂2) on the variance of k̂ will be studied next.

4.4.2 Estimation Bias and Standard Deviation

Based on the means of k̂1 and k̂2 derived previously, we obtain the mean of the spread

estimation k̂.

E(k̂) = E(k̂2)− E(k̂1)

' s(α +
eα − 1− k

s

2s
)− s

m
(n +

e
n
m − n

m
− 1

2
) (4–22)

The estimation bias is

E(k̂ − k) ' m(eα − 1− k
s
)− s(e

n
m − n

m
− 1)

2m
(4–23)

As an example, for n = 10, 000, 000, m = 2 MB, and s = 400, 600 or 800, the bias with

respect to k is shown in Table 4-1. It is very small when comparing with the true spread

k.

The variance of k̂ is

V ar(k̂) = V ar(k̂1) + V ar(k̂2)− 2Cov(k̂1, k̂2)

= V ar(k̂1) + V ar(k̂2) + 2
[
E(k̂1)E(k̂2)− E(k̂1k̂2)

]
. (4–24)

We have already obtained V ar(k̂1), V ar(k̂2), E(k̂1) and E(k̂2), and thus only need to

derive E(k̂1k̂2). Recall that k̂1 = s · (− ln(Vm)) and k̂2 = s · (− ln(Vs)). We expand − ln(Vm)

92

and − ln(Vs) by their Taylor series about p = e−
n
m and q = e−α, respectively.

E(k̂1k̂2) = s2E((− ln(Vm))(− ln(Vs)))

= s2E((
n

m
− Vm − p

p
+

(Vm − p)2

2p2
− ...)

· (α− Vs − q

q
+

(Vs − q)2

2q2
− ...))

' s2
[n

m
E(α− Vs − q

q
+

(Vs − q)2

2q2
)

+ αE(
n

m
− Vm − p

p
+

(Vm − p)2

2p2
)− n

m
α
]

= s2
[n

m
(α +

eα − 1− k
s

2s
) +

α

m
(n +

e
n
m − n

m − 1
2

)− n

m
α
]

= s2
[n

m
α +

n
m(eα − 1− k

s)
2s

+
α(e

n
m − n

m − 1)
2m

]
(4–25)

From equations 4–15, 4–16, 4–20, 4–21, 4–24 and 4–25, we can obtain the closed-form

approximation of V ar(k̂), which we omit. The standard deviation, divided by k to show

the relative value, is

StdDev(
k̂

k
) =

√
V ar(k̂)

k
(4–26)

We have made a number of approximations, particularly, the truncation of less

significant items in the Tayler series when deriving V ar(k̂1), V ar(k̂2), E(k̂1) and E(k̂2)

and E(k̂1k̂2). The standard deviation embodies all those approximations. In Section 4.5,

Fig. 4-3-4-6, we will show the numerical values of the standard deviation calculated from

equation 4–26 and compare them with the values measured from the experiments. The

result demonstrates that the analytical approximations only introduce minor error when

the source spread is not too small.

4.5 Experiments

We evaluate CSE through experiments using real Internet traffic traces. Our main

goal in this chapter is to provide a good spread estimator that can work in a small

memory. In most of our experiments, the memory size, when averaging over all sources

appearing in the input stream of contacts, ranges from 1.15 bits per source to 9.21 bits

93

per source. Existing estimators that keep per-flow or per-source state [63, 64] will not

work here as we have explained in Section 4.2. The only related work that can still be

implemented in such a small memory is OSM (Online Streaming Module) [62]; however, as

the experimental results will demonstrate, it does not work well. Hence, CSE is valuable in

the sense that it substantially extends the low end of memory requirement for the function

of spread estimation in practice.

It should be noted that CSE makes two hash operations and one memory access for

storing each contact, whereas OSM makes l + 1 hash operations and l memory accesses,

where l is typically three. While CSE’s efficient online operations are clearly advantageous

for high-speed routers, our evaluation will focus on the area that is less quantified so far —

the accuracy of spread estimation.

4.5.1 Experiment Setup

We obtained inbound packet header traces that were collected through Cisco’s

NetFlow from the main gateway at University of Florida for six days from April 1st to

6th, 2005. We implemented CSE and OSM, and executed them with the input of the six

days’ data. The experimental results are similar for those days. In this section, we will

only present the results for the first day.

In our experiments, the source of a contact is the IP address of the packet sender, and

the destination is the IP address of the receiver. The traffic trace on April 1 has 3,558,510

distinct source IP addresses, 56,234 distinct destination addresses, and 10,048,129 distinct

contacts. The average spread per source is 2.84; namely, each source makes 2.84 distinct

contacts on average. Fig. 4-2 shows the number of sources at each spread value in log

scale. The number of sources decreases exponentially as the spread value increases from 1

to around 500. After that, there is zero, one or a few sources for each spread value.

We always allocate the same amount of memory to CSE and OSM for fair comparison.

In each experiment, we feed the contacts extracted from the traffic trace to CSE or OSM,

which stores the contact information in its data structure (located in SRAM or high-speed

94

cache memory when deployed in a real router). The source addresses will be recorded in a

separate data structure (located in the main memory because the operations for recording

source addresses are performed infrequently as explained in Section 4.3.4). After all

contacts are processed, we use CSE or OSM to estimate the spread of each recorded source

(which should be performed on an offline computer such as the network management

center in practice).

4.5.2 Accuracy of Spread Estimation

The first set of experiments compare CSE and OSM in the accuracy of their spread

estimations. CSE has two configurable parameters: the memory size m and the virtual

vector size s. We perform four experiments with m = 0.5MB, 1MB, 2MB, and 4MB,

respectively. In each experiment, we choose a value for s that minimizes the standard

deviation as defined in equation 4–26 at k = 250, which is the middle point of the range

(0..500) in which the spreads of most sources fall (Fig. 4-2).

OSM also has two configurable parameters: the memory size m and the column size

(the number of rows in the bit matrix). The original paper does not provide a means to

determine the best column size, but it suggests that 64 bits are typical. We tried many

other sizes, and the performance of OSM under different column sizes will be presented

shortly. After comparison, we choose the column size to be 128, which we believe is better

than or comparable with other sizes for our experiments.

Figs. 4-3-4-6 present the experimental results when the memory allocated is 0.5MB,

1MB, 2MB and 4MB, respectively. Each figure has four plots from left to right. Each

point in the first plot (CSE) or the second plot (OSM) represents a source, whose x

coordinate is the true spread k and y coordinate is the estimated spread k̂. The line

of k̂ = k is also shown. The closer a point is to the line, the more accurate the spread

estimation is. To make the figure legible, when there are too many sources having a

certain spread k, we randomly pick five to show in the first two plots. The third and

fourth plots present the bias, E(k̂ − k), and the standard deviation, V ar(k̂)
k

, measured in

95

the experiment, respectively. Because there are too few sources for some spread values in

our Internet trace, we divide the horizontal axis into measurement bins of width 25, and

measure the bias and standard deviation in each bin. To verify the analytical result in

Section 4.4, we also show the standard deviation numerically calculated from (4–26) and

(4–24) as the curve under title “CSE std cal” in the fourth plot. We have the following

experimental results.

• First and Second Plots: CSE works far better than OSM when the allocated

memory is small. As the memory size increases, the performance of OSM improves and

approaches toward the performance of CSE.

• Third and Fourth Plots: Both the bias and the standard deviation of CSE

are much smaller than those of OSM. Moreover, the third plot shows that OSM is no

longer a non-bias estimator when the memory is small. In fact, if we compare the absolute

error |k̂ − k| (that is not shown in the figures), the maximum absolute errors of CSE over

the measurement bins are smaller than the average absolute errors of OSM in all four

experiments.

• Fourth Plot: For CSE, the numerically-calculated standard deviation, which

is the curve titled “CSE std cal”, matches well with the experimentally-measured value,

which is the curve titled “CSE std dev”. It shows that the approximations made in the

analysis do not introduce significant error.

4.5.3 Impact of Different s Values on Performance of CSE

The second set of experiments study the impact of different virtual-vector sizes

s on the performance of CSE. We let m = 1MB and vary the value of s from 200 to

500,3 while keeping the other parameters the same as in the previous set of experiments.

Fig. 4-7 presents the bias and the standard deviation of CSE. The experimental results

3 In the experiment of Fig. 4-5, the s value, which minimizes the standard deviation at
k = 250 as calculated from (4–26), is 286.

96

show that the performance of CSE is not very sensitive to the choice of s. A wide range

of s gives comparable results. In the right plot of the figure, a larger s value leads to a

slightly greater standard deviation for sources whose spreads (k) are small and a slightly

smaller standard deviation for sources whose spreads are large. when k is larger.

4.5.4 Impact of Different Column Sizes on Performance of OSM

The third set of experiments demonstrate the impact of different column sizes on the

performance of OSM. We let m = 1MB and vary the column size r from 64 to 512, while

keeping the other parameters the same as in the first set of experiments. Fig. 4-8 presents

the bias and the standard deviation of OSM. None of the r values makes OSM a non-bias

estimator. When r is too large (such as 512), both bias and standard deviation are large.

When r is too small (such as 64), its estimated spread does not go beyond 267, as shown

in the left plot of Fig. 4-9. Comparing r = 256 and r = 128, the former leads to a much

larger standard deviation, as shown in the right plot of Fig. 4-8. The impact of larger

deviation can also be seen by comparing the right plot of Fig. 4-9 where r = 256 and the

second plot in Fig. 4-4 where r = 128.

4.5.5 An Application: Detecting Address Scan

Our last set of experiments compare CSE and OSM using an application for address

scan detection. Suppose the security policy is to report all external sources that contact

250 or more internal destination during a day. If a source with a spread less than 250

is reported, it is called a false positive. If a source with a spread 250 or above is not

reported, it is called a false negative. The false positive ratio (FPR) is defined as the

number of false positives divided by the total number of sources reported. The false

negative ratio (FNR) is defined as the number of false negatives divided by the number of

sources whose spreads are 250 or more. The experimental results are shown in Table 4-2.

Clearly, CSE outperforms OSM by a wide margin when we take both FPR and FNR into

consideration. The FNR is zero for OSM when m = 0.5MB. That is because OSM is a

bias estimator in such a small memory. Its FPR is 66.2%

97

CSE also has non-negligible FPR and FNR because its estimated spread is not

exactly the true spread. To accommodate impreciseness to a certain degree, the security

policy may be relaxed to report all sources whose estimated spreads are 250 × (1 − ε)

or above, where 0 ≤ ε < 1. If a source whose true spread is less than 250 × (1 − 2ε)

gets reported, it is called an ε-false positive. If a source with a true spread 250 or more

is not reported, it is called an ε-false negative. The FPR and FNR are defined the same

as before. The experimental results for ε = 10% are shown in Table 4-3, and those for

ε = 20% are shown in Table 4-4, where the FPR and FNR for CSE are merely 0.1% and

0.6% respectively when m = 1MB.

98

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 200 400 600 800 1000

A
pp

ro
xi

m
at

io
n

er
ro

r
s

Figure 4-1. The approximation error is very small when s is reasonably large.

Table 4-1. Bias with respect to s and k

k = 100 200 300 400 500 600 700 800
s= 400 0.54 0.77 1.05 1.47 2.04 2.82 3.85 5.21
s= 600 0.49 0.60 0.75 0.93 1.17 1.47 1.83 2.28
s= 800 0.47 0.54 0.63 0.75 0.88 1.05 1.24 1.47

100
101
102
103
104
105
106
107

100 101 102 103 104 105

nu
m

be
r

of
 s

ou
rc

es

source spread (k)

Figure 4-2. Traffic distribution: each point shows the number of sources having a certain
spread value.

99

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

es
tim

at
ed

 s
pr

ea
d

actual source spread (k)

CSE

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

es
tim

at
ed

 s
pr

ea
d

actual source spread (k)

OSM
 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

actual source spread (k)

OSM_bias
CSE_bias

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500

actual source spread (k)

OSM_std_dev
CSE_std_dev
CSE_std_cal

Figure 4-3. m = 0.5MB. Each point in the first plot (CSE) or the second plot (OSM)
represents a source, whose x coordinate is the true spread k and y coordinate
is the estimated spread k̂. The third plot shows the bias of CSE and OSM,
which is the measured E(k̂ − k) with respect to k. The fourth plot shows the

standard deviation, which is the measured

√
V ar(k̂)

k
for CSE and OSM, together

with the numerically-calculated standard deviation for CSE based on (4–26)
and (4–24).

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

es
tim

at
ed

 s
pr

ea
d

actual source spread (k)

CSE

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

es
tim

at
ed

 s
pr

ea
d

actual source spread (k)

OSM

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

actual source spread (k)

OSM_bias
CSE_bias

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 100 200 300 400 500

actual source spread (k)

OSM_std_dev
CSE_std_dev
CSE_std_cal

Figure 4-4. m = 1M. See the caption of Fig. 4-3 for explanation.

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

es
tim

at
ed

 s
pr

ea
d

actual source spread (k)

CSE

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

es
tim

at
ed

 s
pr

ea
d

actual source spread (k)

OSM

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

actual source spread (k)

OSM_bias
CSE_bias

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500

actual source spread (k)

OSM_std_dev
CSE_std_dev
CSE_std_cal

Figure 4-5. m =2MB. See the caption of Fig. 4-3 for explanation.

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

es
tim

at
ed

 s
pr

ea
d

actual source spread (k)

CSE

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

es
tim

at
ed

 s
pr

ea
d

actual source spread (k)

OSM

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

actual source spread (k)

OSM_bias
CSE_bias

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500

actual source spread (k)

OSM_std
CSE_dev

CSE_std_cal

Figure 4-6. m =4M. See the caption of Fig. 4-3 for explanation.

100

-100

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

actual source spread (k)

estimation bias

CSE s=200
CSE s=300
CSE s=400
CSE s=500

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 100 200 300 400 500

actual source spread (k)

standard deviation

CSE s=200
CSE s=300
CSE s=400
CSE s=500

Figure 4-7. Left plot shows the bias of CSE, which is the measured E(k̂ − k) with respect
to k. Right plot shows the standard deviation of CSE, which is the measured√

V ar(k̂)

k
.

-400
-300
-200
-100

 0
 100
 200
 300

 0 100 200 300 400 500

actual source spread (k)

estimation bias

OSM r=64
OSM r=128
OSM r=256
OSM r=512 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500

actual source spread (k)

standard deviation

OSM r=64
OSM r=128
OSM r=256
OSM r=512

Figure 4-8. Left plot shows the bias of OSM, which is the measured E(k̂ − k) with respect
to k. Right plot shows the standard deviation of OSM, which is the measured√

V ar(k̂)

k
.

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

es
tim

at
ed

 s
pr

ea
d

actual source spread (k)

OSM r=64

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

es
tim

at
ed

 s
pr

ea
d

actual source spread (k)

OSM r=256

Figure 4-9. Left plot shows the distribution of (k, k̂) for all sources under OSM when
r = 64, where k and k̂ are the true spread and the estimated spread,
respectively. Right plot shows the distribution of (k, k̂) under OSM when
r = 256. 101

Table 4-2. False positive ratio and false negative ratio with respect to memory size.

OSM CSE
m(MB) FPR FNR FPR FNR

0.5 0.662 0.000 0.164 0.123
1 0.424 0.008 0.097 0.094
2 0.116 0.236 0.073 0.056
4 0.108 0.115 0.053 0.062

Table 4-3. With ε = 10%, false positive ratio and false negative ratio with respect to
memory size.

OSM CSE
m(MB) FPR FNR FPR FNR

0.5 0.532 0.000 0.077 0.057
1 0.251 0.006 0.031 0.027
2 0.041 0.193 0.005 0.014
4 0.023 0.064 0.001 0.002

Table 4-4. With ε = 20%, false positive ratio and false negative ratio with respect to
memory size.

OSM CSE
m(MB) FPR FNR FPR FNR

0.5 0.401 0.000 0.023 0.022
1 0.135 0.002 0.001 0.006
2 0.013 0.146 0.000 0.002
4 0.006 0.030 0.000 0.000

102

CHAPTER 5
REAL-TIME DETECTION OF INVISIBLE SPREADERS

Detecting spreaders can help an intrusion detection system identify potential

attackers. The existing work can only detect aggressive spreaders that scan a large

number of distinct addresses in a short period of time. However, stealthy spreaders may

perform scanning deliberately at a low rate. We observe that these spreaders can easily

evade the detection because their small traffic footprint will be covered by the large

amount of background normal traffic that frequently flushes any spreader information

out of the intrusion detection system’s memory. We propose a new streaming scheme to

detect stealthy spreaders that are invisible to the current systems. The new scheme stores

information about normal traffic within a limited portion of the allocated memory, so

that it will not interfere with spreaders’ information stored elsewhere in the memory. The

proposed scheme is light weight; it can detect invisible spreaders in high-speed networks

while residing in SRAM. Through experiments using real Internet traffic traces, we

demonstrate that our new scheme detects invisible spreaders efficiently while keeping both

false-positives (normal sources misclassified as spreaders) and false-negatives (spreaders

misclassified as normal sources) to low level.

5.1 Motivation

Monitoring and analyzing network logs is at the heart of identifying attackers in

the early stage [68]. These logs can be low-level packet trace generated from routers or

high-level audit records from network/host intrusion detection systems. In high-speed

networks, such logs can come in large volume. To process them in real time, a fast and

lightweight streaming algorithm is required, which should be able to work with limited

memory and contiguously process incoming logs.

This chapter studies the problem of detecting spreaders based on incoming logs that

are tuples of source/destination addresses. We call an external source address a spreader

if it connects to more than a threshold number of distinct internal destination addresses

103

during a period of time (such as a day). We define the spread of a source to be the number

of distinct destinations that the source have contacted. Similarly, we define the destination

spread to be the number of distinct sources that have contacted the destination.

The reason for detecting spreaders is that attackers often begin with a reconnaissance

phase of finding vulnerable systems before launching the actual attack. Suppose an

attacker knows how to compromise a specific type of web servers. Its first step is to locate

such web servers on the Internet. The attacker may probe TCP port 80 on all addresses

in a target network by using Nmap. To obtain more specific information, they may run

an application-level vulnerability scanner such as Nessus or Paros. An intrusion detection

system can inspect the incoming traffic and catch the reconnaissance packets, from which

the spreaders are identified as potential attackers that demand extra attention.

It is not possible for a network security administrator to manually analyze the

huge volume of logs produced by routers and intrusion detection systems in order to

find spreaders. An automatic log-analyzing system is required. In fact, some intrusion

detection systems have already implemented functions for identifying spreaders. For

example, Snort [65] keeps track of the distinct destinations each source contacts in a recent

period, and the length of the period is constrained by the amount of memory allocated to

this function. The problem is that the existing systems are designed to catch “elephants”

— aggressive spreaders whose cardinalities are so large that they easily stand out from the

background of normal traffic. In response, a wily attacker will slow down the rate of its

reconnaissance packets and let the normal traffic dilute the footprint of its activity. In the

Snort case, the past records must be deleted to free memory once the allocated space is

filled up by logs. If the attacker contacts a less-than-threshold number of destinations in

each period during which logs of normal traffic will fill up the allocated space, it will stay

undetected.

We note that even state-of-the-art intrusion detection systems cannot detect stealthy

spreaders if they send their packets at a low rate. These spreaders are called invisible

104

spreaders. To catch them, we must make the detection system more sensitive. It is a

cat-and-mouse game between attackers and defenders. As we build more and more

sensitive detectors, the attackers will be forced to continuously reduce their reconnaissance

rate in order to stay undetected. This will give more time for the network administrators

to take action (such as patching systems) against the outbreak of new attacks. The

attacks will become less effective if it will take them an exceedingly long time (e.g.,

months) to complete the reconnaissance phase over the Internet.

To design our new real-time detector for invisible spreaders, we observe (based on real

Internet traffic traces) that normal traffic has strong skewness especially in an enterprise

(or university campus) network. In particular, most inbound traffic is headed to a small

number of servers for web, DNS, email, and business application services. Utilizing such

skewness, we propose a new spreader detection scheme that is able to largely segregate

the space used to store normal-traffic logs from the space used to store logs of potential

spreaders. Due to such segregation, a large volume of normal-traffic logs will not cause

the logs of spreaders to be flushed out of the memory. Furthermore, with a compact

two-dimensional bit array based on Bloom filters, the new scheme can store a much

larger amount of information about the spreaders, allowing previously invisible spreaders

to be detected. We perform experiments based on real Internet traffic traces, and the

results show that the proposed scheme is able to detect spreaders that are invisible to

the existing detection systems and, at the mean time, keep both false positives (normal

sources misclassified as spreader sources) and false negatives (spreader sources misclassified

as normal sources) to low level.

5.2 Invisible-Spreader Detection

In this section, we propose a new scheme for detecting invisible spreaders. Our main

technique is a novel streaming algorithm based on an invisible-spreader detection filter.

105

5.2.1 Invisible-Spreader Detection Filter (ISD)

Consider an intrusion detection system that is deployed to catch all external spreaders

whose spread value exceeds a threshold θ. When the small footprint of the stealthy

spreaders is sufficiently diluted by normal traffic, the spreaders may even become invis-

ible to the current detection system. To catch these invisible spreaders, more sensitive

detection systems must be designed. Below we propose a new detector that can catch

spreaders invisible to today’s detectors (such as [62]).

Our invisible-spreader detection filter (ISD) uses an n ×m bit array as its main data

structure, which is initialized to be all zeros. Each bit B(x, y) in the array is referenced

by a row index x and a column index y. Bits will be set to ones to record the incoming

connections made from external sources to internal destinations. A row is empty (or non-

empty) if it has zero bit (or at least one bit) that is set to be one. There is a row counter

c(x) for each row x, storing the number of bits in the row that are set as one. The fullness

ratio R of the filter is defined as
∑

c(x)
n×m

, the percentage of bits in the array that are set to

one. Similarly, the fullness ratio of row x is defined as c(x)
m

, the percentage of bits in the

row that are set to one. We define a system parameter α, specifying the desirable fullness.

If R > α, we reset the bit array to zeros.

Next we describe the operations of ISD. When receiving an input source/destination

tuple (a, b), the filter computes k row indexes, x1 = h1(a), ..., xk = hk(a), and one column

index, y = hk+1(b), where h1, ..., hk are hash functions whose ranges are [0..n− 1] and hk+1

is a hash function whose range is [0..m − 1]. The filter sets k bits, B(x1, y), ..., B(xk, y),

to be one. Note that each column is actually a Bloom filter [69] [70]. The column index y

selects a Bloom filter and the row indices specify the bits that together represent the tuple

(a, b).

For each i ∈ [1..k], if B(xi, y) was set from zero to one, the filter increases the row

counter c(x) by one. Rows indexed by x1 through xk are called the representative rows

of source a in the filter. Bits B(x1, y) through B(xk, y) are called the representative bits

106

of a. If the fullness of every representative row of source a is above a threshold β (whose

value will be determined in the next subsection), ISD executes the following procedure to

determine if a is a spreader.

1. For the jth column, let Ij be one if B(xi, j) = 1 for all the representative rows of a.

Otherwise, Ij = 0. We define

ar =
m−1∑
j=0

Ij

2. The spread of a, denoted as âc, can be estimated based on the following formula

given in [71].

âc = m× ln(
m

m− ar

) (5–1)

3. If âc is above θ, we consider source a to be a spreader.

Our column index, y = hk+1(b), is different from [62], which uses y = hk+1(a|b). This

subtle yet critical difference helps ISD minimize the diluting effect of normal traffic over

the small traffic footprint of invisible spreaders. Suppose a destination address b represents

a busy webserver in an enterprise network, and millions of client users connect to b. If

y = hk+1(a|b) is used, these clients will fill up the whole bit array with ones since the

source addresses a randomizes the column index y. To the contrary, only one column of

the bit array will be set to ones if y = hk+1(b) is used. Our Internet trace shows that

the vast majority of normal traffic is directed to a small number of servers. Our scheme

concentrates such normal traffic to a small number of columns in the bit array, leaving

the rest of the array for detecting spreaders. Hash collisions may cause false positives. By

tuning the system parameters, we can control the level of false positive, as well as the level

of false negative.

5.2.2 Parameter Configuration

The goal of ISD is to identify spreaders whose spread values are larger than θ, which

is given as a user requirement. Let M (= n×m) be the size of the allocated memory. The

107

performance of ISD is affected by the selection of the following system parameters: α, β,

m, and n. Below we discuss how to set these parameters.

1) We first set the values for β and m. According to the previous subsection, a

spreader will be detected when the following condition is satisfied.

m× ln(
1

1− ar

m

) ≥ θ. (5–2)

Based on their definitions, we can approximate β as ar

m
. Applying this approximation to

(5–2), we have the following formula for setting the value of β and m.

β = 1− e−
θ
m . (5–3)

Recall that the parameter β is used to trigger the procedure for determining a possible

spreader. When the value of β is set by the above formula, once triggered the procedure is

likely to find a spreader.

The problem is that there are two undecided parameters in the formula. We observe

that small m is desirable for ISD. This is because small m allows large n, which reduces

hash collisions among row indices. Consequently, large β is preferable. However, if β is

very close to one, ISD may suffer from hash collisions among column indices. In this

dissertation, we choose β to be below 0.95, but it can be adjusted according to any specific

application or deployment environment. Once β is chosen, m can be set based on (5–2).

Alternatively, we may also set m first and then calculate β from (5–2). For example, it

is natural to choose m as a multiple of words, which makes it easy to fit the bit array in

memory. For each m (= 32, 64, ...), we compute β and choose the largest β below 0.95.

Table 5-1 shows some examples for parameter configuration. It shows how β and m are

determined for θ from 100 to 900. After m is determined, n is calculated as M
m

.

2) We now determine the value of α. First we examine how α affects the detection

of spreaders. When α is too larger, the bit array of ISD will be overly populated with

ones, causing frequent hash collisions and resulting in false positives — a non-spreader is

108

claimed as a spreader because its representative rows are populated with ones by tuples of

other sources (due to hash collisions). If α is too small, false positives may hardly happen,

but the filter will be frequently reset to zeros, losing the already-recorded information

about spreaders and resulting in false negatives — failure in detecting spreaders. Next we

will use some statistical properties to determine the value of α.

Suppose ISD only receives normal traffic for a period of time and its bit array is

mostly set by the normal traffic. Let Y be a random variable that represents c(x) for row

x in the bit array. The expectation and the variance of Y are given below. We omit the

derivation process due to page limit.

E(Y) = α×m (5–4)

V (Y) = α×m× (1− α) (5–5)

From E(Y) and V (Y), we can define a statistical upperbound for Y as follows:

U(Y) = E(Y) + c
√

V (Y) (5–6)

where statistical error will be small if the constant c is large. Eq. (5–6) means that there

is a high probability that c(x) is below U(Y) if x is a representative row for only normal

traffic. On the contrary, if x is a representative row for any spreader, c(x) should be larger

than U(Y). Hence, based on the above equations, we can set the value of α as follows.

α =
2βm + c2

2(m + c2)
−

√
(
2βm + c2

2(m + c2)
)2 − mβ2

m + c2
. (5–7)

Table 5-1 shows α as a result of the proposed heuristic method to configure β, m and α

when c = 10.

5.3 Experiment

We evaluate ISD using real-world Internet traffic traces. We implemented not only

ISD but also the advanced scheme from [62], which we call online streaming module

(OSM) as in the previous chapter. We compare their false positives and false negatives.

109

The experimental results confirm that ISD detects invisible spreaders while minimizing

the negative impact of normal traffic.

5.3.1 Traffic Trace and Implementation Details

In these experiments, we set k to 3. Large k is helpful to differentiate sources, but it

increases processing time and fills up quickly the bit table. A good argument for k = 3 can

be found in [62].

We use packet header traces gathered at the gateway routers of the University of

Florida. The trace was collected for 24 hours and we take only the inbound session from

the Internet. It contains 751,286 distinct source IP addresses, 120,916 distinct destination

IP addresses and 2,427,327 distinct source/destination tuples. Note that we denote the

source IP address of a packet as a and the destination IP address as b in our notation

of packet (a, b). In this sense, the goal of the experiment is to find heavy spreaders of

horizontal network scans [60].

Figure 5-1(5-2) illustrates the traffic pattern with respect to source(destination)

spread. The x-axis is the number of sources(destinations) whose spread lies between x

and 2 × x − 1. Each figure has two graphs of cumulative ratios for the number of distinct

sources(destinations) and the number of distinct source/destination tuples. In figure 5-1,

we see that 86% of the total sources contact less than 4 distinct destinations and 99%

of them contact less than 32 distinct destinations. Figure 5-1 shows that the number

of source/destination tuples increases just as the number of sources does. Therefore,

we cannot see a strong skewness in the figure. However, we can see a different pattern

in figure 5-2. The figure shows that only some of the destinations occupy most of the

source/destination tuples. For example, at x = 8, the accumulated number of destinations

is above 97%, but their aggregated source/destination tuples are below 27%. It means that

less than top 3% servers occupy more than 73% of the total source/destination tuples.

Exploiting this skewness, ISD has the edge on other intrusion detection systems.

110

For all the experiments, we set θ to be 500. It means that we take any source of

spread above 500 as a spreader or scan source. With θ = 500, the original traffic trace

already includes 75 spreaders. We also generate some artificial scan packets to simulate

invisible spreaders. For each experiment, we add 20 artificial slow scan sources to the

original traffic trace. These source addresses are carefully chosen so that the original

traffic trace does not include any same source address as the artificial scan sources. Each

artificial scan source will send a total of λ distinct scan packets. It generates a scan

packet every other µ normal source/destination tuples. The default parameters for the

experiments are as follows: M = 256KB, m = 256, n = 8, 192, α = 0.547, αO = 0.4, θ =

500, λ = 600, µ = 1, 024, k = 3. Note that β and α are determined by equations 5–3 and

5–7.

For comparison, we also implemented OSM [62]. For a fair comparison, both

bit tables of OSM and ISD have the same memory size M . To optimize OSM , the

maximum number of one-bits for OSM is set to αO, which is different from α. Through

the experiments, we observe that OSM degrades if αO is set too large or too small. The

default value of αO is 0.4. Once the ratio of one-bits is above αO, the decoding process

runs and OSM restarts in a clean state.

For each experiment, we compare false negative(positive) sets of OSM and ISD.

We use FNO(FNR) to denote the false negative set of OSM(ISD). Similarly, we use

FPO(FPR) to denote false positive sets. Let RS be a set of real spreaders, which has 95

sources (75 spreaders from the original traffic trace and 20 artificial scan sources). Let

DO(DR) be a set of detected sources by OSM(ISD). We define FNO, FNR, FPO and

FPR as follows: FNO = RS −DO, FNR = RS −DR, FPO = DO −RS, FPR = DR −RS.

5.3.2 Experimental Results

Figures 5-3-5-6 compare the numbers of false negatives(positives) between ISD and

OSM . The x-axis of each figure is µ, the number of normal source/destination tuples

between two slow scan packets. A large value of µ implies that the attacker further slows

111

down in sending the scan packets. In figure 5-3, we have four curves. OSM(total) is

the number of false negatives of OSM , so it equals |FNO| with µ from 128 to 16,384.

OSM(slow scans) is the number of false negatives, but we only count the artificial slow

scan sources that are not detected. Therefore, its maximum value is 20 as we have 20

artificial slow scan sources. The same notations are used for ISD such as ISD(total) and

ISD(slow scans). Note that ISD(total) plots |FNR|.
Figure 5-3 shows that ISD catches most spreaders until µ becomes 4,096. Even when

µ = 16, 384, ISD catches 17 artificial spreaders out of 20. To the contrary, OSM misses

much more spreaders than OSM . Even when µ = 128, it misses 7 non-artificial spreaders.

It starts missing artificial scan sources at µ = 256. At m = 8, 192, OSM cannot detect any

slow scan sources while ISD detects 16 out of 20. Note that we trade false positives with

false negatives when designing ISD, but false positives should be controlled by setting α

to be tight. Figure 5-4 shows it. Even at µ = 16, 384, ISD only triggers 9 false positives.

Considering that the number of source/destination tuples is above two millions, this false

positives may be accepted in most applications.

We repeat the same experiment with different n. Figures 5-5 and 5-6 show the result

with n = 32, 768, which means M = 1MB. In this experiment, ISD does not miss any

spreaders including slow scan sources except one at µ = 16, 384. Note that both ISD(total)

and ISD(slow scans) remain zero until µ = 8, 192. To the contrary, OSM still misses

some spreaders as shown in the figure. It cannot detect 8 out of 20 slow scan sources at

µ = 16, 384 even though the memory size has quadrupled. It is encouraging that ISD

accomplishes better detection accuracy even when M is as small as 256KB. Figure 5-6

shows that ISD triggers only small false positives.

112

Table 5-1. Parameter configuration examples (c = 10)

θ 100 200 300 400 500 600 700 800 900

β 0.790 0.790 0.904 0.790 0.858 0.904 0.935 0.790 0.828
m 64 128 128 256 256 256 256 512 512
α 0.249 0.365 0.463 0.478 0.547 0.598 0.634 0.571 0.612

 0

 0.2

 0.4

 0.6

 0.8

 1

20 22 24 26 28 210 212 214 216

A
cc

um
ul

at
ed

 r
at

io

Source spread

sources
src/dst tuples

Figure 5-1. Cumulative ratios of the
numbers of distinct sources and
distinct source/destination
tuples with respect to source
spread

 0

 0.2

 0.4

 0.6

 0.8

 1

20 22 24 26 28 210 212 214 216

A
cc

um
ul

at
ed

 r
at

io
Destination spread

destinations
src/dst tuples

Figure 5-2. Cumulative ratios of the
numbers of distinct
destinations and distinct
source/destination tuples with
respect to destination spread

113

 0

 5

 10

 15

 20

 25

 30

 128 256 512 1024 2048 4096 8192 16384

N
o.

 o
f

Fa
ls

e
N

eg
at

iv
es

Scan Interval

OSM (total)
OSM (slow scans)

ISD (total)
ISD (slow scans)

Figure 5-3. Number of false negatives when
M=256KB

 0

 2

 4

 6

 8

 10

 128 256 512 1024 2048 4096 8192 16384

N
o.

 o
f

Fa
ls

e
Po

si
tiv

es

Scan Interval

OSM
ISD

Figure 5-4. Number of false positives when
M=256KB

 0

 2

 4

 6

 8

 10

 12

 14

 128 256 512 1024 2048 4096 8192 16384

N
o.

 o
f

Fa
ls

e
N

eg
at

iv
es

Scan Interval

OSM (total)
OSM (slow scans)

ISD (total)
ISD (slow scans)

Figure 5-5. Number of false negatives when
M=1MB

 0

 2

 4

 6

 8

 10

 12

 14

 128 256 512 1024 2048 4096 8192 16384

N
o.

 o
f

Fa
ls

e
Po

si
tiv

es

Scan Interval

OSM
ISD

Figure 5-6. Number of false positives when
M=1MB

114

CHAPTER 6
CONCLUSION

This dissertation discusses several novel techniques that secure computer networks.

First, we study the firewall placement problem and its variations. The problem is

to place the firewalls in a network topology and find the routing structure such that the

maximum size of the firewall rule sets in the network is minimized. We prove the problem

is NP-complete and propose a heuristic algorithm, called HAF, to solve the problem

approximately. The algorithm can also be used to solve the firewall routing problem as

well as weighted firewall placement/routing problems.

Second, we propose a novel path address scheme (PAS) to address the source-address

spoofing problem on the Internet. With a completely new design, PAS avoids the

performance problems of the best-known scheme, Pi. We discuss how to construct

addresses for paths, how to verify if path addresses are authentic, how to store path

addresses in the IPv4 header, how to protect PAS against eavesdropping, and how to

deal with router compromise. Our analysis and simulations demonstrate that PAS can

simultaneously keep the false-positive ratio and false-negative ratio to almost zero. The

path address scheme may potentially be used for other network applications. Examples

include packet classification and service differentiation based on path addresses.

Third, we study the problems of spreader detection and spread estimation. The

proposed spreader detection scheme detects invisible spreaders and mitigates the negative

effects of normal traffic. Our spread estimator not only achieves space compactness but

also operates more efficiently than the existing work. Our main technical contributions

include a novel data structure based on virtual vectors, its operation protocol, and

the corresponding formula for spread estimation, which is statistically analyzed and

experimentally verified.

115

REFERENCES

[1] A. Rubin, D. Geer, and M. Ranum, “Web Security Sourcebook,” Wiley Computer
Publishing, 1997.

[2] J. Wack, K. Cutler, and J. Pole, “Guidelines on Firewalls and Firewall Policy,”
National Institute of Standards and Technology, January 2002.

[3] K. N. Y. Bartal, A. Mayer and A. Wool, “Firmato: a novel firewall management
toolkit,” ACM Transactions On Computer Systems, vol. 22, no. 4, pp. 381–420,
November 2004.

[4] A. Wool, “A Quantitative Study of Firewall Configuration Errors,” IEEE Computer,
vol. 37, no. 6, pp. 62–67, June 2004.

[5] M. G. Gouda and A. X. Liu, “Firewall Design: Consistency, Completeness and
Compactness,” Proc. of ICDCS’04, pp. 320–327, March 2004.

[6] A. X. Liu and M. G. Gouda, “Diverse Firewall Design,” Proc. of IEEE International
Conference on Dependable Systems and Networks (DSN’04), pp. 595–604, June 2004.

[7] A. X. Liu, E. Torng, and C. Meiners, “Firewall Compressor: An Algorithm for
Minimizing Firewall Policies,” Proc. of IEEE INFOCOM’08, pp. 595–604, April 2008.

[8] A. X. Liu, E. Torng, and C. Meiners, “The use and usability of direction-based
filtering in firewalls,” Computers & Security, vol. 6, no. 23, pp. 459–468, April 2004.

[9] A. X. Liu, E. Torng, and C. Meiners, “Optimization of Network Firewall Policies
Using Ordered Sets and Directed Acyclical Graphs,” Proc. of IEEE Internet Manage-
ment Conference, 2005.

[10] E. S. Al-Shaer and H. H. Hamed, “Discovery of Policy Anomalies in Distributed
Firewalls,” Proc. of IEEE INFOCOM’04, March 2004.

[11] R. N. Smith, Y. Chen, and S. Bhattacharya, “Cascade of Distributed and
Cooperating Firewalls in a Secure Data Network,” IEEE Trans. On Knowledge
and Data Engineering, vol. 15, no. 5, 2003.

[12] R. N. Smith and S. Bhattacharya, “Firewall Placement in a Large Network
Topology,” Proc. of IEEE FTDCS’97, 1997.

[13] A. El-Atawy, T. Samak, E. Al-Shaer, and H. Li, “On Using Online Traffic Statistical
Matching for Optimizing Packet Filtering Performance,” Proc. of IEEE INFO-
COM’2007, May 2007.

[14] H. Hamed, A. El-Atawy, and E. Al-Shaer, “On Dynamic Optimization of Packet
Matching in High Speed Firewalls,” IEEE Journal on Selected Areas in Communica-
tions, vol. 24, no. 10, Oct 2006.

116

117

[15] P. Gupta and N. McKeown, “Algorithms for Packet Classification,” IEEE Network,
vol. 15, no. 2, pp. 24–32, March 2001.

[16] P. Gupta and N. McKeown, “Packet Classification on Multiple Fields,” Proc. of ACM
SIGCOMM’99, 1999.

[17] T. Lakshman and D. Stiliadis, “High-Speed Policy-based Packet Forwarding Using
Efficient Multi-dimensional Range Matching,” Proc. of ACM SIGCOMM’98, 1998.

[18] A. Hari, S. Suri, and G. Parulkar, “Detecting and Resolving Packet Filter Conflicts,”
Proc. of IEEE Infocom’00, March 2000.

[19] V.Srinivasan, G.Varghese, S.Suri, and M.Waldvogel, “Fast and Scalable Layer Four
Switching,” Proc. of ACM SIGCOMM’98, 1998.

[20] P. Gupta, “Algorithms for Routing Lookups and Packet Classification,” PhD Thesis,
Stanford University, 2000.

[21] A. X. Liu and M. G. Gouda, “Removing Redundancy from Packet Classifiers,” Poster
Session, ACM SIGCOMM’04, 2004.

[22] H. Court, Knutsford, and Cheshire, “High-Availability: technology brief firewall load
balancing,” http://www.High-Availability.Com, 2008.

[23] N. Networks, “Firewall load balancing,” www.nortel.com, 2008.

[24] C. Point, “Check Point Firewall-1 Guide,” www.checkpoint.com, 2008.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, , and C. Stein, “Introduction to
Algorithms,” The MIT Press, 2003.

[26] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical Network Support for
IP Traceback,” Proc. of ACM SIGCOMM’00, August 2000.

[27] D. J. Bernstein, “SYN cookies,” http://cr.yp.to/syncookies.html, 1997.

[28] A. Juel and J. Brainard, “Client Puzzles: A Cryptographic Countermeasure Against
Connection Depletion Attacks,” Proc. of Network and Distributed System Security
Symposium (NDSS’99), February 1999.

[29] K. Park and H. Lee, “On the Effectiveness of Route-Based Packet Filtering for
Distributed DoS Attack Prevention in Power-Law Internets,” Proc. of ACM SIG-
COMM’01, August 2001.

[30] A. Bremler-Barr and H. Levy, “Spoofing Prevention Method,” Proc. of INFO-
COM’05, March 2005.

[31] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating Denial of Service
Attacks Which Employ IP Source Address Spoofing,” IETF, RFC 2267, Janurary
1998.

118

[32] A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure Overlay Services,”
Proc. of ACM SIGCOMM’02, August 2002.

[33] A. Yaar, A. Perrig, and D. Song, “FIT: Fast Internet Traceback,” Proc. of IEEE
INFOCOM, Miami, Florida, March 2005.

[34] A. Yaar, A. Perrig, and D. Song, “StackPi: New Packet Marking and Filtering
Mechanisms for DDoS and IP Spoofing Defense,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 10, October 2006.

[35] P. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker,
“Controlling High Bandwidth Aggregates in the Network,” Computer Communica-
tions Review, vol. 32, no. 3, pp. 62–73, July 2002.

[36] C. Kaufman, R. Perlman, and M. Speciner, “Network Security - Private
Communication in a Public World (2nd Edition),” Prentice Hall PTR, 2002.

[37] J. Xu and W. Lee, “Sustaining Availability of Web Services under Distributed Denial
of Service Attacks,” IEEE Transactions on Computers, vol. 52, no. 2, pp. 195–208,
2003.

[38] T. Aura, P. Nikander, and J. Leiwo, “DoS-Resistant Authentication with Client
Puzzles,” Cambridge Security Protocols Workshop 2000. LNCS, Springer-Verlag,
2000.

[39] D. Dean and A. Stubblefield, “Using Client Puzzles to Protect TLS,” 10th Annual
USENIX Security Symposium, 2001.

[40] X. Wang and M. K. Reiter, “Defending Against Denial-of-Service Attacks with Puzzle
Auctions,” 2003 IEEE Symposium on Security and Privacy, May 2003.

[41] D. G. Andersen, “Mayday: Distributed Filtering for Internet Services,” Proc. of 4th
USENIX Symposium on Internet Technologies and Systems, March 2003.

[42] W. G. Morein, A. Stavrou, D. L. Cook, A. D. Keromytis, V. Misra, and
D. Rubenstein, “Using Graphic Turing Tests to Counter Automated DDoS Attacks
Against Web Servers,” Proc. of the 10th ACM International Conference on Computer
and Communications Security (CCS), October 2003.

[43] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford, “CAPTCHA: Using Hard AI
Problems For Security,” Proc. of EUROCRYPT’03, 2003.

[44] R. Stone, “CenterTrack: An IP Overlay Network for Tracking DoS Floods,” Proc. of
the 9th USENIX Security Symposium, August 2000.

[45] A. Yaar, A. Perrig, and D. Song, “Pi: A Path Identification Mechanism to Defend
against DDoS Attacks,” IEEE Symposium on Security and Privacy, May 2003.

119

[46] S. M. Bellovin, “ICMP Traceback Messages,” Internet Draft: draft-bellovin-itrace-
00.txt, March 2000.

[47] A. C. Snoren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio, S. T. Kent,
and W. T. Strayer, “Hash-Based IP Traceback,” Proc. of ACM SIGCOMM’01,
August 2001.

[48] B. R. Smith and J. J. Garcia-Luna-Aceves, “Securing the Border Gateway Routing
Protocol,” Proc. of Global Internet’96, November 1996.

[49] S. Kent, C. Lynn, and K. Seo, “Secure Border Gateway Protocol (Secure-BGP),”
IEEE Journal on Selected Areas in Communications, vol. 18, no. 4, April 2000.

[50] Y. Rekhter and T. Li, “A Border Gateway Protocol 4 (BGP-4),” IETF Network
Working Group, RFC 1771, March 1995.

[51] T. Li and G. Huston, “BGP Stability Improvements,” IETF Internet-Domain
Routing, Internet-Draft, draft-li-bgp-stability-01, June 2007.

[52] C. Villamizar, R. Chandra, and R. Govindan, “BGP Route Flap Damping,” IETF
Network Working Group, RFC 2439, November 1998.

[53] H. Wang, D. Zhang, and K. G. Shin, “SYN-dog: Sniffing SYN Flooding Sources,”
Proc. of 22 nd International Conference on Distributed Computing Systems
(ICDCS’02), July 2002.

[54] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-Law Relationships of the
Internet Topology,” Proc. of ACM SIGCOMM’99, 1999.

[55] C. Estan and G. Varghese, “New Directions in Traffic Measurement and Accounting,”
Proc. of ACM SIGCOMM’02, October 2002.

[56] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-Based Change Detection:
Methods, Evaluation, and Applications,” Proc. of IMC’03, pp. 234–247, 2003.

[57] A. Kumar, M. Sung, J. Xu, and J. Wang, “Data Streaming Algorithms for Efficient
and Accurate Estimation of Flow Size Distribution,” Proc. of ACM SIGMETRICS,
2004.

[58] A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li, “Space-Code Bloom Filter for
Efficient Per-Flow Traffic Measurement,” Proc. of IEEE INFOCOM, March 2004.

[59] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lundn, “Online Identification of
Hierarchical Heavy Hitters: Algorithms, Evaluation, and Application,” Proc. of ACM
SIGCOMM IMC, October 2004.

[60] S. Staniford, J. Hoagland, and J. McAlerney, “Practical Automated Detection of
Stealthy Portscans,” Journal of Computer Security, vol. 10, pp. 105 – 136, 2002.

120

[61] D. Plonka, “FlowScan: A Network Traffic Flow Reporting and Visualization Tool,”
Proc. of USENIX LISA, 2000.

[62] Q. Zhao, J. Xu, and A. Kumar, “Detection of Super Sources and Destinations in
High-Speed Networks: Algorithms, Analysis and Evaluation,” IEEE JSAC, vol. 24,
no. 10, October 2006.

[63] S. Venkatataman, D. Song, P. Gibbons, and A. Blum, “New Streaming Algorithms
for Fast Detection of Superspreaders,” Proc. of NDSS’05, Feb. 2005.

[64] C. Estan, G. Varghese, and M. Fish, “Bitmap Algorithms for Counting Active Flows
on High-Speed Links,” IEEE/ACM Trans. on Networking, vol. 14, no. 5, October
2006.

[65] M. Roesch, “Snort–Lightweight Intrusion Detection for Networks,” Proc. of 13th
Systems Administration Conference, USENIX, 1999.

[66] Y. Gao, Y. Zhao, R. Schweller, S. Venkataraman, Y. Chen, D. Song, and M. Kao,
“Detecting Stealthy Spreaders Using Online Outdegree Histograms,” Proc. of IEEE
International Workshop on Quality of Service’07, pp. 145–153, June 2007.

[67] K. Whang, B. Vander-Zanden, and H. Taylor, “A Linear Time Probabilistic Counting
Algorithm for Database Applications,” ACM Transactions on Database Systems, June
1990.

[68] B. Schneier, “SIMS: Solution, or Part of the Problem?,” IEEE Security and Privacy,
vol. 2, no. 5, October 2004.

[69] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[70] A. Broder and M. Mitzenmacher, “Network Applications of Bloom Filters: A
Survey,” Internet Mathematics, vol. 1, no. 4, June 2002.

[71] K. Hwang, B. Vander-Zanden, and H. Taylor, “A linear-time probabilistic counting
algorithm for database applications,” ACM Transactions on Database Systems, vol.
15, no. 2, June 1990.

BIOGRAPHICAL SKETCH

MyungKeun Yoon was born in Seoul, Republic of Korea, in 1973. He received his

BS and MS degrees in computer science at Yonsei University in Korea in 1996 and

1998, respectively. After receiving his master degree, he worked for the Korea Financial

Telecommunications and Clearings Institute, where he took the lead in many security

related projects. Since 2004, he has been conducting research with Dr. Shigang Chen in

the department of Computer and Information Science and Engineering at the University of

Florida. His research interests are network security and mobile network.

121

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	2 Minimizing the Maximum Firewall Rule Set in a Network with Multiple Firewalls
	2.1 Motivation
	2.2 Related Works
	2.3 Problem Definition
	2.3.1 Network Model
	2.3.2 Notations
	2.3.3 Problems
	2.3.4 Rule Graph and Topology Graph
	2.3.5 Robustness

	2.4 NP-Completeness
	2.4.1 k-Firewall Decision Problem NP
	2.4.2 NP-Hardness

	2.5 HAF: A Heuristic Algorithm for FPP, Partial FPP, FRP, Partial FRP, and Weighted FPP/FRP
	2.5.1 Overview
	2.5.2 Augmented Graph Gt"426830A x, y "526930B and MinMax Path
	2.5.3 Find the MinMax Path in Gt"426830A x, y "526930B
	2.5.4 Insert the MinMax Path to Gt
	2.5.5 Ensuring Connectivity
	2.5.6 Complexity Analysis
	2.5.7 Modifying HAF for FRP, partial FRP, and Weighted FPP/FRP

	2.6 Simulation

	3 A Novel Incrementally-Deployable Path Address Scheme for the Internet
	3.1 Motivation
	3.2 Related Work
	3.3 Path Address Scheme
	3.3.1 Objectives
	3.3.2 Definition of Path Address
	3.3.3 Extending Routing Protocol for Path Address
	3.3.4 New Fields in Packet Header and Path Address Verification
	3.3.5 Alternative Version of Path Address against Router Compromise
	3.3.6 Self-Completeness of PAS for Incremental Deployment

	3.4 Evaluation
	3.4.1 Analysis
	3.4.1.1 Analytical model
	3.4.1.2 False-positive probability and false-negative probability of PAS
	3.4.1.3 False-positive probability and false-negative probability of Pi

	3.4.2 Simulations
	3.4.2.1 Simulation setup
	3.4.2.2 Performance evaluation with respect to attacker ratio
	3.4.2.3 Performance evaluation with respect to network topology
	3.4.2.4 Performance comparison with respect to r
	3.4.2.5 Performance evaluation under incremental deployment

	4 Fit A Spread Estimator in A Small Memory
	4.1 Motivation
	4.2 Existing Spread Estimators
	4.3 Design of Compact Spread Estimator (CSE)
	4.3.1 Motivation for Virtual Vectors
	4.3.2 CSE: Storing Contacts in Virtual Vectors
	4.3.3 CSE: Spread Estimation
	4.3.4 System Architecture

	4.4 Analysis
	4.4.1 Mean and Variance of and
	4.4.2 Estimation Bias and Standard Deviation

	4.5 Experiments
	4.5.1 Experiment Setup
	4.5.2 Accuracy of Spread Estimation
	4.5.3 Impact of Different s Values on Performance of CSE
	4.5.4 Impact of Different Column Sizes on Performance of OSM
	4.5.5 An Application: Detecting Address Scan

	5 Real-Time Detection of Invisible Spreaders
	5.1 Motivation
	5.2 Invisible-Spreader Detection
	5.2.1 Invisible-Spreader Detection Filter (ISD)
	5.2.2 Parameter Configuration

	5.3 Experiment
	5.3.1 Traffic Trace and Implementation Details
	5.3.2 Experimental Results

	6 CONCLUSION
	REFERENCES
	BIOGRAPHICAL SKETCH

