
DISTRIBUTED SOLUTIONS FOR RATE CONTROL AND MAXIMUM LIFETIME
IN WIRELESS NETWORKS

By

LIANG ZHANG

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2009

1

c© 2009 Liang Zhang

2

To my family

3

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Prof. Shigang Chen, for his constant

guidance, support, and insightful advice throughout my graduate study. He is a terrific

advisor, a passionate researcher and a critical thinker. Without the numerous discussions

with him, the work presented in this dissertation would never have existed.

I am grateful to Prof. Sartaj Sahni, Prof. Randy Chow, Prof. Jonathan Liu, Prof.

Tan Wong, and Prof. Liuqing Yang, for their instructive comments and support during

my study. I would also like to thank all my colleagues in Prof. Chen’s research group,

including Zhan Zhang, MyungKeun Yoon, Ying Jian, Ming Zhang and Tao Li, for

providing valuable feedback and high level of research support.

I would also like to take this chance to express my endless love to my wife Xiaojie

Sun, my parents, and my brother. Without their love, understanding, encouragement and

support, none of these would have been possible.

4

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 7

LIST OF FIGURES . 8

ABSTRACT . 10

1 INTRODUCTION . 13

1.1 End-to-End Flow Rate Fairness . 13
1.2 Lifetime Fairness in Sensor Networks . 16
1.3 Maximizing Lifetime Vector and Maximizing Rate Vector in Sensor Networks 18
1.4 Related Work . 18

1.4.1 Flow Rate Fairness . 18
1.4.2 Lifetime Fairness in Sensor Networks 20

2 CROSS-LAYER DESIGN FOR ACHIEVING END-TO-END MAXMIN 23

2.1 Network Model and maxmin Model . 23
2.1.1 Network Model . 23
2.1.2 Maxmin Model . 24

2.2 A generalized maxmin model . 25
2.2.1 Resources in WMNs . 25
2.2.2 Generalized Maxmin Model . 26

2.3 Packet Scheduling Algorithm . 28
2.3.1 Overview . 28
2.3.2 Inter-node Scheduling . 29

2.4 Performance Evaluation . 31
2.5 Summary . 33

3 FULLY DISTRIBUTED SOLUTION FOR ACHIEVING GLOBAL END-TO-END
MAXMIN . 36

3.1 Preliminaries . 36
3.1.1 Network Model and Problem Statement 36
3.1.2 Congestion Avoidance and Buffer-Based Backpressure 38

3.2 Link Classification . 39
3.2.1 Saturated Buffer . 39
3.2.2 Three Link Types . 40
3.2.3 Saturated Clique . 41

3.3 Local Conditions for Global Maxmin: Single-Destination Case 42
3.3.1 Basic Idea . 42
3.3.2 Normalized Rate . 43
3.3.3 Local Conditions for Global Maxmin 44

5

3.3.4 Correctness Proof . 46
3.4 Local Conditions for Global Maxmin: Multiple-Destinations Case 50

3.4.1 Per-Destination Packet Queueing 51
3.4.2 Virtual Nodes, Virtual Links, and Virtual Networks 51
3.4.3 Localized Requirements for Global Maxmin 52

3.5 Distributed Global Maxmin Protocol (GMP) 54
3.5.1 Overview . 54
3.5.2 Measurement Period . 55
3.5.3 Adjustment Period . 58

3.6 Simulation . 61
3.6.1 Effectiveness of GMP . 61
3.6.2 Performance Comparison . 62

3.7 Summary . 64

4 DISTRIBUTED PROGRESSIVE ALGORITHM FOR MAXIMIZING LIFETIME
VECTOR IN WIRELESS SENSOR NETWORKS 69

4.1 Network Model and Problem Definition . 69
4.1.1 Sensor Network Model . 69
4.1.2 Volume Schedule . 70
4.1.3 Maximum Lifetime Vector Problem 71
4.1.4 Routing Graph . 72

4.2 Necessary and Sufficient Conditions for Maximizing Lifetime Vector 73
4.3 Distributed Progressive Algorithm . 76

4.3.1 Rate Schedule, Volume-Bound Distribution, Volume Schedule 76
4.3.2 Initialization Phase . 78
4.3.3 Iterative Phase — Step 1: From Rates to Volume Bounds 79
4.3.4 Iterative Phase — Step 2: From Volume Bounds to Volumes and

Rates . 81
4.3.5 Property . 84
4.3.6 Termination Conditions . 88
4.3.7 Overhead . 88
4.3.8 Network Dynamics . 89

4.4 Simulation . 90
4.4.1 A Simple Illustrative Test Case . 90
4.4.2 Convergence Speed of DPA . 91
4.4.3 Scalability of DPA . 92
4.4.4 Comparison with Hou’s Centralized Algorithm 92
4.4.5 Comparison with Other Centralized and Distributed Solutions . . . 93

4.5 Summary . 94

5 Conclusion . 99

REFERENCES . 100

BIOGRAPHICAL SKETCH . 105

6

LIST OF TABLES

Table page

1-1 Duality relationship between the two problems proved by Hou et al. in [25] . . . 22

2-1 Simulation results on the topology in Fig. 2-2 34

2-2 Simulation results of the complex scenario . 34

3-1 Simulation results on the topology in Fig.3-5 . 65

3-2 Simulation results of weighted maxmin in Fig.3-5 65

3-3 Simulation results on the topology in Fig. 3-6 65

3-4 Simulation results on the topology in Fig.3-7 . 65

3-5 Simulation results on the topology in Fig. 3-8 65

4-1 Data source lifetimes (in days) . 95

4-2 Data source volumes (in thousands of packets) 95

4-3 Some data points used to produce Fig. 4-5 . 95

7

LIST OF FIGURES

Figure page

1-1 Two-hop flows are starved. 22

2-1 A simple example of the generalized maxmin model 34

2-2 An example of wireless-link contention graph and cliques 35

2-3 Flows described by the generalized maxmin model 35

2-4 Scheduling among contending nodes . 35

3-1 White circles represent flow sources. Grey circles represent other nodes. Thick
arrows represent bandwidth-saturated links. Thin arrows represent unsaturated
links. Thin dashed arrows represent buffer-saturated links. (a) A portion of the
network is shown with each arrow pointing from an upstream node to its downstream
neighbor. (b) There are six flows, f1 through f6, whose weights are shown beside
their sources. (c) The actual data rates of the links are shown. (i, j) is a bandwidth-saturated
link, which sends buffer-based backpressure upstream, creating buffer-saturated
links all the way to the flow sources and slowing the flow rates. (d) The normalized
rates of the flows are shown beside the sources. (e) The normalized rates on the
links are shown. 66

3-2 An example of rate-limit condition . 66

3-3 White circle represents the flow source. Grey circles represent other nodes. Thick
arrows represent bandwidth-saturated links. Thin arrows represent unsaturated
links. Thin dashed arrows represent buffer-saturated links. “−” on top of a node
indicates an unsaturated buffer at that node. “+” indicates a saturated buffer. 67

3-4 White circles represent flow sources. Black circles represent destinations. Thick
arrows represent bandwidth-saturated links. Thin arrows represent unsaturated
links. Thin dashed arrows represent buffer-saturated links. (a) A portion of the
network with two flows whose weights are both one and desirable rates are both
5. (b) Each node has one queue for all destinations. (c) Each node has one queue
per served destination. (d) The wireless network is modeled as two virtual networks. 67

3-5 Network topology of a simple scenario . 67

3-6 A three-links topology . 68

3-7 Network topology . 68

3-8 Network topology . 68

3-9 Rates of the flows on the topology in Fig. 3-8 68

8

4-1 There is no exhausted node on P1 or P2; nodes s and w are unrestricted feeding
sources of i. There is an exhausted node x on P3; node u is a restricted feeding
source of i. There is no forwarding path from z to i; node z is a potential source
of i. 95

4-2 Iterations of DPA . 96

4-3 There is no exhausted node from s to i; node s is an unrestricted feeding sources
of i. There is an exhausted node x from u to i; node u is a restricted feeding
source of i. The upstream bottleneck x may prevent source u from fully utilizing
the volume bound set by i on link (k, i). 96

4-4 A simple illustrative test case. 96

4-5 max deviation and avg deviation of lifetime vector with respect to the number
of iterations that DPA has performed . 97

4-6 DPA scales well. Its overhead grows slowly with the network size. 97

4-7 Comparison of running time between LP and DPA 97

4-8 Left plot : comparison of nodal overhead distribution between LP and DPA. Right
plot : comparison of maximum nodal overhead between LP and DPA 98

4-9 Network lifetimes of DPA, SLP and MPR . 98

4-10 Avg and max deviations of SLP and MPR . 98

9

Abstract of dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

DISTRIBUTED SOLUTIONS FOR RATE CONTROL AND MAXIMUM LIFETIME
IN WIRELESS NETWORKS

By

Liang Zhang

August 2009

Chair: Shigang Chen
Major: Computer Engineering

This study focuses on end-to-end flow rate fairness and lifetime fairness in wireless

networks.

In recent years, the advent of multihop wireless networks has greatly accelerated the

research on bandwidth management in such networks to support new applications. While

much research concentrates on the MAC layer, the users perception on these networks is

however determined mainly based on the networks end-to-end effectiveness. It is important

for us to develop flexible tools for traffic engineering in multihop wireless networks. In this

study, two solutions are proposed to achieve end-to-end maxmin flow rate fairness in such

networks.

A cross-layer design is firstly proposed for achieving end-to-end maxmin fairness in

wireless mesh networks. In this approach, a generalized maxmin model is first proposed for

multihop wireless networks. At the network layer, our design allocates network capacity to

end-to-end flows for maxmin bandwidth allocation. At the MAC layer, our design achieves

the allocated bandwidth shares for flows through a two-level weighted fair queuing

algorithm. The proposed design is able to equalize the end-to-end bandwidth allocation to

competing flows that share common bottlenecks, while fully utilizing the network capacity.

Results of simulations are presented to demonstrate the effectiveness of the proposed

solution in enhancing end-to-end fairness.

10

We also propose a fully distributed solution that is compatible with IEEE 802.11

DCF for achieving end-to-end maxmin fairness. We transform the global maxmin

objective to four local conditions and prove that, if the four local conditions are satisfied

in the whole network, then the global maxmin objective must be achieved. We then design

a distributed rate adaptation protocol based on the four conditions. Whenever a local

condition is tested false at a node, the node informs the sources of certain selected flows to

adapt their rates such that the condition can be satisfied. Comparing with previous work,

our protocol has a number of advantages. First, it does not modify the backoff scheme of

IEEE 802.11. Second, it replaces per-flow queueing with per-destination queueing. Packets

from all flows to the same destination is queued together. Third and most important, our

protocol achieves far better fairness (or weighted fairness) among end-to-end flows than

previous work.

Wireless sensor networks have a wide range of applications in habitat observation,

seismic monitoring, battlefield sensing, etc. As another type of multihop wireless network,

a sensor network consists of battery-powered sensor nodes that are limited in energy

supply. An important problem of wireless sensor networks is maximizing the operational

lifetime of a sensor network. The lifetime of a sensor network is defined as the lifetimes

of all sensors that produce useful data. A centralized solution proposed by previous work

requires solving a sequence of linear programming problems. The computation overhead

can be prohibitively high for large sensor networks. Collecting the complete information

about the network and uploading the complete forwarding policies to all nodes require

significant amount of transmissions, particularly for nodes around the sink. We propose

a fully distributed progressive algorithm which iteratively produces a series of lifetime

vectors, each better than the previous one. Instead of giving the optimal result in one

shot after lengthy computation, the proposed distributed algorithm has a result at any

time, and the more time spent gives the better result. We show that when the algorithm

11

stabilizes, its result produces the maximum lifetime vector. Furthermore, the algorithm is

able to converge rapidly towards the maximum lifetime vector with low overhead.

12

CHAPTER 1
INTRODUCTION

The technology of wireless networking has been widely adopted due to its advantages

on accessibility and portability. In a multihop wireless network, each node operates

both as an end host and as a router, forwarding packets for other nodes that cannot

communicate directly. Multihop wireless networks provide more flexibility as they

operate in a decentralized and self-organizing manner and do not rely on fixed network

infrastructure. In recent years, the advent of various multihop wireless networks, including

wireless mesh networks and wireless sensor networks, has greatly intensified research on

such networks to improve their applicability in practice.

1.1 End-to-End Flow Rate Fairness

A major problem of multihop wireless networks is to fairly allocate the scarce wireless

bandwidth to all users. Much research concentrates on the MAC layer. Researchers have

proposed some algorithms to achieve fair bandwidth allocation for single-hop flows while

maximizing network throughput [26, 37]. “Fair” is defined differently in those algorithms.

One common feature of those algorithms is that at least certain amount of bandwidth is

guaranteed for every single-hop flow in the network.

The user’s perception on multihop networks is however determined mainly based

on the networks’ end-to-end effectiveness. For example, for new users to participate in a

wireless mesh network, they want to be sure that their end-to-end traffic is treated fairly

as everyone else. Moreover, if a user contributes more to the network, she may demand

that her traffic is given more weight than others’ traffic. In order to meet diverse user

requirements, it is important for us to develop flexible tools for traffic engineering in

multihop wireless networks.

However, the solutions for single-hop flow fairness cannot be extended to achieve

end-to-end flow fairness because they ignore the relationship among the subflows from

the same multihop flow. If an upstream subflow is allocated more bandwidth than its

13

downstream subflow from the same multihop flow, the router in the middle will receive

packets at a faster rate than it can forward. The buffer of the router may be overflowed

by the continuously increasing packets. Among all subflows of a multihop flow, the one

with the lowest rate becomes the bottleneck. Furthermore, the bandwidth consumed by

dropped packets could be allocated to other flows to increase their throughput.

Previous work [32] has pointed out the above problem existing in multihop flows if

simply applying the above single-hop flow algorithms to multihop flows by breaking each

multihop flow into multiple single-hop flows. In [32], Li pointed out a relationship among

all subflows of a multihop flow, which is that all subflows from the same multihop flow are

expected to have the same rate and to receive equal amount of bandwidth. However, the

basic fairness model proposed in [32] has serious limitation that hinders its applicability

in WMNs. The model ensures a basic share of bandwidth for each end-to-end flow in a

contending flow group and then tries to maximize the overall network throughput. The

basic share is calculated as the channel capacity divided by the total effective length of

the routing paths of the flows in the group. The effective length of a path is the smaller

one of the path length and 3. Two flows, f1 and fn, belong to the same contending flow

group if there exists a sequence of flows, f2 through fn−1, such that fi contends with fi+1,

1 ≤ i < n. By this definition, two remote flows may belong to the same group even though

they do not contend with each other. In a well-connected WMN, all flows in the network

may even form a single large contending flow group. In this case, the basic share of each

flow will be very small and unable to provide sufficient fairness. For example, in Fig. 1-1,

the 2n flows belong to a single contending flow group, which includes all flows that are

transitively related via contentions. According to the formulation in [32], the basic share

is c
3n

, where c is the channel capacity. Note that a two-hop flow consists of two one-hop

subflows, consuming 2c
3n

of local bandwidth. The network is required to ensure the basic

share for each flow and then maximize the network throughput, which means the rest of

bandwidth will all be assigned to one-hop flows. Consequently, each two-hop flow receives

14

a final share of c
3n

, and each one-hop flow receives a final share of c
2
− 2c

3n
. When n is large,

all two-hop flows are starved.

We study a fundamental problem, how to support weighted bandwidth allocation

among all end-to-end flows in a multihop wireless network based on IEEE 802.11 DCF.

A more precise but less intuitive definition of the problem is how to adapt the flow rates

to achieve the global maxmin objective [6]: the rate of any flow in the network cannot

be increased without decreasing the rate of another flow which has an equal or smaller

normalized rate, where the normalized rate is defined as the flow rate divided by the flow

weight. Two solutions are proposed to achieve the global maxmin objective.

The first solution is a cross-layer design. A generalized maxmin model is proposed

for multihop wireless networks. At the network layer, it allocates network capacity to

end-to-end flows for maxmin bandwidth allocation. At the MAC layer, our design achieves

the allocated bandwidth shares for the flows through a two-level weighted fair queuing

algorithm. The proposed design is able to equalize the end-to-end bandwidth allocation to

competing flows that share common bottlenecks, while fully utilizing the network capacity.

The second solution proposed is a fully distributed solution that is compatible with

IEEE 802.11 DCF. We transform the global maxmin objective to four local conditions

and prove that, if the four local conditions are satisfied in the whole network, then the

global maxmin objective must be achieved. We then design a distributed rate adaptation

protocol based on the four conditions. Whenever a local condition is tested false at a node,

the node informs the sources of certain selected flows to adapt their rates such that the

condition can be satisfied. Comparing with [32], which we believe is the most related work,

our protocol has a number of advantages. First, it does not modify the backoff scheme of

IEEE 802.11. Second, it replaces per-flow queueing with per-destination queueing. Packets

from all flows to the same destination is queued together. Third and most important, our

protocol achieves far better fairness (or weighted fairness) among end-to-end flows than

the basic fair scheme in [32].

15

1.2 Lifetime Fairness in Sensor Networks

Wireless sensor networks have a wide range of applications in habitat observation,

seismic monitoring, battlefield sensing, etc. As another type of multihop wireless network,

a sensor network consists of battery-powered sensor nodes that are limited in computation

capability, memory space, communication bandwidth, and above all, energy supply.

The network cannot carry out its task after the nodes’ energy is exhausted. Hence,

maximizing the operational lifetime of a sensor network is a critical problem.

What is exactly the lifetime of a sensor network? Many prior works [7, 11, 27, 33, 38,

46, 48, 54, 58, 59] define the network’s lifetime as the time before the first sensor in the

network runs out of energy, or before the first loss of coverage [8]. This definition simplifies

the problem of maximizing lifetime to a linear programming problem or an NP-hard

non-polynomial programming problem if the sink is allowed to move [48]. However, in

reality, the operational lifetime of the network is not limited to the smallest lifetime of all

nodes. When one sensor dies, the rest of the network can still work, as long as useful data

generated by other sensors can still reach the sink. It is not true that, since sensors around

the sink forward others’ data, they will always exhaust their energy first and prevent

the rest of the network from reaching the sink. One can deploy more sensors around

the sink, use larger batteries to boost the energy level there, or perform in-network data

aggregation.

An appropriate definition for the lifetime of a sensor network should include the

lifetimes of all sensors that produce useful data. A sensor’s lifetime is the duration from

the time when it begins to generate the first data packet to the time when it generates the

last packet that is deliverable to the sink. The network’s lifetime can be defined as the

vector of all sensors’ lifetimes sorted in ascending order, which is called the lifetime vector.

The value of the lifetime vector is determined by the nodes’ packet forwarding policies that

specify how packets are forwarded from the sensors through the network to the sink. More

16

specifically, for every node, its forwarding policy specifies the proportion of packets that

should be forwarded on each outgoing link towards the sink.

Hou et al. [24, 25] define the problem of maximizing a sensor network’s lifetime

as to find the packet forwarding policies for all nodes that collectively produce the

lexicographically largest lifetime vector, called the maximum lifetime vector. In less

precise terms, it first maximizes the smallest lifetime of all nodes, then maximizes the

second smallest lifetime of all nodes, and so on. Hou et al. show that this problem can be

modeled as a series of linear programming (LP) problems. After solving the LP problems,

the sink uploads the optimal packet forwarding policies to the sensors. Based on its

forwarding policy, each sensor forward its packets. Such a solution is however a centralized

one. It requires solving O(|N |) LP problems of size O(|E|), where |N | is the number of

sensors in the network, |E| is the number of links, and LP has high-order polynomial

complexity. The computation overhead can be prohibitively high for large sensor networks

that need to be operational soon after deployment. Collecting the complete information

about the network and uploading the complete forwarding policies to all nodes require

significant amount of transmissions in the network, particularly for nodes around the sink.

To avoid these problems, a distributed algorithm that spreads the overhead evenly on all

nodes becomes important.

We propose the first distributed solution for the problem of maximizing the lifetime

vector of a sensor network. Our strategy is to design a distributed progressive algorithm

that works in a series of iterations, each producing a result (in our case, a lifetime vector

and its corresponding forwarding policies) that is better than the previous one. The

sequence of results approaches to the optimal solution. A distributed progressive algorithm

is practically attractive because a result is available at any time and is getting better as

more time is spent. We show that when the algorithm stabilizes, its result produces the

maximum lifetime vector. We have performed thousands of simulation runs on random

networks of various sizes, and compared with Hou’s centralized algorithm as well as other

17

related algorithms. The results demonstrate that our algorithm rapidly converges to the

maximum lifetime vector and its overhead is small. For networks of thousands of nodes, it

produces near optimal results in 10 to 30 iterations — one iteration requires each node to

transmit two small control messages. The algorithm scales well as its overhead increases

slowly with respect to network size. When used as a centralized algorithm, it is two to

three orders of magnitude faster than Hou’s linear programming solution for random

networks of thousands of nodes; the performance gap increases for larger networks. We

also compare the proposed algorithm with other existing algorithms that maximize the

smallest sensor lifetime in the network or perform minimum-power routing. DPA produces

much better lifetime vector.

1.3 Maximizing Lifetime Vector and Maximizing Rate Vector in Sensor
Networks

There is another rate control problem with lifetime requirement in wireless sensor

networks. A rate vector is the vector of all sensors’ local rates sorted in ascending order.

For a given node lifetime requirement T for all nodes, the problem of maximizing rate

vector is to find the lexicographically largest rate vector. Hou et al. prove in [25] that

there exists an underlying duality relationship between the problem of maximizing the

lifetime vector of a sensor network and the problem of maximizing the rate vector in a

sensor network. The duality relationship is summarized in Table 1-1, in which, gi is the

local data rate of node i and ti is the lifetime of node i.

1.4 Related Work

1.4.1 Flow Rate Fairness

The maxmin solutions on wired networks [9, 18, 31] not only require per-flow

queueing but also assume a fixed bandwidth capacity for each link, which makes them

not applicable in random-access wireless networks.

It is well known that TCP does not perform well in wireless networks [4, 57]. Much

research has been done to improve TCP’s performance, and a recent survey can be

18

found in [15]. Most existing solutions employ heuristic mechanisms for better congestion

signaling. However, they are not designed for solving the problem of provable weighted

bandwidth allocation as this work does.

Utility-based solutions on wired networks [21, 30, 35, 39] also require each link to

have a fixed capacity. Efforts have been made to adapt utility-based solutions in wireless

networks by considering only single-hop flows [19, 52], eliminating contention among

neighboring nodes by using separate CDMA/FDMA channels for wireless links [56],

modeling resources as maximal contention cliques instead of wireless links [55], relying

on cross-layer design to integrate end-to-end rate adaptation with MAC-layer packet

scheduling [12], assuming all wireless links share the same channel [2], or assuming a fixed

bandwidth capacity for each wireless node [43]. Assigning one separate channel for each

contending wireless link [56] requires a large number channels for a dense network, causing

low capacity for each channel. This approach does not work well with widely-deployed

IEEE 802.11b/g that has only three non-overlapping channels. The maximal clique

approach [55] requires that each clique’s effective capacity is known, but it is not clear

how to accurately measure such capacity, which is a complex function of nearby contention

and environmental noise. The cross-layer approach [12] requires the nodes to dynamically

establish globally coordinated (or locally approximated [34]) time-slotted transmission

schedules at the MAC layer, which does not fit well with IEEE 802.11’s random access

model. More importantly, the utility function that approximates maxmin fairness contains

an exponent approaching to infinity [40], which makes the system hard to stabilize. In

summary, existing utility-based approaches do not provide a maxmin solution for IEEE

802.11 DCF.

There are other works that are not utility-based. Most of them are designed to

achieve MAC-layer fairness [28, 36, 37] or maxmin fairness [26, 51] among one-hop flows.

While some study multihop flows, each has its limitation. Basic end-to-end fairness in

wireless ad-hoc networks is achieved in [32]. However, the basic fair share guaranteed

19

for each flow is highly conservative; it can be far below the maxmin rate. End-to-end

maxmin is investigated in [47], which assumes a separate CDMA/FDMA channel for each

contending wireless link. The temporal fairness in multi-rate wireless networks is studied

in [20], which however does not provide an algorithm that computes the temporally-fair

rates. A distributed algorithm that achieves aggregate fairness in sensor networks is

proposed in [14], assuming that all flows are destined to the same base station. To the

best of our knowledge, no distributed algorithm has been proposed to provide weighted

maxmin bandwidth allocation in a multihop wireless network based on IEEE 802.11 DCF.

IEEE 802.11e [1] has been under development to support QoS, primarily for WLAN.

Its EDCA provides prioritized channel access only for four access categories (background,

best effort, video, and voice). It does not provide fine-level control for weighted bandwidth

allocation among end-to-end flows.

1.4.2 Lifetime Fairness in Sensor Networks

Many researchers design energy-efficient routing algorithms to maximize the network

lifetime. Many prior works [3, 7, 11, 27, 33, 38, 46, 58, 59] define the network’s lifetime as

the time before the first sensor in the network runs out of energy, or before the first loss of

coverage [8].

Hou et al. show in [24, 25] that the problem of maximizing the lifetime vector of a

sensor network can be modeled as a series of centralized linear programming problems.

Hou et al. also prove in [25] that there exists an underlying duality relationship between

the problem of maximizing the lifetime vector of a sensor network and the problem of

maximizing the rate vector of a sensor network with a global node lifetime requirement.

Some researchers also design energy-efficient routing algorithms to achieve the goal

of minimizing energy consumption [22, 45, 49, 50, 53]. The typical approach [22, 45]

is to use a shortest path algorithm in which the edge cost is the power consumed to

transmit a packet along this edge. Though effectively reducing the energy consumption

20

rate, this approach can cause unbalanced consumption distribution. The nodes on the

minimum-energy path are quickly drained of energy, causing network partition.

The rest of this study is organized as follows. Chapter 2 and Chapter 3 propose two

solutions to achieve the global end-to-end flow rate maxmin objective in multihop wireless

networks: a cross-layer solution and a fully distributed solution. Chapter 4 proposes

a distributed progressive algorithm for maximizing lifetime vector in wireless sensor

networks. Chapter 5 concludes our study.

21

Maximizing rate vector Maximizing lifetime vector
gi (optimization variable) gi = R (constant)

ti = T (constant) ti (optimization variable)
Total data volume at node i: gi · T = ti ·R

Table 1-1. Duality relationship between the two problems proved by Hou et al. in [25]

. . .
in

range

n single-hop flows

n two-hop flows

c/2 – 2c/3n

c/3n

Figure 1-1. Two-hop flows are starved.

22

CHAPTER 2
CROSS-LAYER DESIGN FOR ACHIEVING END-TO-END MAXMIN

In this chapter, a cross-layer design is proposed for achieving end-to-end maxmin

in wireless mesh networks (WMNs). A generalized maxmin model is first proposed

for multihop wireless networks. At the network layer, it allocates network capacity to

end-to-end flows for maxmin bandwidth allocation. At the MAC layer, our design achieves

the allocated bandwidth shares for the flows through a two-level weighted fair queuing

algorithm. The proposed design is able to equalize the end-to-end bandwidth allocation to

competing flows that share common bottlenecks, while fully utilizing the network capacity.

This chapter is organized as follows. Section 2.1 describes the network model and our

objective. Section 2.2 presents a generalized maxmin model, based on which we design the

maxmin bandwidth allocation algorithms for WMNs. Section 2.3 presents the two-level

weighted fair queuing scheduling algorithm. Section 2.4 evaluates the performance of our

solution. Section 2.5 summarizes the chapter.

2.1 Network Model and maxmin Model

2.1.1 Network Model

We adopt infrastructure (backbone) WMNs as our network model. In an infrastructure

WMN, mesh routers interconnect through wireless links to form a communication

backbone. Clients are connected to mesh routers via wired or wireless means. Clients

connected to different routers communicate with one another through multi-hop wireless

paths. To simplify the discussion, we assume that two different channels are used for

wireless communication between mesh routers and wireless communication between a router

and a client. Therefore, router-router communication does not interfere with router-client

communication. We focus on router-router communication. We assume the existence of

the IEEE 802.11 DCF MAC protocol. Two wireless links (between routers) contend if

they cannot transmit simultaneously.

23

A WMN connects to the Internet through one or multiple gateway mesh routers. All

communication traffic from clients of one router to clients of another router constitutes

an internal flow. All communication traffic from clients of one router to the Internet or

in the reverse direction constitutes an external flow. Internal flows are common in WMNs

deployed for campus communication. External flows are common in WMNs deployed in

residential areas for Internet access. In our abstract model, we consider the beginning

router of a flow as the data source of the flow and the ending router as the destination.

We assume the existence of a routing protocol that establishes a routing path for each

flow.

We study end-to-end flows, which are referred to simply as flows. A flow consists of

one or more single-hop flows, which are called subflows. Two subflows contend if they

are carried by the same link or two contending links. Two flows contend if any of their

subflows contend.

2.1.2 Maxmin Model

Each end-to-end flow is assigned a nominal flow weight. The network is expected to

allocate bandwidth to the flows in proportion to their nominal weights whenever possible.

The nominal flow weights can be decided based on administrative policies (e.g., higher

weights for more important flows), commercial policies (e.g., higher weights for customers

who pay more), or incentive policies (e.g., higher weights for flows whose source routers

contribute more in carrying others’ traffic).

Each flow is entitled to a fair share of network bandwidth in proportion to its weight.

It is well known that maintaining fairness and maximizing network throughput are

contradictive goals [37]. Stricter fairness can be achieved often at the expense of lower

network throughput. Some previous studies focused more on throughput optimization

under certain basic, relaxed fairness criteria [32, 36]. We put more focus on fairness.

Specifically, we want to achieve the classical maxmin fairness among end-to-end flows in

24

WMNs. The maxmin fairness requires the network to first maximize the smallest flow

rate, then maximize the second-smallest flow rate, and so forth.

The classic maxmin model for wired networks is described as follows. Given a set Q

of resources (i.e., links), a capacity bq for each resource q ∈ Q (i.e., bandwidth), a set F of

flows, a nominal weight wf for each flow f ∈ F , and a routing path pf for each flow f , the

problem is to assign a rate rf for each flow f such that

1. ∀q ∈ Q,
∑

f∈F, q∈pf
rf ≤ bq, and

2. for any flow f ∈ F , its rate rf cannot be increased without decreasing the rate rf ′ of
another flow f ′, for which rf ′/wf ′ ≤ rf/wf .

The set of rates R = {rf | f ∈ F} that satisfy the above conditions are called the maxmin

rates.

The above model assumes that each resource has a fixed capacity and that a resource

can appear in a flow’s routing path at most once. In order to apply this model to WMNs,

we have to identify what the resources are. Wireless links cannot be used as the resources

because they do not have individually fixed capacities. Following Huang and Bensaou’s

work [26] which considers only one-hop flows, we shall use “cliques” from the contention

graph as the resources, which will be explained in detail in Section 2.2. However, in

order to accommodate the “clique resources” in the context of end-to-end flows, we must

generalize the maxmin model first in the following section to allow a resource to appear in

a flow’s routing path for multiple times.

2.2 A generalized maxmin model

In this section, a generalized maxmin model is introduced. By applying this model,

each flow in the network is assigned a maxmin fair share that will be used by the packet

scheduling algorithm presented in Section 2.3.

2.2.1 Resources in WMNs

In wired networks, all flows that pass a link between two routers compete for the link

bandwidth. The links serve as the resources in the classical maxmin model. In a WMN,

25

the medium is shared by a group of nearby mesh routers. Not only flows passing the same

wireless link but also those passing nearby wireless links compete for the shared channel

capacity.

A wireless-link contention graph can be employed to describe the spatial contention

relationship among contending links. Vertices in a wireless-link contention graph represent

wireless links in the corresponding network topology. Two vertices are connected if the

corresponding links contend with each other. A wireless link is idle if there is no flow

passing it. A simplified wireless-link contention graph can be constructed from a network

topology with all idle links removed. An example of simplified wireless-link contention

graph is given by Fig. 2-2 (b).

A clique is a complete subgraph with a link between every pair of nodes. A maximum

clique is a clique that is not contained in another clique. In this chapter, we refer to

maximum cliques as cliques henceforth. A clique in a wireless-link contention graph

represents a group of mutually contending wireless links in which only one link can be

in transmission at any time. The channel bandwidth is shared by all wireless links of a

clique. The cliques from the wireless-link contention graph can be used as resources.

Following the routing path of a flow, we can obtain a sequence of cliques that the

flow passes. When a flow passes multiple links of a clique, we consider the flow passes the

clique multiple times. For a wireless link belonging to multiple cliques, if a flow passes this

link, we consider the flow passes those cliques in turn.

2.2.2 Generalized Maxmin Model

In classic maxmin model, a resource can appear in a flow’s routing path at most once.

Motivated by the above characteristics of WMNs, in this subsection, we generalize the

classic maxmin model and then apply the generalized model to WMNs.

In the generalized model, a resource is allowed to appear in a flow’s routing path for

multiple times in different positions.The number of appearances of resource q ∈ Q in flow

f ’s path pf is denoted by nq
f . We have the following feasibility constraint for a set of flow

26

rates R = {rf | f ∈ F}.
∑

f∈F, q∈pf

nq
f × rf ≤ bq (2–1)

A set of rates that satisfies the above constraint is said to be feasible. It is maxmin

fair if it is feasible and, for each f ∈ F , rf cannot be increased while maintaining

feasibility without decreasing rf ′ for another flow f ′, for which rf ′/wf ′ < rf/wf . Our goal

is to find a set of flow rates that is maxmin fair.

An algorithm that calculates the maxmin rates of the flows can be found in [6]. Below

we adapt it for the generalized maxmin model. For each resource q, compute the average

capacity share available for a unit weight of one appearance of each passing flow, which is

bq∑
f∈F, q∈pf

nq
f×wf

. Find the global bottleneck resource that has the smallest capacity share.

Assign an equal share of the resource’s capacity to a unit weight of one appearance of each

passing flow f . It can be proved that the equal share is the maxmin normalized rate rf/wf

of this flow. Remove the bottleneck resource and the flows passing it from the network.

When a flow f is removed, the capacity of each resource q on its routing path is reduced

by nq
f × rf . Repeat the above process until every flow is assigned a rate and removed from

the network.

The algorithm described above can be used to compute the maxmin flow rates. The

rate of a flow reflects the amount of the bandwidth a flow should received at each node on

its routing path. The larger rate a flow has, the more bandwidth a flow should receive at

each node on its path. The flow rates calculated by the generalized maxmin model are also

called flows’ maxmin fair shares. By applying the generalized maxmin model, the flows in

Fig. 2-2 can be redrawn in Fig. 2-3, where the resources (circles) are cliques. If we assume

the bandwidth capacities of all cliques are the same and are normalized to one unit, then

the maxmin fair shares of f1, f2, f3, f4 are 1/5, 1/5, 1/3, 1/3, respectively.

Some previous works, e.g., [26, 32], use channel capacity as clique capacities. If the

same way is followed, for some link contention graphs, flow fair shares calculated by the

maxmin algorithm are upper bounds of the true maxmin fair shares. One example is the

27

odd cycles of length at least 5 without chords in link contention graph [19]. To solve this

problem, we use the effective channel capacity of a clique q as bq in our model. A node

measures the effective bit rates of its incident links. The concept of effective bit rate is

similar to the one in [5], which incorporates link layer details. A clique’s effective channel

capacity can be obtained by summing up the effective bit rates of all links of that clique.

In infrastructure WMNs, mesh routers have relatively strong computing capability

and stable positions which make the centralized implementation of the algorithm feasible.

The implementation can also be distributed. Nodes only work on local link contention

graph which is much smaller than the global one. The work of clique decomposition is

reduced remarkably. Some distributed maxmin algorithms for wireline networks (e.g., [41])

could be customized to calculate flow maxmin fair shares.

2.3 Packet Scheduling Algorithm

We have discussed how to calculate maxmin flow fair shares. These fair shares

replace the nominal flow weights and become the effective flow weights used by the packet

scheduling algorithm that will be described in this section.

2.3.1 Overview

The basic idea of our scheduling algorithm is to let each subflow receive bandwidth

proportionally to its effective weight, which is equal to the effective weight of the flow it

belongs to. This idea is similar to the scheduling in wired networks. However, scheduling

in multihop wireless networks is more complex. In wired networks, contending subflows are

backlogged in the same router. All scheduling work could be done within this router. In a

wireless network, contending subflows may reside in different nodes, which could be as far

as several hops away. They need to cooperate with each other to guarantee each subflow

receive appropriate bandwidth. Our scheduling method includes two components:

• Inter-node scheduling. If we consider all packets in a router form a virtual queue,
the weight of this virtual queue equals to the router’s effective weight, which is
the sum of the effective weights of all backlogged flows in the router. Our method

28

schedules the transmissions of the packets from virtual queues to guarantee that the
bandwidth each virtual queue obtains is proportional to its weight.

• Intra-node scheduling. Inside a router, packets from different flows are queued
separately. The intra-node scheduling allocates the bandwidth obtained by the
router to the backlogged flows proportionally to their effective weights. Some
queuing algorithms proposed for wired networks (e.g., [?]) can be adopted to
achieve this.

The rest of this section describes the inter-node scheduling algorithm that is based on

the 802.11 DCF with RTS-CTS-DATA-ACK handshake.

2.3.2 Inter-node Scheduling

Let B be the set of all backlogged flows in the network, Bi the set of backlogged flows

at router i. The effective weight of flow fi is denoted by w′
i and then the effective weight

of router i is ŵi =
∑

j∈Bi
w′

j. Each router i maintains a counter Ci. When packet P k
i (the

kth packet from router i) becomes the next-to-send packet of router i, it is assigned a tag

Ti = Ci. Then Ci = Ci + Lk
i /ŵi, where Lk

i is the length of packet P k
i . In order to achieve

the short-term fairness, all counters are reset to zero every φ seconds at the same time,

assuming clocks of all routers are loosely synchronized.

Fig. 2-4 shows all possible contending packet transmissions within two hops away

from router x and router y. In Fig. 2-4, circles represent routers. A line between two

routers means they are within the transmission range of each other. An arrow from router

x to y means the next-to-send packet of x need to be transmitted to y. Given the example

in Fig. 2-4, the transmission from x to y conflicts with all other transmissions indicated by

the arrows in Fig. 2-4.

If a node x has a packet to transmit, the contending node set of x, denoted by Ωx, is

defined as the group of nodes that are competing for the media access with x. In Fig. 2-4,

Ωx = {i, j, m, y, n, v, w}. Let Ω+
x = Ωx ∪ {x}. When x has a packet to transmit and

its backoff timer becomes zero, it should compare its tag with those of the nodes in Ωx.

Ideally, the packet from x should be transmitted immediately if its tag is the smallest.

Otherwise, x’s transmission should be withheld until all packets from Ωx with smaller tags

29

are transmitted first. To describe how to determine if a transmission should be withheld,

we need first define three variables for each router x:

- T s
x : sending tag of x, which is the tag of the next-to-send packet of x. If x does not

have any packet to send, T s
x is set to a very large value MAXTAG.

- T r
x : receiving tag of x, which is the smallest tag of the packets to be received by x

from its neighbors.

- T n
x : T n

x = mini∈Nx{T s
i , T r

i }, where Nx is x’s neighbor set.

When x has a packet to be transmitted to y, if T s
x > T n

x or T s
x > T n

y , x can know it

does not have the smallest tag in Ω+
x and the transmission should be withheld. In order

to obtain most up-to-date T n
x and T n

y , RTS, CTS, DATA and ACK packets can piggyback

necessary tags. Each router maintains a table to keep track of its neighbors’ tags.

However, it is difficult to enforce the above strict conditions for each transmission.

The reason is that sender x cannot always have the fresh tags of its neighbors, especially

T n
y from receiver y, which are based on the tags of nodes as far as three hops away from x.

Stale tags may cause deadlocks. To avoid potential deadlocks, a heuristic method is used

by x to estimate T n
y . The basic idea is to estimate the increment rate of T n

y , denoted by

rn
y . For each i ∈ Nx, besides T n

i , x also records rn
i it estimates and the time ti when T n

i

gets updated. When x needs to transmit a packet to y, x uses T̂ n
y instead of T n

y to check

the second condition, where

T̂ n
y = T n

y + rn
y × (t− ty) (2–2)

t is the current time. Once T n
y gets updated and becomes larger, the new rn

y is computed

as:

rn
y = α× rn

y + (1− α)× ∆T n
y

t− ty
(2–3)

where α is a parameter to control the influence of T n
y ’s new increment rate on rn

y . If above

approach is employed, T̂ n
y will eventually be increased large enough such that the second

withholding condition will become false.

30

We have discussed that ideally router x should withhold its transmission until its

sending tag becomes the smallest in Ω+
x . Actually, we do not have to enforce such strict

conditions. x should be allowed to transmit a packet as long as its sending tag is not “very

large” compared to the tags of the nodes in Ωx. Now the two transmission withholding

conditions can be formally given as follows. When router x need transmit a packet to y,

the transmission should be withheld if:

1. T s
x > T n

x + β × L/ŵx, or

2. T s
x > T̂ n

y + β × L/ŵx

where L is the packet length, β is a parameter greater than zero. β specifies how many

packets x is allowed to transmit ahead of its contending nodes. By introducing β, x do not

have to wait until it has the smallest sending tag in Ω+
x , but will withhold its transmission

when its sending tag is “much larger” than those of the nodes in Ωx.

2.4 Performance Evaluation

In this section, the proposed solution that achieves end-to-end maxmin fairness

(referred to as MMF) will be evaluated through simulations. The simulation environment

settings are described as follows. The channel capacity is 11Mbps. The transmission range

of a mesh router is 250 meters. Each data packet is 1024 bytes long. Per-flow queuing is

adopted by each router. We assume each source sends data at a constant bit rate (CBR)

of 700 packets per second. The length of each simulation session is 200 seconds. The

parameters of MMF are set as follows: φ is 10 seconds, α is 0.9, and β is 6.

We compare the performance of MMF with (1) 802.11 DCF (abbreviated as 802.11);

and (2) the two-phase protocol (abbreviated as 2PP) proposed in [32]. We compare the

algorithms from two aspects: end-to-end flow fairness and spatial reuse of spectrum.

To evaluate the end-to-end fairness, we adopt the maxmin fairness index [6] (denoted

by Imm) and the equality fairness index [16] (denoted by Ieq).

Imm =
minf∈F{rf}
maxf∈F{rf} , Ieq =

(
∑

f∈F rf)
2

|F |∑f∈F (rf)2

31

Imm measures the ratio of the smallest flow rate to the largest flow rate. Ieq measures the

overall equality among the flow rates; its value approaches to one if the rates of all flows

approach toward equality.

To measure the spatial reuse of spectrum, we employ the effective network throughput

U , which is defined as
∑

f∈F rf × lf , where lf is the number of hops on the routing path of

flow f . The packets dropped by the intermediate nodes do not count towards the effective

network throughput as they do not contribute to end-to-end throughput. The effective

network throughput gives us a measurement for network bandwidth utilization and the

efficiency of a protocol.

We present simulation results in two network scenarios: a simple network topology

shown in Fig. 2-2 and a complex network topology that will be described later. All flows

in both scenarios have the equal nominal weights. In the rest of this section, the unit of

the flow or network throughput is packets per second (PPS).

The simulation results of the example in Fig. 2-2 are shown by Table 2-1. The

length of a flow is the number of its subflows. MMF shows good end-to-end fairness and

comparable bandwidth utilization. In 2PP, the objective of the basic fairness model is to

maximize the total end-to-end throughput. Thus single hop flow 〈9, 8〉 has much higher

rate than other flows.

The complex scenario simulates the traffic in the backbone of a WMN. 27 nodes are

placed in a 900× 900 region, in which 25 are non-gateway nodes and 2 are gateway nodes.

Gateway nodes are evenly placed in the horizontal midline of the region. The region is

divided into 25 grids. Each non-gateway node is placed into a grid. The location of a

non-gateway node in its grid is randomly chosen. A non-gateway node connects to the

Internet through the nearest gateway node. Every non-gateway node has a download flow

from its gateway node. 5 non-gateway nodes are randomly picked to have 5 upload flows

to their gateway nodes. We also randomly create 5 internal flows among non-gateway

nodes. The simulation results are shown in Table 2-2.

32

For both 802.11 and 2PP, many flows have very low rates. For 802.11, all high rate

flows are no longer than 2 hops. The reason is that for a long flow, many packets are

dropped before arriving the destination due to buffer overflow caused by inconsistent

subflow rates. For 2PP, all high rate flows have only one hop. The reason is that the

basic fair share guaranteed for each flow in such large network is very small. Bandwidth is

allocated to single hop flows whenever possible to maximize total end-to-end throughput.

MMM shows much better fairness than the other two and also achieves good bandwidth

utilization.

2.5 Summary

In this chapter, we have studied the problem of end-to-end fairness in WMNs. A

generalized maxmin model is presented. This model is applied to WMNs by considering

the unique characteristics of wireless networks to provide end-to-end maxmin fairness. A

two-level packet scheduling algorithm is proposed to make each flow receive bandwidth at

each node on its routing path proportionally to its maxmin fair share calculated by the

model. Simulation results have demonstrated the effectiveness of the proposed solution in

enhancing end-to-end fairness.

33

802.11 2PP MMF
flow length thro. effe.

weight
thro. effe.

weight
thro.

〈1, 6〉 4 114.44 1.00 115.60 1.00 173.74
〈3, 1〉 2 198.82 2.50 288.65 1.00 173.74
〈7, 10〉 2 272.21 1.00 114.36 1.67 291.49
〈9, 8〉 1 414.32 6.00 682.03 1.67 292.24
effe. network thro. 1814.13 1950.46 1917.66

Imm 0.276 0.168 0.595
Ieq 0.837 0.627 0.940

Table 2-1. Simulation results on the topology in Fig. 2-2

802.11 2PP MMF
effe. network thro. 1550.15 998.86 1528.45

Imm 0.004 0.026 0.500
Ieq 0.136 0.453 0.895

Table 2-2. Simulation results of the complex scenario

q1 q3q2

q4

workflow f
(wf=2)

workflow g
(wg=1)

All processor capacities = 1

Figure 2-1. A simple example of the generalized maxmin model

34

1

7

6542

3

9 8

10

(1,2)

(4,5) (8,9)

(8,10)(7,8)(5,6)

(2,3)

(2,4)

(1,2)

(4,5)

(2,3)

(2,4)

(4,5)

(5,6)

(2,4) (4,5)

(7,8)(5,6)

(8,9)

(8,10)(7,8)

clique 1 clique 2 clique 3 clique 4

(a) topology (b) wireless-link contention graph

(c) cliques

f1

f2

f3

f4

wf1 = wf2 = wf3 = wf4 = 1

in range

Figure 2-2. An example of wireless-link contention graph and cliques

clique3

f1

f2

f3

f4

clique2

clique1

clique4

Figure 2-3. Flows described by the generalized maxmin model

x

n

m

j

y

v w

i

k

u

Figure 2-4. Scheduling among contending nodes

35

CHAPTER 3
FULLY DISTRIBUTED SOLUTION FOR ACHIEVING GLOBAL END-TO-END

MAXMIN

In this chapter, we present a fully distributed approach to support weighted

bandwidth allocation among all end-to-end flows in a multihop wireless network. Our goal

is to enable the network to adapt the flow rates such that global maxmin can be achieved.

In order to design a fully distributed solution that is compatible with IEEE 802.11 DCF,

we transform the global maxmin objective to four local conditions and prove that, if the

four local conditions are satisfied in the whole network, then the global maxmin objective

must be achieved. We then design a distributed rate adaptation protocol based on the

four conditions. Whenever a local condition is tested false at a node, the node informs

the sources of certain selected flows to adapt their rates such that the condition can be

satisfied. Comparing with [32], which we believe is the most related work, our protocol

has a number of advantages. First, it does not modify the backoff scheme of IEEE 802.11.

Second, it replaces per-flow queueing with per-destination queueing. Packets from all

flows to the same destination is queued together. Third and most important, our protocol

achieves far better fairness (or weighted fairness) among end-to-end flows than the basic

fair scheme in [32].

The rest of the chapter is organized as follows. Section 3.1 defines the network model.

Section 3.2 classifies wireless links into three categories. Section 3.3 presents the local

conditions for global maxmin in wireless networks with a single destination. Section 3.4

presents the local conditions for networks with multiple destinations. Section 3.5 designs

a distributed global maxmin protocol based the local conditions. Section 3.6 evaluates the

protocol by simulations. Section 3.7 summarizes the chapter.

3.1 Preliminaries

3.1.1 Network Model and Problem Statement

We consider a static multihop wireless network (such as wireless mesh network

with external power supply for each node) based on IEEE 802.11 DCF with congestion

36

avoidance enhancement [13]. Mobile ad-hoc networks are beyond the scope of this study.

Two nodes are neighbors of each other if there are able to perform RTS/CTS/DATA/ACK

exchange. Two nodes that are not neighbors communicate via a multihop wireless path.

Time is not slotted. Radio interference is resolved by random backoff. Two wireless

links contend if they cannot transmit simultaneously. Based on the most popular MAC

protocol, this model excludes the majority of related works [12, 20, 34, 43, 47, 56].

Let F be a set of end-to-end flows in the network. Each flow f has a desirable rate

d(f) and a weight w(f). But the flow source will generate new packets at a smaller rate if

the network cannot deliver its desirable rate. The actual rate of flow f is denoted as r(f)

(≤ d(f)). The normalized rate of flow f is defined as

µ(f) = r(f)/w(f) (3–1)

In this chapter, when we refer to “flow rate” or “normalized rate of a flow”, we mean

“end-to-end rate”. The global maxmin objective is defined as follows: The normalized rate

µ(f) of any flow f cannot be increased without decreasing the normalized rate µ(f ′) of

another flow f ′, for which µ(f ′) ≤ µ(f).

In a more intuitive but less precise description, our goal is to equalize the normalized

rates of all flows as much as possible, particularly, raising the smallest ones. Directly

competing flows tend to receive bandwidth in proportional to their weights. Achieving

global maxmin is a fundamental function of end-to-end traffic engineering in multihop

wireless networks. It adds a new entry in the existing tool box (which includes price-based

and other solutions) for traffic differentiation among applications. For example, we may

establish several service classes in the network and assign larger weights to applications

belonging to higher classes. How to enforce a certain weight assignment scheme through

service contract or other means is beyond the scope of this study.

We assume there exists a routing protocol that establishes a routing table at each

node. The routing table may be implicit under geographic routing [10, 29], or explicitly

37

established by a distance-vector [42] or link-state routing protocol. Consider a specific

destination. A node may receive packets from multiple upstream neighbors and forward

them to a downstream neighbor towards the destination. The links from the upstream

neighbors to a node are called upstream links of the node, and the link from a node to its

downstream neighbor is called the downstream link.

3.1.2 Congestion Avoidance and Buffer-Based Backpressure

Suppose packets to different destinations are queued separately. This assumption

is necessary to achieve global maxmin, as we will explain in Section 3.4.1. Note that

other works [32, 47] require per-flow fair queueing, which is a more stringent requirement.

Now consider the packets to a single arbitrary destination. A node buffers packets

received from upstream links before forwarding them the downstream link. The buffer

space for the queue is limited. To avoid packet drops due to buffer overflow, we adopt

the congestion avoidance scheme in [13], which allows a node i to send its downstream

neighbor j a packet only when j has enough free buffer space to hold the packet. Suppose

the buffer space is slotted with each slot storing one packet. To keep the neighbors

updated with j’s buffer state, whenever j transmits a packet (RTS/CTS/DATA/ACK),

it piggybacks its current buffer state, for example, using one bit to indicate whether

there is at least one free buffer slot. When an upstream neighbor i overhears a packet

from j, it caches the buffer state of j. If j’s buffer is not full, i transmits its packet. If

j’s buffer is full, i will hold its packet and wait until overhearing new buffer state from

j. Note that the residual buffer at node j changes only when j receives or sends a data

packet. Whenever this happens, j will send either CTS/ACK or RTS/DATA, immediately

informing the neighbors of its new buffer state through piggybacking. No cyclic waiting is

possible if routing is acyclic. To handle failed overhearing, i will stop waiting and attempt

transmitting if it does not overhear j’s buffer state for certain time. Readers are referred

to [13] for discussion on other issues.

38

When there is a bottleneck in the routing path of a flow, the buffer at the bottleneck

node will become full, forcing the upstream node to slow down its forwarding rate, which

in turn makes the buffer of that node full. Such buffer-based backpressure will propagate

all the way to the source of the flow. When the buffer at the source is full, the source has

to slow down the flow rate (at which new packets are generated), in order to match the

rate it sends our packets. Ultimately, the flow rate is determined by the forwarding rate at

the bottleneck. There is no explicit signaling for the above buffer-based backpressure. The

only overhead is the buffer-state bit piggybacked in each packet.

3.2 Link Classification

We classify the wireless links into different types based on the buffer state. In the

discussion, we consider packets to a single arbitrary destination.

3.2.1 Saturated Buffer

When the combined rate from the upstream links of node j exceeds the rate on the

downstream link, if no action is taken, the excess packets will be dropped due to buffer

overflow, reducing the effective capacity of the network. With the congestion avoidance

scheme [13], when the buffer at j becomes full, it forces the upstream neighbors to slow

down to a combined rate that matches the rate on the downstream link.1 Whenever

j sends out a packet, it frees some buffer space such that the upstream neighbors can

compete for transmission. Whenever j receives a packet, its buffer may become full again

and the upstream neighbors may have to wait for the next release of buffer at j. A buffer

is saturated if it continuously switches between full and unfull, which slows down the rates

of upstream links as the upstream neighbors have to spent time waiting for buffer release.

A buffer is unsaturated if it stays unfull (for most of the time).

1 Slowing down the rate from upstream can even help raising the rate on the
downstream link due to less contention.

39

3.2.2 Three Link Types

Consider an arbitrary link (i, j). If there is sufficient bandwidth to carry all packets

received by i over (i, j) and other links downstream after j to the destination, then

(i, j) is an unsaturated link. On the other hand, if (i, j) or any link downstream is a

bottleneck that cannot carry all packets received by i, then (i, j) is called a saturated link.

Depending on where the bottleneck is, a saturated link is either bandwidth-saturated or

buffer-saturated. Before we give the formal definition, we analyze three different traffic

conditions.

Case 1: (i, j) is the bottleneck. Both the upstream paths from flow sources to i and

the downstream path from j to the destination can deliver more traffic than what (i, j)

can do. Even when all available bandwidth is used, being a bottleneck, i still cannot

forward all received packets. Consequently, the buffer at i will be saturated, while the

downstream path has sufficient bandwidth to keep the buffer at j unsaturated.

Case 2: (i, j) is not the bottleneck but buffer-based backpressure from a downstream

bottleneck propagates through this link. i forwards more packets to j than the downstream

path can deliver. Excess packets will fill the buffer at the bottleneck, causing buffer-based

backpressure and eventually saturating the buffer at j and i. Even though link (i, j) has

enough bandwidth, the rate on (i, j) will be forced down because i has to wait whenever

j’s buffer becomes full.

Case 3: (i, j) is not the bottleneck and no buffer-based backpressure propagates

through this link. Node i is able to forward all packets that it receives. Its buffer will be

unsaturated.

Based on the above three cases, we classify wireless links into three types: bandwidth-saturated

links, buffer-saturated links, and unsaturated links.

• A link (i, j) is bandwidth-saturated if i’s buffer is saturated but j’s buffer is
unsaturated. The fact that j’s buffer is unsaturated means the downstream path
from j to the destination is able to deliver all packets that i forwards to j. The fact
that i’s buffer is saturated means that (i, j) does not have sufficient bandwidth to

40

timely deliver the packets received by i. Therefore, link (i, j) is the bottleneck. The
only reason that prevents i from sending more packets to j is because the channel
capacity has been fully utilized by (i, j) and its contending links. Hence, the rate
on a bandwidth-saturated link cannot be increased without decreasing the rate of a
contending link.

• A link (i, j) is buffer-saturated if both i’s buffer and j’s buffers are saturated. The
fact that j’s buffer is saturated means the downstream path has a bottleneck
that cannot timely deliver the packets received by j. The backpressure from that
bottleneck causes j’s buffer to be saturated, which in turn causes i’s buffer to be
saturated. The rate on link (i, j) is limited not because the local channel capacity
is fully used, but because the downstream path is bottlenecked and i has to spend a
fraction of its time waiting for j to release buffer.

• A link (i, j) is unsaturated if i’s buffer is unsaturated. Both link (i, j) and the
downstream path from j to the destination are able to timely deliver all packets
received by i. The buffer at j could be either unsaturated or saturated. An
unsaturated buffer at j indicates that j is able to timely forward all packets it
receives. There is no bottleneck in the downstream path from j to the destination. A
saturated buffer at j indicates that j also receives packets from upstream neighbors
other than i. Due to limited traffic supply from i, although j’s buffer is saturated, i
is still able to timely forward its packets and remain unsaturated.

A bottleneck link must be bandwidth-saturated as there is sufficient data to use up all

bandwidth available to the link. A non-bottleneck link is either buffer-saturated link or an

unsaturated link. The available bandwidth is not fully utilized because of a downstream

bottleneck in the former case or shortage of data supply from upstream in the latter case.

3.2.3 Saturated Clique

A set of mutually contending wireless links forms a contention clique [26, 32, 55]. A

proper clique is a clique that is not contained by a larger clique. In the following, when

we refer to a contention clique, we already mean a proper clique. A link may belong

to multiple cliques, consisting of nearby contending links. Packet transmissions on the

links of a clique must be made serially. Therefore, the combined rate on all links of a

clique is bounded by the channel capacity. A clique is saturated if the links have utilized

all available bandwidth such that increasing the rate on one link will always lead to

decreasing the rate on another link in the clique. Because a bandwidth-saturated link uses

41

up all available bandwidth that it can acquire, it must belong to one or multiple saturated

cliques.2

3.3 Local Conditions for Global Maxmin: Single-Destination Case

We transform the global maxmin objective to several local conditions to be satisfied.

Essentially our goal is to transform a global non-linear optimization problem into a fully

distributed optimization problem (represented by the local conditions), which lays down

the theoretical foundation for designing a distributed solution in Section 3.5. For now, we

assume that all flows go to the same destination. The assumption will be removed in the

next section.

3.3.1 Basic Idea

Clearly, letting IEEE 802.11 DCF decide flow rates will not achieve the global

maxmin objective. Consider a network with two contending links, one carrying a single

flow, f1, and the other carrying two flows, f2 and f3. Suppose the weights of all flows are

one. IEEE 802.11 DCF allocates channel capacity equally between the two links. Hence,

f1 can send at twice the rate of other flows. However, for this simple example, the global

maxmin objective requires the rates of all three flows to be the same. One approach to

meet this goal is to inform the source of f1 to lower the flow rate by self-imposing an

appropriate rate limit. The problem is how to decide which flows should have rate limits

in an arbitrary network and, after applying rate limits, whether the resulting flow rates

2 For a bandwidth-saturated link (i, j), node i is constantly backlogged by definition.
It constantly attempts to send whenever the channel is idle, and therefore uses up all
bandwidth available to it in the statistical sense under the random access framework
of IEEE 802.11 DCF. Note that we assume IEEE 802.11 DCF, not a time-slotted MAC
protocol with coordinated transmission schedules. The only reason that prevents the rate
on (i, j) from being higher is because the rest of the channel capacity is fully occupied
by contending links. In other words, if the rate on (i, j) were to increase, when other
contending links access the media at randomized times, their probability of finding media
occupied by transmission on (i, j) would be proportionally higher. Consequently the rate
of one or more contending links would go down.

42

achieve global maxmin. Our solution is to establish a set of conditions that are testable

based on the current network state. We shall prove that, if the conditions are all satisfied,

then the global maxmin objective must be met. Moreover, if a condition is tested to be

false, it should tell us which flows should increase their rates and which should decrease, so

that we can inform the sources of those flows to adjust their rate limits. Finally, in order

to make the solution fully distributed, the conditions have to be localized. Namely, they

can be tested distributedly.

For the above example, one may argue that, although IEEE 802.11 DCF does not

provide fairness, many MAC protocols [26, 28, 36, 37, 51] have been proposed to achieve

that. IEEE 802.11e can also provide coarse-level rate control. But the example is a single

one with only one-hop flows. These MAC solutions cannot provide end-to-end fairness, let

alone provable weighted maxmin.

3.3.2 Normalized Rate

The data rate on link (i, j) is denoted as r(i, j). The normalized rate on (i, j) is

defined as the largest normalized rate of any flow that passes (i, j).

µ(i, j) = max
f∈F, (i,j)∈p(f)

{µ(f)} (3–2)

where p(f) is the routing path of flow f . There is an easy way for each link to know its

normalized rate. When the source of a flow produces new packets, it lets the packets carry

the flow’s normalized rate. The nodes of a link inspect the passing packets and take the

largest normalized rate carried in the packets as the link’s normalized rate.

The set of flows that pass (i, j) consists of all flows passing the upstream links and all

flows that begin from i. By the definition of normalized rate, we have the lemma below.

Lemma 1. The normalized rate of link (i, j) is equal to the largest value among the

normalized rates of all upstream links of i and the normalized rates of all flows whose

sources are i.

43

3.3.3 Local Conditions for Global Maxmin

We transform the global maxmin objective into four localized conditions below.

• Source Condition: For every node i with a saturated buffer, if i is the source of a
flow, then the normalized rate of the flow is no less than that of any upstream link of
i and no less than that of any other flow whose source is i.

• Buffer-Saturated Condition: For every buffer-saturated link (i, j), the normalized
rate of (i, j) is no less than that of any other upstream link of j and no less than
that of any flow whose source is j.

• Bandwidth-Saturated Condition: Each bandwidth-saturated link has the largest
normalized rate in at least one saturated clique that it belongs to.

• Rate-Limit Condition: The rate limit at a flow source should be set the highest
without violating the previous three conditions.

Checking the above conditions does not require global state of the entire network.

As we will see in Section 3.5 where we design the protocol, the first two conditions can

be tested by each node individually and the third condition only requires information

exchange among nearby nodes, which can be efficiently done. The fourth condition

requires the rate limit at a flow source to be additively increased until a source, buffer-saturated

or bandwidth-saturated condition is violated in the network. When this happens, the

source will be signaled to tighten its rate limit. For example, if the bandwidth-saturated

condition is violated, a link l that has the highest normalized rate in the saturated

clique will be asked to reduce its rate in order to give up some bandwidth for the

bandwidth-saturated link. Link l will identify the packets carrying the largest normalized

rate and inform the sources of those packets to reduce their rates. In response, the sources

will self-impose tighter rate limits.

We illustrate the purpose of the four local conditions by a couple of examples. First,

examine the simple case in Section 3.3.1, where the network has only two wireless links,

(i, t) and (j, t). There are three flows, one from i to t and two from j to t. Assume both

i and j have saturated buffer. Satisfying the source condition ensures that the two flows

on (j, t) have the same normalized rate. Satisfying the bandwidth-saturated condition

44

ensures that they also have the same normalized rate as the flow on (i, t) does. Hence,

the maxmin objective is achieved. Regardless of what the flows’ weights are, equalizing

normalized rate means that the flows’ rates will be proportional to their weights. One may

be puzzled by the contradictive fact that IEEE 802.11 DCF would assign equal bandwidth

to (i, t) and (j, t), which means the flows on (j, t) would each have half of the bandwidth

for the flow on (i, t). The answer is that, to satisfy the four local conditions, rate limits

must be enforced on some flow sources. In this example, a rate limit at j will reduce its

flow rate such that the flows on (i, t) can receive more bandwidth. (Detailed operations

will be given in Section 3.5.)

Figure 3-1 gives a more sophisticated example. Satisfying the source condition ensures

that the normalized rate of flow f4 is as high as that of any other upstream flow. The

buffer-saturated condition requires that flow f1 has the same normalized rate as f2, f3 and

f4. Because f1’s weight is 2, its actual rate should be twice that of f2, f3 or f4. To satisfy

this condition, rate limits must be applied at v, w and x to give more bandwidth to u.

Satisfying the bandwidth-saturated requirement ensures that the normalized rates of flows

(f1 through f5) passing the bandwidth-saturated link (i, j) are as large as any contending

flows (f6). This may require a rate limit to be applied at k on f6. The rate-limit condition

makes sure that this rate limit is not set too low.

It is noted that, the rate increment of a flow source may lead to the violation of one

or more local conditions but the flow source is not required by other nodes to reduce

its rate. In that case, the rate increment at the flow source does not violate the local

conditions. An example is given in Fig. 3-2. The three links are in a saturated clique.

Link (k, t) is bandwidth-saturated. In Fig. 3-2 (c), the normalized rate of f1 is lower than

those of the other two flows. By rate-limit condition, i increases the normalized rate of

f1 from 1 to 3. Due to the limited bandwidth in the saturated clique, the normalized

rate of (k, t) drops to 4, as shown in Fig. 3-2 (d). Bandwidth-saturated condition is

violated as (j, t) has larger normalized rate than (k, t). Thus j is required to reduce the

45

rate of f2. In this example, although the increment of f1’s rate results in the violation of

the bandwidth-saturated condition, only the source of f2, which is j, violates the local

condition. Fig 3-2 (e) shows the final rate allocation of the three flows that satisfies all

four local conditions. The rate limit of f1 or f2 cannot be further increased without

violating the bandwidth-saturated condition.

3.3.4 Correctness Proof

We prove the equivalence between the global maxmin objective and the four local

conditions.

The portion of a flow’s routing path from the first node whose buffer is saturated

to the first bandwidth-saturated link is called the primary saturated subpath of the

flow. It is easy to see that the primary saturated subpath of a flow consists of a chain

of buffer-saturated links and a bandwidth-saturated link at the end. The chain of

buffer-saturated links in the primary subpath is the result of buffer-based backpressure

originated from the bandwidth-saturated link, which is demonstrated in Figure 3-1 (c),

where the bottleneck link (i, j) causes the upstream links buffer-saturated. It is possible

that the primary saturated subpath of a flow does not have a buffer-saturated link. For

a flow f , given the fact that the buffer at its destination is unsaturated,3 there must be

a node whose buffer is unsaturated on its routing path. If the buffer at the source of f is

saturated, f must have a primary saturated subpath.

For a flow f with r(f) < d(f), the first bandwidth-saturated link whose normalized

rate is equal to µ(f) on the routing path of f is called the primary bandwidth-saturated

link of f .

3 We assume the destination of each flow is capable of timely dealing with incoming
packets and keeping its buffer unsaturated.

46

Lemma 2. For any unlimited flow f with r(f) < d(f) and a saturated buffer at the

source, the primary bandwidth-saturated link is the first bandwidth-saturated link on the

routing path if the source condition and the buffer-saturated condition are satisfied.

Proof: First we consider the case where the first link on the routing path of f is a

bandwidth-saturated link, which forms the entire primary saturated subpath of f . By the

source condition and Lemma 1, the normalized rate of this link must be equal to µ(f).

Then this link is the primary bandwidth-saturated link.

Next we consider the case where the first link on the routing path is not a bandwidth-saturated

link. Let the primary saturated subpath be i1 → i2 → ... → ik → ik+1, where i1

is the source of the flow, (il, il+1), 1 ≤ l < k, are all buffer-saturated and (ik, ik+1) is

bandwidth-saturated. The buffers at nodes il, 1 ≤ l ≤ k, are all saturated.

We prove by induction that the normalized rates of links (il, il+1), 1 ≤ l ≤ k, are

all equal to µ(f). By the source condition and Lemma 1, µ(i1, i2) = µ(f). Suppose

µ(il−1, il) = µ(f), 1 < l ≤ k. Because (il−1, il) is buffer-saturated, by the buffer-saturated

condition and Lemma 1, we must have µ(il, il+1) = µ(il−1, il) = µ(f), which completes the

induction proof. Therefore, (ik, ik+1) is the primary bandwidth-saturated link of flow f . 2

For a flow with an unsaturated buffer at the source, the portion of its routing path

from the source to the first node whose buffer is saturated, or to the destination if there

is no such node, is called the primary unsaturated subpath of the flow. Its routing path

begins with the primary unsaturated subpath followed by the primary saturated subpath,

as shown in Fig. 3-3. It is possible that a flow does not have a primary saturated subpath.

In that case, the primary unsaturated subpath of the flow forms the entire routing path.

Lemma 3. When the four localized conditions are satisfied in the network, for any flow

f with a rate limit and an unsaturated buffer at the source, if r(f) is increased by a small

amount, the violation incurred by f must occur at a link on its routing path and the

normalized rate of the link must be equal to µ(f) before the rate increment on f .

47

Proof: By the rate-limit condition, when r(f) is increased, one or more local

conditions are violated and the source of f is required to reduce the rate of f . Suppose

the amount of f ’s rate increment is very small and the buffer at the source of f is still

unsaturated. The violation will not appear at the source because the source condition

and the buffer-saturated condition are not applicable at a node with an unsaturated

buffer. Therefore, the violation must appear on at least one link on the routing path of f .

Because any small amount of rate increment on f can introduce a violation and the rate

reduction request will always be sent to the source of f , the normalized rate of the link

where the violation appears must be equal to µ(f) before the rate increment on f . 2

Lemma 4. For any unlimited flow f with r(f) < d(f) and an unsaturated buffer at the

source, if the four localized conditions are satisfied, there must be a link on the routing path

of f that has the largest normalized rate which is equal to µ(f) in at least one saturated

clique it belongs to.

Proof: There must be a rate limit at the source of f because r(f) < d(f) and the

buffer at the source of f is unsaturated. Suppose the rate of f is increased by a small

amount. By rate-limit condition, the rate increment on f will violate at least one of the

first three local conditions.

The violation can occur on the primary unsaturated subpath. In this case, the

bandwidth-saturated condition may be violated by f . Let (i, j) be the first link on the

primary unsaturated subpath on which the bandwidth-saturated condition is violated. A

bandwidth-saturated link (i′, j′) will not have the largest normalized rate in any saturated

clique. Because any small amount of rate increment on f can introduce the violation, both

(i, j) and (i′, j′) must have the largest normalized rate in a saturated clique before f ’s rate

is increased. By Lemma 3, the normalized rate of (i, j) is equal to µ(f).

For a flow f with r(f) < d(f), the first unsaturated link on the routing path that

has the largest normalized rate which is equal to µ(f) in at least one saturated clique

48

it belongs to is called the primary unsaturated link of f . In the above case, (i, j) is the

primary unsaturated link of f .

If f has a primary saturated subpath, the source condition or the buffer-saturated

condition may also be violated at the last link of the primary unsaturated subpath of f

(denoted by (i0, i1)). Let the primary saturated subpath be i1 → i2 → ... → ik → ik+1,

where (il, il+1), 1 ≤ l < k, are all buffer-saturated and (ik, ik+1) is bandwidth-saturated.

We will prove below that (ik, ik+1) is the primary bandwidth-saturated link of f .

By Lemma 3, µ(i0, i1) = µ(f). By the source condition and the buffer-saturated

condition, among all upstream links and local flows of i1, the buffer-saturated upstream

links and the local flows of i1 have the largest normalized rates. Because any small amount

of rate increment on f will violate the source condition or the buffer-saturated condition,

(i0, i1) must also have the largest normalized rate before f ’s rate is increased. By Lemma

1, we have µ(i1, i2) = µ(f). By the buffer-saturated condition and Lemma 1, all other

links on the primary saturated subpath have the same normalized rate as (i1, i2). Then

µ(ik, ik+1) = µ(f). Therefore, (ik, ik+1) is the primary bandwidth-saturated link of f .

If the violation happens on a link after (i0, i1) on the routing path, the normalized

rate of (i1, i2) must be equal to µ(f) before r(f) is increased. This can be proved by

contradiction. Assume µ(i1, i2) > µ(f) before r(f) is increased. By Lemma 1, all links

on the routing path after (i1, i2) also have normalized rates larger than µ(f). Among all

links on the routing path from (i1, i2), there is a link on which the violation of flow f

occurs. The normalized rate of that link is larger than µ(f) before r(f) is increased, which

contradicts with Lemma 3. By the buffer-saturated condition and Lemma 1, all other

links on the primary saturated subpath have the same normalized rate as (i1, i2). Then

µ(ik, ik+1) = µ(f). Therefore, (ik, ik+1) is the primary bandwidth-saturated link of f .

By the bandwidth-saturated condition, (ik, ik+1) has the largest normalized rate in at

least one saturated clique. 2

49

The first primary bandwidth-saturated link or primary unsaturated link of f is

uniformly called the primary link of f . By summarizing Lemma 2 and Lemma 4, we can

get the lemma below.

Lemma 5. For any unlimited flow f with r(f) < d(f), if the four localized conditions are

satisfied, f must have a primary link. The primary link of f has the largest normalized

rate which is equal to µ(f) in at least one saturated clique it belongs to.

Theorem 1. When all flows have a common destination, the global maxmin objective is

achieved if the four local conditions are satisfied.

Proof: Suppose the local requirements are achieved. For an arbitrary flow f with

r(f) < d(f), we need to prove that, in order to increase the normalized rate µ(f), we have

to decrease the normalized rate µ(f ′) of another flow f ′, for which µ(f ′) ≤ µ(f).

We prove it by contradiction. Assume to the contrary that there exists such a flow f

that µ(f) can be increased without decreasing µ(f ′) for all flows f ′ with µ(f ′) ≤ µ(f).

By Lemma 5, flow f has a primary link (i, j) and µ(i, j) = µ(f). It means that

the normalized rates of all other flows passing (i, j) are not greater than µ(f). When

we increase µ(f) by increasing the rate of f , based on the assumption, the normalized

rates of all other flows passing (i, j) will not be decreased, which means that (i, j)’s rate

will go up. By Lemma 5, (i, j) has the largest normalized rate in a saturated clique.

When (i, j)’s rate goes up, the rate of another link (i′, j′) in the saturated clique will

have to go down. Among all flows passing (i′, j′), at least one flow f ′ has to decrease its

rate (and thus µ(f ′)). Since (i, j) has the largest normalized rate in the clique, we have

µ(f ′) ≤ µ(i′, j′) ≤ µ(i, j) = µ(f), which contradicts with the previous assumption. 2

3.4 Local Conditions for Global Maxmin: Multiple-Destinations Case

Removing the assumption of a single destination, we establish local conditions that

are equivalent to the global maxmin objective in a general multihop wireless network.

50

3.4.1 Per-Destination Packet Queueing

We argue that, when the flows passing a node are destined for different destinations,

the node should allocate a separate queue for packets to each destination. Consider the

network with two flows in Figure 3-4 (a). First, we show that one queue per node will

unnecessarily reduce the rate of f2 in Figure 3-4 (b), where (z, t) is a bandwidth-saturated

link, causing buffer-based backpressure to saturate the buffers at j, i, x and y. Suppose

the rate of f1 is 1 due to the bottleneck (z, t). Because the source nodes, x and y, compete

fairly for transmission to i whenever i’s buffer is not full,4 f2 will have the same rate

as f1, even though there is no bottleneck on its routing path. With one queue at each

intermediate node, f2 is penalized because packets from f1 saturate the shared queues

along the path. To solve this problem, a node must be allowed to use multiple queues.

A node is said to serve a destination if it is on the routing path of a flow with that

destination. A node should maintain a separate queue for each served destination, not for

each passing flow. It should be noted that, in a mesh network, many flows may destine

for the same destination, i.e., the gateway to the Internet. In Figure 3-4 (c), when i and j

keep separate queues for destinations t and v, f2 will be able to send at its desirable rate

of 5.

Separate queues achieve “isolation” between packets for different destinations, which

allows us to model the physical wireless network as a set of overlapping virtual networks,

each for one destination. Figure 3-4 (d) shows that f1 and f2 are delivered in two virtual

networks with separate packet queues but sharing the same channel.

3.4.2 Virtual Nodes, Virtual Links, and Virtual Networks

We model each physical node i as a set of virtual nodes it, one for each served

destination t. A virtual node it carries one queue, storing all packets received by i for

4 They also spend the same amount of time waiting for i’s buffer becoming unfull, which
wastes channel capacity.

51

destination t. All virtual nodes for the same destination t form a virtual network; there

exists a virtual link (it, jt) if j is i’s next hop towards t. (it, jt) is called the downstream

link of it and an upstream link of jt. All virtual networks together are called the grand

virtual network, which can be viewed as a “decomposed” model of the original wireless

network. A wireless link (i, j) is modeled as the aggregate of virtual links (it, jt) from all

virtual networks. These virtual links (it, jt) mutually contend because the physical node

i can only transmit a packet from one of its queues at each time. An example is given in

Figure 3-4 (d), where the wireless network is modeled as two virtual networks, and (i, j) as

two virtual links.

Each virtual network carries a subset of flows, which is disjoint from the subsets

carried by other virtual networks. Buffer-based backpressure (Section 3.1.2) is performed

independently within each virtual network. The normalized rate of a virtual link is defined

as the largest normalized rate of any flow passing the link. Within a virtual network, we

classify virtual links as bandwidth-saturated, buffer-saturated, or unsaturated in the same

way as we did in Section 3.2.2. Other concepts can also be trivially extended to virtual

networks.

3.4.3 Localized Requirements for Global Maxmin

Below we modify the local conditions in Section 3.3.3 to suit for a wireless network

whose flows have different destinations.

• Source Condition: In the virtual network for destination t, for every node it with a
saturated buffer, if it is the source of a flow, then the normalized rate of the flow is
no less than that of any upstream link of it and no less than that of any other flow
whose source is it.

• Buffer-Saturated Condition: In the virtual network for destination t, for every
buffer-saturated virtual link (it, jt), the normalized rate of (it, jt) is no less than that
of any other upstream link of jt and no less than that of any flow whose source is jt.

• Bandwidth-Saturated Condition: Each bandwidth-saturated virtual link has the
largest normalized rate in at least one saturated clique that it belongs to.

52

• Rate-Limit Condition: The rate limit at a flow source should be set the highest
without violating the previous three conditions.

Lemma 1 - Lemma 5 can be easily extended to virtual networks.

Lemma 6. The normalized rate of virtual link (it, jt) is equal to the largest value among

the normalized rates of all upstream virtual links of it and the normalized rates of all flows

whose sources are it.

Lemma 7. For any unlimited flow f with r(f) < d(f) and a saturated buffer at the

source, the primary bandwidth-saturated virtual link is the first bandwidth-saturated virtual

link on the routing path if the source condition and the buffer-saturated condition are

satisfied.

Lemma 8. When the four localized conditions are satisfied in the grand virtual network,

for any flow f with a rate limit and an unsaturated buffer at the source, if r(f) is in-

creased by a small amount, the violation incurred by f must happen at a virtual link on

its routing path and the normalized rate of the virtual link must be equal to µ(f) before f ’s

rate is increased.

Lemma 9. For any unlimited flow f with r(f) < d(f) and an unsaturated buffer at the

source, if the four localized conditions are satisfied, there must be a virtual link on the

routing path of f that has the largest normalized rate which is equal to µ(f) in at least one

saturated clique it belongs to.

Lemma 10. For any unlimited flow f with r(f) < d(f), if the four localized conditions are

satisfied, f must have a primary virtual link. The primary virtual link of f has the largest

normalized rate which is equal to µ(f) in at least one saturated clique it belongs to.

Theorem 2. The global maxmin objective is achieved if the four local conditions are

satisfied in the grand virtual network.

53

Proof: Suppose the local requirements are achieved. For an arbitrary flow f with

r(f) < d(f), we need to prove that, in order to increase the normalized rate µ(f), we have

to decrease the normalized rate µ(f ′) of another flow f ′, for which µ(f ′) ≤ µ(f).

We prove it by contradiction. Assume to the contrary that there exists such a flow f

that µ(f) can be increased without decreasing µ(f ′) for all flows f ′ with µ(f ′) ≤ µ(f).

By Lemma 10, flow f has a primary virtual link (it, jt) and µ(it, jt) = µ(f). It means

that the normalized rates of all other flows passing (it, jt) are not greater than µ(f). When

we increase µ(f) by increasing the rate of f , based on the assumption, the normalized

rates of all other flows passing (it, jt) will not be decreased, which means that (it, jt)’s rate

will go up. By Lemma 10, (it, jt) has the largest normalized rate in a saturated clique.

When (it, jt)’s rate goes up, the rate of another virtual link (i′v, j
′
v) in the saturated clique

will have to go down. Among all flows passing (i′v, j
′
v), at least one flow f ′ has to decrease

its rate (and thus µ(f ′)). Since (it, jt) has the largest normalized rate in the clique, we

have µ(f ′) ≤ µ(i′v, j
′
v) ≤ µ(it, jt) = µ(f), which contradicts with the previous assumption.

2

3.5 Distributed Global Maxmin Protocol (GMP)

In this section, we design a distributed protocol that adapts the flow rates to satisfy

the four local conditions in Section 3.4.3, which is equivalent to meeting the global

maxmin objective in wireless networks with multiple destinations.

3.5.1 Overview

Our basic means is to set appropriate rate limits at flow sources such that the local

conditions can be satisfied in the network. Assume the system clocks at the nodes are

loosely synchronized. The time is divided into alternating measurement/adjustment

periods. In each measurement period, all nodes measure the state of its adjacent (virtual)

links and exchange information with close-by nodes. In each adjustment period, based on

the information measured by itself and close-by nodes, each node checks the first three

local conditions. If one or more conditions are false, the node issues rate adjustment

54

requests for selected flow sources, which adjust their rates accordingly. If a flow source

does not receive a rate adjustment request, it will increase its rate limit to meet the fourth

condition. After a series of measurement and adjustment periods, the rate limits of all

flows are gradually modified to meet the four conditions.

Even after the conditions are satisfied, the network/traffic dynamics may cause them

to be violated again. The protocol will continuously change the flow rates to restore the

conditions and achieve global maxmin in the current network/traffic environment.

In the protocol description, we refer to a physical node simply as “node”, denoted

as “i”, in contrast to a “virtual node”, denoted as “it” for destination t. We refer to a

link between two physical nodes as “wireless link”, denoted as “(i, j)”, which may contain

multiple “virtual links”, denoted as “(it, jt)”. We refer to the original network as “wireless

network”, in contrast to “virtual network” consisting of virtual links. The protocol could

have been designed to work entirely on virtual nodes/links, but we optimize it by working

on physical nodes and wireless links whenever possible and on virtual nodes/links only

when we have to. The reason is that there are a lot more virtual nodes/links than physical

ones.

Flow f is a local flow at node i if i is the source of f . Flow f is a local flow of virtual

node it if f is a local flow of i and its destination is t. The primary flow of a (virtual) link

is the flow that has the largest normalized rate among all flows passing that (virtual) link.

When multiple flows have the largest normalized rate, they are all primary flows.

Below we explain the operations performed in the measurement and adjustment

periods. Note that the operations by a virtual node it are actually performed by the

physical node i.

3.5.2 Measurement Period

In this period, nodes measure the state of their links. At the end of the period, they

exchange the link state.

Step 1: Measurement

55

All virtual nodes measure their buffer state, based on which they determine the types

of their adjacent virtual links. The virtual nodes also measure the normalized rates of

their adjacent virtual links. The physical nodes measure the channel occupancies of their

adjacent wireless links; we will discuss how to determine saturated cliques based on this

information. Details of measurement are given below.

Buffer State: Each virtual node it carries one queue for all packets received by

i destined for t. A certain amount of buffer is designated for the queue. Over each

measurement period, it measures the fraction Ω of time in which the buffer stays full. If Ω

is above a threshold, it sets the buffer state as saturated. We find in our simulations that,

if the upstream neighbors supply more packets than it can forward, Ω will always stay

above 50%, and if the upstream neighbors supply fewer packets than it can forward, Ω will

be almost zero. Therefore, we set the threshold to 25%.

At the end of a measurement period, for each virtual link (it, jt), the end nodes

exchange their buffer state, which can be piggybacked in RTS/CTS/DATA/ACK

packets with one extra bit (saturated or not). Based on their buffer state, both it and

jt can determine the type of (it, jt), which is buffer-saturated, bandwidth-saturated, or

unsaturated.

Link Rate: For each virtual link (it, jt), it measures the average data rate r(it, jt) on

the link over each measurement period.

Normalized Rate: In the first half of each measurement period, the flows’ normalized

rates are measured at their sources. In the second half of the period, each flow source

selects a number of data packets to piggyback the flow’s current normalized rate. From

the packets forwarded on a virtual link (it, jt), both it and jt learn the virtual link’s

normalized rate, which is the largest normalized rate carried in the packets. They also

learn the sources of the virtual link’s primary flows, which are the sources of the packets

that carry the largest normalized rate. Clearly, the normalized rate of a wireless link (i, j)

is equal to the largest normalized rate of its virtual links (it, jt).

56

Channel Occupancy: The channel occupancy of a wireless link (i, j) is defined as the

fraction of time in which the channel is occupied by packets forwarded by i to j, including

RTS/CTS/DATA/ACK transmissions. Nodes i and j measure their transmissions over

each measurement period, and exchange their measurements at the end of the period.

Step 2: Information Dissemination

Every node i has the following information at the end of a measurement period: a)

the type of each adjacent virtual link, b) the data rate on each downstream virtual link,

c) the normalized rate of each adjacent virtual link, d) the sources of the primary flows, e)

the normalized rate of each adjacent wireless link, and f) the channel occupancy of each

adjacent wireless link. In order to design an protocol that checks the bandwidth-saturated

condition in Section 3.4.3, a node must also know the normalized rates and the channel

occupancies of all wireless links that contend with any of its adjacent links.

We refer to the normalized rate and the channel occupancy of a wireless link as the

state of the link. We must disseminate the state of each wireless link (i, j) to all nodes that

have a link contending with (i, j). For IEEE 802.11 DCF, it includes all nodes that are

within two hops from either i and j. The dissemination protocol is described as follows.

Recall that we only consider static wireless networks. After deployment, we assume

each node i discovers the wireless topology in its two-hop neighborhood, and identifies

a minimum subset of one-hop neighbors, called i’s dominating set, whose adjacent links

reach all two-hop neighbors. Node i informs the nodes in its dominating set of their

membership in the set. At the end of each measurement period, if the state of (i, j)

changes from the previous period, both i and j broadcast the new state to their one-hop

neighbors. When a node in their dominating sets overhears this information, the node

re-broadcasts the information to its neighbors.

The state of a link is very small. Instead of making a separate transmission, such

information can be disseminated by piggybacking in RTS/CTS/DATA/ACK packets,

which are overheard by all nodes in one-hop neighborhood. In this design, i piggybacks

57

the state of (i, j) in its normal transmission, and after overhearing the information, a

node in i’s dominating set does the same thing. To overcome failed overhearing, the

same information should be be piggybacked in a number of transmissions. We stress that

the piggyback design can be applied to disseminate other information in the rest of the

protocol as well.

3.5.3 Adjustment Period

When local conditions are tested false, a node proposes rate adjustments for its local

flows and primary flows on the adjacent virtual links. We will discuss how to efficiently

deliver rate adjustments to the sources of the primary flows at the end of this section.

In order to stabilize the flow rates quicker, we introduce a system parameter β.

The data rates, normalized rates, or channel occupancies of two links (or flows, cliques

when applicable) are considered to be “equal” if their difference is below β percentage

(e.g., 10%). One is considered to be “smaller” than another if it is smaller by at least β

percentage.

The operations performed by the nodes in this period are explained below.

• Removing Unnecessary Rate Limits

If a local flow’s actual rate is smaller than its rate limit, the node removes the rate

limit because it is unnecessary.

• Testing Source Condition and Buffer-Saturated Condition

If a virtual node it has a saturated buffer, it examines the normalized rates of its

upstream virtual links and local flows. Let L1 be the largest value among them, and S1 be

the smallest among the normalized rates of the local flows and those of buffer-saturated

upstream virtual links. To satisfy both source condition and buffer-saturated condition, S1

should be equal to L1. Otherwise we have to adapt the rates of local and/or passing flows

until S1 is equal to L1. More specifically, it transmits a rate adjustment request (carrying

58

L1 and S1) to all upstream neighbors. When jt receives the request, it invokes a procedure

Adjust(jt, it, L1, S1), which is described as follows.

1. If µ(jt, it) is equal to L1, then a rate reduction request is issued for the primary flows
on virtual link (jt, it). If L1 > 3S1, it requests the primary flows to halve their rates;
otherwise, it requests the primary flows to reduce their rates by β percentage. (The
motivation for the above rate reduction scheme is straightforward. While reducing
by β percentage is the norm, an optimization is added — when the gap between L1

and S1 is too big, reducing by half helps to close the gap quickly. The number 3 is
artificially set.)

2. If (jt, it) is a buffer-saturated link and µ(jt, it) is equal to S1, then a rate increase
request is issued for the primary flows on virtual link (jt, it). If L1 > 3S1, it requests
the primary flows to double their rates; otherwise, it requests the primary flows to
increase their rates by β percentage.

Similarly, a rate adjustment request may be issued for a local flow f for destination t.

If µ(f) = L1, it issues a rate reduction request for f . If µ(f) = S1 and f has a rate limit,

it issues a rate increase request for f .

• Testing Bandwidth-Saturated Condition

We have assumed that, after deployment, each node i discovers the wireless topology

in its two-hop neighborhood. From the topology, it pre-computes the set of cliques it

belongs to. Because there is a one-to-one correspondence between cliques in the original

wireless network and cliques in the grand virtual network, we are able to perform most

clique-related operations based on wireless links instead of their constituent virtual links

(whose number is much larger). Each clique has a system-wide unique identifier, consisting

of the smallest identifier of the nodes in the clique and a sequence number. A clique’s

identifier is assigned by the node with the smallest identifier and disseminated to other

nodes in the clique via its dominating set.

At the beginning of each adjustment period, i computes the channel occupancy of

each clique, which is equal to the sum of the channel occupancies of the wireless links

in the clique. For a wireless link (i, j) that has at least one bandwidth-saturated virtual

link, we do the following: First, among its bandwidth-saturated virtual links, we identify

59

the one (it, jt) with the smallest normalized rate. Among all cliques that (i, j) belongs

to, we treat those that have the largest channel occupancy as being saturated. Second,

we check whether (it, jt) satisfies the bandwidth-saturated condition. If µ(it, jt) is not the

largest normalized rate in any of its saturated cliques, we must increase µ(it, jt) by issuing

rate adjustment requests. Let L2 be the largest normalized rate on wireless links in all

saturated cliques that (i, j) belongs to. Node i disseminates L2, µ(it, jt), and the identifiers

of saturated cliques via its dominating set to all nodes in two-hop neighborhood. When a

node k receives this information, if a wireless link (k, m) belongs to one of those saturated

cliques, k calls Adjust(kv,mv, L2, µ(it, jt)) for each of its virtual links (kv,mv), with

“buffer-saturated link” in the second step of the routine replaced by “bandwidth-saturated

link”.

• Rate Adjustment at Sources

At the end of an adjustment period, the source of each flow sends a control packet

that travels along the routing path to collect the rate adjustment requests for the flow. It

only carries one request. If there is no rate reduction request, it keeps the rate increase

request with the smallest increase. If there is a rate reduction request, it discards all rate

increase requests. If there are multiple rate reduction requests for the flow, it keeps the

one with the largest rate reduction. When the destination receives the control packet, it

sends the packet back to the source, which will adjust its rate (by changing the rate limit)

based on the request carried in the packet.

• Meeting Rate-Limit Condition

If a flow source does not receive any rate adjustment request and it has a rate limit,

it will additively increase its rate limit by a small amount to make sure that the flow will

send at the highest possible rate.

60

3.6 Simulation

We perform simulations to evaluate the proposed distributed global maxmin protocol

(GMP). The simulation setup is described as follows. IEEE 802.11 DCF is implemented.

The channel capacity is 11Mbps. Each node has a transmission range of 250 meters. Each

data packet is 1024 bytes long. The desirable rate of any flow is 800 packets per second.

The buffer space at a node can hold 300 packets. The length of each simulation session

is 400 seconds. Each measurement or adjustment period is 4 seconds long. β is set to be

10%.

3.6.1 Effectiveness of GMP

The network topology used in the first simulation is shown in Fig. 3-5. First, we

assign all flows the same weight 1, so that a flow’s normalized rate is the same as the flow

rate. Wireless links (1, 2), (3, 4) and (4, 5) mutually contend with each other and form

clique 1. Links (0, 1) and (1, 2) form the smaller clique 0. Based on the maxmin model,

flows f2, f3 and f4 should have the same normalized rate, and they have equal access to

the channel capacity of clique 1. Because the rate of f2 is limited by clique 1, flow f1 is

able to send at a higher rate, fully utilizing the bandwidth not used by f2 in clique 0.

The simulation results shown in Table 3-1 are consistent with the above analysis. In the

simulation, after the flow rates are stabilized, (0, 1) and (1, 2) are bandwidth-saturated

links, while (3, 4) and (4, 5) are unsaturated links. The bandwidth-saturated condition

ensures that, in the saturated clique 1, the normalized rate of f2 is no less than those of

f3 and f4. The rate-limit condition ensures that f1 will send at the highest-possible rate

as long as it does not drive the rate of f2 too low that violates the bandwidth-saturated

condition of f2 in clique 1.

Next we test weighted maxmin on the same network topology by assigning different

weights to flows. The simulation results are given in Table 3-2. The rates of the three

flows in clique 1 are approximately proportional to their pre-assigned weights. Flow

61

f1 has a higher rate than flow f2 even though its weight is smaller. That is because it

opportunistically utilizes all remaining bandwidth in clique 0 that cannot be used by f2.

3.6.2 Performance Comparison

In this subsection, we compare the performance of GMP with IEEE 802.11 DCF

(abbreviated as 802.11) and the two-phase protocol (abbreviated as 2PP) proposed in [32].

These three protocols use different buffer management strategies to accommodate their

packet queuing algorithms. In 802.11, all flows passing a node share the same buffer space.

When a packet arrives at a node whose buffer is full, it will overwrite the packet at the tail

of the queue. In 2PP, each flow is allocated a separated queue that can hold 10 packets. In

GMP, all flows to the same destination share a common queue that can hold 10 packets.

Since 2PP is designed to provide fairness (instead of weighted bandwidth allocation),

we compare the protocols from two aspects: end-to-end flow fairness (when all flows have

equal weights) and spatial reuse of spectrum.

As in Section 2.4, we adopt the maxmin fairness index Imm and the equality fairness

index Ieq to evaluate the end-to-end fairness and effective network throughput U to

measure the spatial reuse of spectrum.

First we simulate the scenario in Fig. 3-6. The simulation results are shown in Table

3-3. GMP is much fairer than 2PP, which is in turn much fairer than 802.11. Due to the

hidden terminal problem under 802.11, a severe unfairness in media access exists between

link (0, 1) and (2, 3) [26]. Node 0 has much less chance to grab the channel when it has

packets to be transmitted to node 1. This explains why the flow from node 0 to node 3,

which passes (0, 1), has the lowest rate under 802.11. The effective network throughputs of

2PP and GMP are comparable, and they are higher than that of 802.11, which drops more

packets due to buffer overflow.

The design of 2PP is to ensure a basic fair share of bandwidth for all flows and

then favor short flows in allocating the remaining bandwidth. The basic fair share can

be very small, and there are cases in which it is outperformed by 802.11. We perform

62

simulations on the topology in Fig. 3-7, and the results are shown in Table 3-4. With

this topology, the basic fair share calculated based on the formula in [32] is small, and the

remaining bandwidth is distributed heavily biased towards f2 and f8 based on the linear

programming approach in the same paper. Under 802.11, the flows in the middle (f3, f4,

f5 and f6) have lower rates than the flows on the sides (f1, f2, f7 and f8). The reason is

that a flow in the middle need compete for bandwidth with more flows than a flow on the

side. With GMP, all flows have approximately equal rates regardless of their locations

and lengths. The flows in the middle have slightly lower rates for two possible reasons.

First, under GMP, two flow rates are considered to be “equal” if their difference is below

β, which is 10% in our simulations. Second, the maximum combined rate of the four links

in the middle (which form a contention clique) is slightly lower than those of other cliques

due to more collisions in the middle clique.

Finally, we perform simulations on a more complex network topology shown in Fig.

3-8. The network consists of 25 nodes that are deployed in a 900 × 900m2 region. We

create 25 multihop flows in the network, where the source and the destination of each

flow are randomly chosen. The destinations of the flows starting from a node are listed

in square brackets after the source node ID. The wireless links are shown as edges in the

graph. A solid line means that the link is on the routing path of at least one flow. The

total number of flows passing a links is shown in parentheses beside that link. A dotted

line represents an unused link. The simulation results are shown in Fig. 3-9 and Table 3-5.

In Fig. 3-9, the flow rates that are under 100 pps (packets per second) use the numbers

on the left vertical axis; the flow rates above 100 pps use the numbers on the right vertical

axis.

Under 802.11, half of all flows have rates under 10 pps. Several flows (e.g. f7 and

f13) are almost starved. Under 2PP, three one-hop flows, f0 (from node 6 to node 5 in

Fig. 3-8), f3 (from node 6 to node 1), and f5 (from node 12 to node 7), have very high

rates and contribute more than 50% of the total end-to-end throughput. The three flows

63

whose rates are around 40pps (f11, f14 and f24) are also short flows that are only one-hop

or two-hops long. GMP achieves far better fairness as shown in Fig. 3-9C.

3.7 Summary

In this chapter, we proposed a distributed protocol to achieve the global maxmin

objective based on four local conditions. We introduced several new concepts, including

link classification based on buffer state, virtual links, and virtual networks, which are

essential for the development of the local conditions. We performed extensive simulations

to evaluate the effectiveness of the proposed protocol and demonstrate that it works far

better than existing protocols.

64

flow 〈0, 1〉 〈1, 2〉 〈3, 5〉 〈4, 5〉
rate 563.96 196.96 217.57 221.41

Table 3-1. Simulation results on the topology in Fig.3-5

flow 〈0, 1〉 〈1, 2〉 〈3, 5〉 〈4, 5〉
weight 1 2 1 3
rate 527.58 225.40 121.90 377.20

Table 3-2. Simulation results of weighted maxmin in Fig.3-5

flow 802.11 2PP GMP
〈0, 3〉 80.63 131.86 164.75
〈1, 3〉 220.07 188.76 176.04
〈2, 3〉 174.09 240.85 179.21

U 856.11 1013.96 1025.54
Imm 0.366 0.547 0.919
Ieq 0.882 0.946 0.999

Table 3-3. Simulation results on the topology in Fig. 3-6

flow 802.11 2PP GMP
f1 221.81 43.31 145.46
f2 221.81 347.81 145.94
f3 107.29 43.33 134.26
f4 107.28 86.67 132.38
f5 106.36 43.39 135.44
f6 106.36 86.70 133.04
f7 223.39 43.36 141.69
f8 223.39 346.96 149.07

U 1976.54 1214.93 1674.13
Imm 0.476 0.125 0.888
Ieq 0.890 0.514 0.998

Table 3-4. Simulation results on the topology in Fig.3-7

802.11 2PP GMP
U 1665.76 1672.65 2632.74

Imm 0.002 0.017 0.206
Ieq 0.327 0.298 0.835

Table 3-5. Simulation results on the topology in Fig. 3-8

65

(a) topology

z

j

k

y

wv
u

x

to sink

m

i

(b) flow weights (d) normalized
 rates of flows

to sink

(c) data rates
 on links

to sink

(e) normalized
 rates on links

to sinkto sink

:21f 3f :1

4f :1

2f :1

5f :1

2
2

2

2

2

2

2
2

2

2

2

2

2

2

2
2

4
2

2

10

2

6
12

12
6

10

i

j

saturated
clique

6f :3

Figure 3-1. White circles represent flow sources. Grey circles represent other nodes. Thick
arrows represent bandwidth-saturated links. Thin arrows represent
unsaturated links. Thin dashed arrows represent buffer-saturated links. (a) A
portion of the network is shown with each arrow pointing from an upstream
node to its downstream neighbor. (b) There are six flows, f1 through f6, whose
weights are shown beside their sources. (c) The actual data rates of the links
are shown. (i, j) is a bandwidth-saturated link, which sends buffer-based
backpressure upstream, creating buffer-saturated links all the way to the flow
sources and slowing the flow rates. (d) The normalized rates of the flows are
shown beside the sources. (e) The normalized rates on the links are shown.

k

t

i

j

:11f

3f :2
2f :1

t

5

t

1

5
4

t

3

5
4

t

4

4

(a) topology (b) flow weights (c) normalized
 rates of flows

(d) node i
increases

its flow rate

(e) all four
conditions

are satisfied

Figure 3-2. An example of rate-limit condition

66

primary
unsaturated

subpath

primary
saturated
subpath

_ _ _ _
+ ++

...

Figure 3-3. White circle represents the flow source. Grey circles represent other nodes.
Thick arrows represent bandwidth-saturated links. Thin arrows represent
unsaturated links. Thin dashed arrows represent buffer-saturated links. “−”
on top of a node indicates an unsaturated buffer at that node. “+” indicates a
saturated buffer.

y

(a) topology

x
i

j

t v

z w

1 1

2

1

1

1

1

1f :1 2f :1
y

(b) link rates
 (single queue)

x
i

j

t v

z w

1
1

1

5

y

(c) link rates
 (multiple queues)

x
i

j

t v
z w

1

5
5

5

(d) two virtual
 networks

x

t

z

y

v
w

i v

jt jv

t
it

t

v

v

1
1

1

1 5

5

5
5

Figure 3-4. White circles represent flow sources. Black circles represent destinations.
Thick arrows represent bandwidth-saturated links. Thin arrows represent
unsaturated links. Thin dashed arrows represent buffer-saturated links. (a) A
portion of the network with two flows whose weights are both one and
desirable rates are both 5. (b) Each node has one queue for all destinations.
(c) Each node has one queue per served destination. (d) The wireless network
is modeled as two virtual networks.

0 2 4 5

3

in

range
1

clique 0 clique 1

2f
3f

4f

1f

Figure 3-5. Network topology of a simple scenario

67

0 1 2 3

Figure 3-6. A three-links topology

in

range

2f

1f 3f

4f

5f

6f

7f

8f

Figure 3-7. Network topology

0[5] 1
2

3[9,15,22]

4

5[3,6,15,18,21]

6[1,5,12]

7[1]

8
9[23]

10[22]

11[9]

12[7] 13

14[1,6,20]

15
16

17 18[20] 19[5]

20

21
22

23[1,2,4]

24

(1)

(5)

(3)

(5)

(1)

(4)
(1)

(1)

(4)(7)

(3)

(4) (2)

(6)
(1) (1)

(4)

(2)

(4)

(1)

(2) (1)
(1) (2)

(5)

(2) (3)

(2)
(1)

(2) (4)

(4)

Figure 3-8. Network topology

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20
 100

 120

 140

 160

 180

 200

 220

 240

R
at

e(
pp

s)

Flow ID

r(f)<=100
r(f) > 100

A 802.11

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20
 100

 120

 140

 160

 180

 200

 220

 240

R
at

e(
pp

s)

Flow ID

r(f)<=100
r(f) > 100

B 2PP

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20
 100

 120

 140

 160

 180

 200

 220

 240

R
at

e(
pp

s)

Flow ID

r(f)<=100
r(f) > 100

C GMP

Figure 3-9. Rates of the flows on the topology in Fig. 3-8

68

CHAPTER 4
DISTRIBUTED PROGRESSIVE ALGORITHM FOR MAXIMIZING LIFETIME

VECTOR IN WIRELESS SENSOR NETWORKS

Maximizing the operational lifetime of a sensor network is a critical problem in

practice. Many prior works define the network’s lifetime as the time before the first sensor

in the network runs out of energy. However, when one sensor dies, the rest of the network

can still work, as long as useful data generated by other sensors can reach the sink.

More appropriately, we should maximize the lifetime vector of the network, consisting

of the lifetimes of all sensors, sorted in ascending order. For this problem, there exists

only a centralized algorithm that solves a series of linear programming problems with

high-order complexities. This chapter proposes a fully distributed progressive algorithm

which iteratively produces a series of lifetime vectors, each better than the previous one.

Instead of giving the optimal result in one shot after lengthy computation, the proposed

distributed algorithm has a result at any time, and the more time spent gives the better

result. We show that when the algorithm stabilizes, its result produces the maximum

lifetime vector. Furthermore, simulations demonstrate that the algorithm is able to

converge rapidly towards the maximum lifetime vector with low overhead.

The rest of this chapter is organized as follows. Section 4.1 gives the network model

and the problem statement. Section 4.2 lays down the theoretical foundation for our

algorithm. Section 4.3 proposes our distributed progressive algorithm for maximizing the

lifetime vector. Section 4.4 presents the simulation results. Section 4.5 summarizes the

chapter.

4.1 Network Model and Problem Definition

4.1.1 Sensor Network Model

We study the problem of maximizing the lifetime vector of long-term low-rate

monitoring sensor networks that collect data from fields for ecosystem study, environmental

monitoring, seismic measurement, etc. Operating under battery power, such sensor

networks are designed to gather tens of thousands of data points from each selected

69

location over a period of weeks or months. When raw information from each location

is of interest, power consumption cannot be substantially reduced by in-network

aggregation techniques that are suitable for max/min/avg queries, but not for collecting

temporal/spatial data of the whole field (in case that raw data must be made available for

future analysis).

Let N be the set of sensor nodes, among which the subset S that generate new data

are called data sources, which may be the aggregation nodes representing local clusters

[24, 25]. Let gi, i ∈ N , be the source rate at which node i generates new data packets.

gi > 0 if i ∈ S; gi = 0 if i 6∈ S. We assume that the source rates are set low enough to not

cause congestion in the network. The sink may consist of multiple geographically dispersed

base stations. Assume the base stations are externally connected to a data collector. It

makes no difference which base station a data packet is routed to.

Two nodes are neighbors if they can receive packets from each other (to support

DATA/ACK exchange). There may be multiple routing paths from each node to the sink.

Let Di be the set of neighbors that node i use as the next hops to the sink. They are

called downstream neighbors of node i. ∀j ∈ Di, (i, j) is called an outgoing link of i. Let

Ui be the set of upstream neighbors, which use i as the next hop on their routing paths to

the sink. ∀k ∈ Ui, (k, i) is called an incoming link of i. If i is a downstream neighbor of

k, then k must be an upstream neighbor of i. Let E = {(i, j) | ∀i ∈ N, j ∈ Di}. We call

the graph consisting of all these links as the routing graph of the sensor network, which

contains all routing paths from data sources to the sink.

4.1.2 Volume Schedule

The volume v(i, j) of a link (i, j) is defined as the number of packets transmitted

on the link over the lifetime of the sensor network. The source volume v(i) of a node i is

defined as the number of new data packets generated by i. All link volumes and source

volumes together form a volume schedule. There are many possible volume schedules, but

70

not all of them can be actually realized. A volume schedule is feasible only if it satisfies

the following energy and volume conservation constraints.

Let ei be the energy available at node i. Let α be the amount of energy that a node

spends on receiving a data packet from an upstream neighbor, βi be the amount of energy

that node i spends on producing a new data packet, γi be the amount of energy that node

i spends on sending a packet. The energy constraint is given below.

∑

k∈Ui

α× v(k, i) + βi × v(i) +
∑
j∈Di

γi × v(i, j) ≤ ei, ∀i ∈ N (4–1)

We say a node i is exhausted if

∑

k∈Ui

α× v(k, i) + βi × v(i) +
∑
j∈Di

γi × v(i, j) = ei.

The volume conservation constraint depends on the application model. If the application

requires raw data to be delivered from sources to the sink, then the number of packets sent

by a node is equal to the number it receives, i.e.,

∑
j∈Di

v(i, j) = v(i) +
∑

k∈Ui

v(k, i), ∀i ∈ N. (4–2)

If it requires periodic measurement of min/max/avg among readings from sources that

have not exhausted yet and remain reachable to the sink, then a node will send a packet

for each set of packets received from its upstream neighbors or generated locally. The

constraint becomes

∑
j∈Di

v(i, j) = max{max
k∈Ui

{v(k, i)}, v(i)} ∀i ∈ N. (4–3)

4.1.3 Maximum Lifetime Vector Problem

The volume schedule specifies how many packets are forwarded through each node,

each link and each path, and thus it determines the lifetime vector. For an arbitrary

71

feasible volume schedule, we can calculate the lifetime of each data source s ∈ S as follows:

ts = v(s)/gs. (4–4)

The lifetime vector of the sensor network is defined as (ts, s ∈ S) sorted in ascending order.

Each feasible volume schedule produces a feasible lifetime vector. All feasible lifetime

vectors form the lifetime space. One lifetime vector T is greater than another T ′ if T is

lexicographically larger — for some x ∈ [1..|S|], T and T ′ share the common (x − 1)

smallest elements but the xth smallest element in T is greater than the xth smallest

element in T ′.

The maximum lifetime vector problem is to find a feasible volume schedule that

produces the largest (or say, maximum) lifetime vector. Intuitively, its goal is to first

maximize the smallest lifetime of all sources, then the second smallest, and so on.

Once we find the volume schedule for the maximum lifetime vector, the nodes must

know their packet forwarding policies that will realize the volume schedule. To implement

a volume schedule, each node i simply does the following: 1) it generates new packets at

its source rate gi for v(i) packets, and 2) it forwards the received packets to downstream

neighbors in weighted round robin, using the volumes on the outgoing links as the weights.

Therefore, the packet rates on the outgoing links are proportional to the volumes on the

links. This is called the volume-rate property.

r(i, j)

v(i, j)
=

r(i, j′)
v(i, j′)

, ∀j, j′ ∈ Di, v(i, j) 6= 0, v(i, j′) 6= 0 (4–5)

where r(i, j) is the packet rate on link (i, j).

4.1.4 Routing Graph

The routing graph should be a DAG (directed acyclic graph) to avoid cyclic routing

because packets that are routed in a cycle waste energy and may not be able to timely

reach the sink. Moreover, any feasible volume schedule based on a routing graph with

cycles can be transformed into a feasible volume schedule on the routing graph with cycles

72

removed, producing an equal or larger lifetime vector. This can be shown by the following

procedure, assuming the application model (4–2): Identify a routing loop and find the

link (i, j) with the smallest volume v(i, j). Deduct the link volumes along the loop by

v(i, j) and remove (i, j). Repeat the above procedure until all loops are removed. The

resulting volume schedule still satisfies the volume conservation constraint and the energy

constraint. No source volume has been changed, and thus the lifetime vector produced by

the new volume schedule on the acyclic routing graph remains the same. Furthermore,

since some link volumes have been reduced, which may leave room for increasing some

source volumes to produce a larger lifetime vector. The same reasoning can be applied

to model (4–3) with added details on how to reduce volumes along a cycle and on other

links. But the key point is the same — when removing a cycle, link volumes only need to

be reduced.

The acyclic routing graph can be easily constructed when packets are forwarded based

on hop counts or the nodes’ geographic locations to the sink. For example, Di may consist

of all or a selected subset of neighbors that are closer to the sink (based on the hop count

or Euclidean distance to the closest base station), and Ui may consist of all or a selected

subset of neighbors that are further away from the sink.

4.2 Necessary and Sufficient Conditions for Maximizing Lifetime Vector

This section establishes the theoretical foundation of our distributed algorithm for

maximizing the lifetime vector.

The volume of a (directed) path is defined as the minimum volume of the links on the

path. A path in the routing graph is called a forwarding path if its volume is greater than

zero. Otherwise, it is called a non-forwarding path.

Node s ∈ S is a feeding source of node i ∈ N if there is a forwarding path from s to i.

Furthermore, node s is a restricted feeding source of node i if there is an exhausted node

on every forwarding path from s to i. Node s is an unrestricted feeding source of node i

if there is no exhausted node on at least one forwarding path from s to i, where the path

73

referred in this definition includes s but excludes i. Node s is a potential source of node i if

it is not a feeding source of i, but there exists a non-forwarding path from s to i, and the

path has no exhausted node.

We will establish the necessary and sufficient conditions for maximizing the lifetime

vector in a theorem below. Below we explain a basic technique used in the proof, called

volume shift. Understanding this technique will also help one to understand the design of

the algorithm.

Consider the routing graph in Fig. 4-1. Suppose s and w are two unrestricted feeding

sources of node i. Let P1 and P2 be two forwarding paths that do not have any exhausted

node. We show that the lifetime of an unrestricted feeding source can be increased at the

expense of the lifetime of another. To do so, we simply decrease the source volume of s,

then decrease the volumes on the links of P1, increase the source volume of w, and finally

increase the volumes on the links of P2, all by the same tiny amount, which should be

small enough such that its addition on P2 does not violate the energy constraint. The

above operation is called a volume shift from s to w with respect to i. It is easy to see

that, after volume shift, the volume schedule remains feasible and the lifetime of s is

decreased, the lifetime of w is increased, while the lifetimes of all other sources remain

unchanged. It is obvious that, to improve the lifetime vector, we shall always perform a

volume shift from a node with a larger lifetime to a node with a smaller lifetime.

Not only can a volume shift be performed between two unrestricted feeding sources,

but also it can be performed from a restricted feeding source u to an unrestricted feeding

source s, or from an unrestricted feeding source s to a potential source z, but not the

other way around — more specifically, i) a volume shift cannot be performed from an

unrestricted feeding source s to a restricted feeding source u because we cannot add

any additional volume to P3 that has an exhausted node x; ii) a volume shift cannot be

performed from a potential source z to an unrestricted feed source s because the volume of

any path from z to i is zero and thus nothing can be shifted out.

74

Theorem 3. A feasible volume schedule produces the maximum lifetime vector if and only

if the following conditions are met:

1.There is an exhausted node on every path from a source to the sink.

2.All unrestricted feeding sources of a node must have the same lifetime, which should
be no less than the lifetimes of the restricted feeding sources of the same node, and
no greater than the lifetimes of the potential sources of the same node.

Proof: First, we prove that the conditions are necessary. If a feasible volume schedule

does not meet either condition, we show that, by modifying the volume schedule, we can

produce a larger lifetime vector. If the first condition is not true on a path P from a

source s to the sink, we can improve the lifetime of s by increasing its source volume as

well as the volume of P by a tiny amount, which results in a larger lifetime vector. Next

consider the second condition.

• If an unrestricted feeding source s has a greater lifetime than another unrestricted
feeding source w of a node i, we can perform a volume shift (Fig. 4-1) from s to w
such that the lifetime of w is slightly increased (but still below that of s), which
results in a larger lifetime vector. Note that the volume shift only changes the
lifetimes of two nodes, s and w.

• If an unrestricted feeding source s has a smaller lifetime than a restricted feeding
source u, we can perform a volume shift from u to s to increase the lifetime vector.

• If an unrestricted feeding source s has a greater lifetime than a potential source z,
we can perform a volume shift from s to z to increase the lifetime vector.

Second, we prove that the conditions are sufficient. The lifetime space, consisting

of all feasible lifetime vectors, is convex and compact, which can be seen from the linear

(or max) nature of the energy constraint (4–1) and the volume conservation constraint

(4–2) or (4–3), as well as the lifetime definition (4–4). Radunovic and Le Boudec showed

that, in a convex, compact space, a max-min vector exists, and moreover it is unique and

must be lexicographically largest in the space [44]. Hence, we only need to show that a

feasible volume schedule that meets the two conditions produces the max-min vector,

satisfying the following requirement: The lifetime ts of one source s cannot be increased

75

without decreasing lifetime tw of another source w, for which tw ≤ ts. We show that the

above requirement is indeed satisfied based on the following facts. First, due to the first

condition, each path from s to the sink has an exhausted node. Second, due to the second

condition, the energy of these exhausted nodes is all consumed by feeding sources whose

lifetimes are not greater than the lifetime of s. If we increase the lifetime (source volume)

of s, at least one of those nodes has to pay, by lowering its lifetime (source volume). 2

The theorem gives us some guideline for designing a distributed algorithm that

generates a volume schedule to maximize the lifetime vector. Below we give intuitive

interpretation.

Based on the first condition, data sources should aggressively set their source volumes

to the highest values that their paths to the sink allow.

The lifetime of a source s, which is v(s)/gs, can be interpreted as the average volume

assigned to each unit of rate. The second condition requires that each unit of rate received

by a node i from an unrestricted feeding source deserves the same amount of volume

allocation. In other words, for unrestricted feeding sources, node i should allocate volumes

in proportion to their rates (that i receives and forwards). However, each unit of rate from

a restricted feeding source (which encounters an exhausted node on its forwarding path)

may receive less volume allocation at node i. Moreover, a source should always direct its

packets to paths that have highest volume allocation per unit of rate.

4.3 Distributed Progressive Algorithm

After the sink is deployed, before the sources actually generate data packets and

deliver them to the sink, a distributed progressive algorithm (DPA) is executed to produce

a volume schedule, based on which the data packets will be forwarded.

4.3.1 Rate Schedule, Volume-Bound Distribution, Volume Schedule

DPA iteratively refines a volume schedule, {v(i, j), ∀(i, j) ∈ E, v(i), ∀i ∈ N}. To

accomplish this task, we need to introduce a couple of auxiliary concepts. A rate schedule,

{r(i, j), ∀(i, j) ∈ E}, is defined by assigning a rate value to each link in the routing graph.

76

A volume-bound distribution, {b(i, j), ∀(i, j) ∈ E, b(i), ∀i ∈ N}, is defined by assigning

a volume bound to each link and each node, where volume bound b(i, j) specifies the

maximum volume that is allowed on link (i, j) and source volume bound b(i) specifies the

maximum volume that is allowed to be generated from a node i. One of the key operations

of DPA is to compute volume bounds.

DPA begins with an initial rate schedule that can be arbitrarily set. From the rate

schedule and energy availability at the nodes, it computes a volume-bound distribution

based on the second condition in Theorem 3. From the volume-bound distribution, it

sets a volume schedule, based on which it will in turn derive a new rate schedule. This

completes the first iteration of the algorithm. As shown in Fig. 4-2, in each subsequent

iteration, DPA repeats the above computation of a new volume-bound distribution (based

on the rate schedule from the previous iteration), then a new volume schedule, and finally

a new rate schedule. Each iteration produces a better volume schedule whose lifetime

vector is larger than the previous one.

The rate schedule, volume-bound distribution, and volume schedule are stored and

computed in a fully-distributed way. Each node only maintains the rates, volume bounds,

and volumes of its adjacent links with a space complexity of O(|Di| + |Ui|). Because

each directed link is shared by a pair of upstream-downstream nodes. Some properties of

the link will be set by the upstream node and then sent to the downstream node, while

other properties will be set by the downstream node and then sent to the upstream node.

Details are given below.

Node i will set its outgoing rates, r(i, j), j ∈ Di, by distributing the total incoming

rate among the outgoing links. It will learn the incoming rates, r(k, i), k ∈ Ui, from

upstream neighbors k who set those rates. (We want to stress that the link rates here are

auxiliary variables used to facilitate the computation of volumes. They have nothing to

do with the actual data-packet rates on the links at the time when DPA is executed. In

77

fact, DPA can be executed at the beginning of the deployment before any data packets are

transmitted.)

Node i will set its outgoing volumes v(i, j) by distributing the total incoming volume

among the outgoing links. It will learn the incoming volumes v(k, i) from upstream

neighbors k who set those volumes.

Node i will set its incoming volume bounds b(k, i) by distributing its forwarding

capacity among the incoming links. It will learn the outgoing volume bounds b(i, j) from

downstream neighbors j who set those bounds.

In the rest of the section, we will describe the details of DPA, which consists of

Initialization phase and iterative phase with each iteration having two steps. The first step

computes volume bounds based on link rates. The second step determines link volumes

from volume bounds and then computes new links rates, which sets the stage for the next

iteration.

4.3.2 Initialization Phase

This phase arbitrarily sets up a rate schedule. The distributed computation for

initializing link rates is described as follows: The sink broadcasts an INIT packet

backward in the routing graph. When a node k receives INIT, it forwards the packet

to its upstream neighbors. If k has no upstream neighbor (i.e., k is a leaf in the routing

graph), it distributes its source rate evenly among its outgoing links, i.e., r(k, i) ←
gk

|Dk| ,∀i ∈ Dk, where ”←” is the assignment operator. Node k then sends those outgoing

rates to its downstream neighbors in a RATE packet. After a node i learns r(k, i) in

RATE packets from all upstream neighbors k, it first computes its outgoing rates as

r(i, j) ←
∑

k∈Ui
r(k,i)+gi

|Di| ,∀j ∈ Di, and then sends those rates to downstream neighbors j in

a RATE packet. The initialization phase terminates when the sink receives RATEs from

all neighbors. Intuitively, this phase begins with a wave of INITs traveling backward in

the routing graph to all nodes, and the INIT packets are turned around at leaf nodes to

78

form a reverse wave of RATEs that assign the initial rates of all links subject to the flow

conservation constraint.

In total, at most |N | INIT packets and |N | RATE packets are transmitted. Each node

i sends one INIT of size O(1) and one RATE packet of size O(|Di|). The initialization

phase completes within the maximum round trip time between the sink and any source in

the network.

4.3.3 Iterative Phase — Step 1: From Rates to Volume Bounds

The first step of each iteration is to set volume bounds based on link rates. Each

node i must appropriately set its incoming volume bounds, b(k, i), ∀k ∈ Ui, and the source

volume bound, b(i), such that it does not receive more packets than it is able to forward.

The volume bounds are subject to two volume-capacity constraints.

First, a node i should not receive and forward more packets than the downstream

neighbors can handle. If the application model is characterized by (4–2), then the

combined incoming volume bound (set by i) should not exceed the combined outgoing

volume bound (set by downstream neighbors).

∑

k∈Ui

b(k, i) + b(i) ≤
∑
j∈Di

b(i, j) (4–6)

where b(i, j) is learned by i from j. If the application model is characterized by (4–3),

then the constraint becomes

max{max
k∈Ui

{b(k, i)}, b(i)} ≤
∑
j∈Di

b(i, j) (4–7)

Second, node i should not receive and forward more packets than its energy allows.

∑

k∈Ui

α× b(k, i) + βi × b(i) +
∑
j∈Di

γi × b′(i, j) ≤ ei (4–8)

79

where

b′(i, j) =

(
∑

k∈Ui
b(k, i) + b(i)) b(i,j)∑

j′∈Di
b(i,j′) , for application model (4–2);

max{maxk∈Ui
{b(k, i)}, b(i)} b(i,j)∑

j′∈Di
b(i,j′) , for application model (4–3).

Because of (4–6)-(4–7), b′(i, j) ≤ b(i, j), and therefore the above constraint is more relax

than one that replaces b′(i, j) with b(i, j).

As we have explained in the previous section, the second condition of Theorem 3

requires that volume allocation should be made in proportion to the incoming rates (which

must be adjusted for restricted feeding sources, as will be discussed shortly in Step 2).

Hence, we have the following rate-bound property.

b(k, i)

r(k, i)
=

b(k′, i)
r(k′, i)

=
b(i)

gi

,

∀k, k′ ∈ Ui ∪ {i}, r(k, i) 6= 0, r(k′, i) 6= 0, gi 6= 0

(4–9)

If r(k, i) = 0, then b(k, i) = 0. If gi = 0, then b(i) = 0.

The distributed computation of Step 1 is described as follows: The sink begins the

process of setting volume bounds after the rate initialization phase terminates (at the time

when the sink receives RATEs from all upstream neighbors), or after Step 2 completes

(at the time when the sink receives VOL RATE packets from all upstream neighbors

— to be described in Section 4.3.4). The sink sets its incoming volume bounds to be

infinite and sends a BOUND packets to upstream neighbors, carrying the volume bounds

of its incoming links. After a node i receives BOUNDs from all downstream neighbors

j ∈ Di and learns all outgoing volume bounds b(i, j), it sets the incoming volume bounds,

b(k, i), k ∈ Ui, and its source volume bound v(i) as large as possible, based on (4–9)

subject to the constraints of (4–6)-(4–7) and (4–8). Node i then sends its incoming volume

bounds to the upstream neighbors in a BOUND packet.

In total, |N | BOUND packets are transmitted. Each node i only transmits one packet

of size O(|Ui|).

80

4.3.4 Iterative Phase — Step 2: From Volume Bounds to Volumes and Rates

Next we discuss how to set the volumes of all links based on the volume bounds from

Step 1. Each node i should set the outgoing volumes, v(i, j),∀j ∈ Di, and its source

volume v(i), which are subject to the following bound constraint.

v(i) ≤ b(i), v(i, j) ≤ b(i, j), ∀j ∈ Di, ∀i ∈ N (4–10)

The first condition of Theorem 3 requires us to set the source volume as high as possible.

Hence, we assign

v(i) ← b(i) (4–11)

In addition to (4–10), outgoing link volumes are also subject to the volume conservation

constraint in (4–2) or (4–3). A node cannot send more packets than it receives. If it does

not receive enough incoming volumes, its outgoing volumes may have to be set lower than

what the volume bounds allow. If the volume conservation constraint is (4–2), to satisfy

this constraint, node i assigns its outgoing volumes as follows.

v(i, j) ← (
∑

k∈Ui

v(k, i) + v(i))
b(i, j)∑

j′∈Di
b(i, j′)

, ∀j ∈ Di (4–12)

where v(k, i) is set by upstream neighbor k and learned by i from k. If the volume

conservation constraint is (4–3), node i assigns the outgoing volumes to be

v(i, j) ← max{max
k∈Ui

{v(k, i)}, v(i)} b(i, j)∑
j′∈Di

b(i, j′)
, ∀j ∈ Di (4–13)

It can be shown by induction that the above assignment satisfies the bound constraint

in (4–10).

First, we prove by induction that using (4–12) will satisfy the bound constraint

(4–10). Consider the base case with Ui = ∅. By (4–12), (4–6) and the fact that Ui = ∅, we

81

have

v(i, j) = v(i)
b(i, j)∑

j′∈Di
b(i, j′)

≤
∑

j′∈Di

b(i, j′)
b(i, j)∑

j′∈Di
b(i, j′)

= b(i, j)

Next we make the inductive assumption that v(k, i) ≤ b(k, i), ∀k ∈ Ui, and prove the case

when Ui 6= ∅. (This is a valid inductive assumption for a DAG routing graph, which has no

loop for circular reasoning.) Together with (4–6) and (4–11), we have

v(i, j) = (
∑

k∈Ui

v(k, i) + v(i))
b(i, j)∑

j′∈Di
b(i, j′)

≤ (
∑

k∈Ui

b(k, i) + b(i))
b(i, j)∑

j′∈Di
b(i, j′)

≤
∑

j′∈Di

b(i, j′)
b(i, j)∑

j′∈Di
b(i, j′)

= b(i, j)

The induction proof for the case of (4–13) is similar.

This result, together with (4–8), ensures that the assigned volumes satisfy the energy

constraint required in (4–1) — to see this, one has to use the fact that v(i, j) ≤ b′(i, j) due

to (4–12)-(4–13) and (4–10), where b′(i, j) is defined in (4–8). Consequently, the resulting

volume schedule is feasible.

After we set the link volumes, we assign new link rates below based on the rate-volume

property in (4–5), setting the stage for the next iteration. For application model (4–2),

r(i, j) ← (
∑

k∈Ui

r(k, i) + gi)
v(i, j)∑

j′∈Di
v(i, j′)

, ∀j ∈ Di (4–14)

For application model (4–3),

r(i, j) ← max{max
k∈Ui

r(k, i), gi} v(i, j)∑
j′∈Di

v(i, j′)
, ∀j ∈ Di (4–15)

82

We have one additional issue that must be handled. As shown in Fig. 4-3, the volume

bound assigned by i on link (w, i) for an unrestricted feeding source s will be fully utilized.

However, the volume bound assigned by i on link (k, i) for a restricted source u may not

be fully utilized due to an upstream bottleneck x that may set a tighter bound on the

source volume of u. In this case, the volume v(k, i), which is set by k and constrained by

the limited upstream energy at x, is smaller than the volume bound b(k, i). When this

happens, we shall reduce b(k, i) to match v(k, i), and allow b(w, i) to be larger, which will

in turn allow s to have a larger source volume and thus a larger lifetime. Since volume

bounds are set at Step 1 based on link rates, we can achieve the reduction of b(k, i) by

artificially reducing the rate r(k, i).

More specifically, after the link rates are calculated based on (4–14)-(4–15), they may

be reduced by multiplying a reduction factor f(i) (∈ (0, 1]), which has an initial value of 1

and is updated at each iteration as follows. Suppose node i is not a direct neighbor of the

sink. If i is exhausted, i.e.,
∑

k∈Ui
α × v(k, i) + βi × v(i) +

∑
j∈Di

γiv(i, j) = ei, or it was

exhausted in one of the previous iterations, then it updates f(i):

B(i) ←
∑
j∈Di

b(i, j)/f(i),

V (i) ←
∑
j∈Di

v(i, j)× ei∑
k∈Ui

α× v(k, i) + βi × v(i) +
∑

j∈Di
γiv(i, j)

,

f(i) =
V (i)

B(i)

(4–16)

where B(i) and V (i) are the would-be volume bound and volume on all outgoing links,

respectively, if the rate reduction had not been preformed to reduce the outgoing volume

bound in previous iterations. Clearly, the value of f(i) will stabilize at an exhausted node

i only when the volume
∑

j∈Di
v(i, j) matches the bound

∑
j∈Di

b(i, j). After updating

f(i), node i reduces the outgoing rates as follows.

r(i, j) ← r(i, j)× f(i), ∀j ∈ Di (4–17)

83

For the example in Fig. 4-3, both i and x will perform the above operation. When x does

so, its rate reduction will propagate downstream, causing the reduction of r(k, i), which in

turn causes the reduction of b(k, i) and the increase of b(w, i).

The distributed computation of Step 2 for setting volumes/rates is a natural

continuation of Step 1. After a node with no upstream neighbor receives BOUND (defined

Step 1) from all downstream neighbors, it is able to assign its source volume by (4–11)

and outgoing volumes by (4–12)-(4–13). It then updates the link rates by (4–14)-(4–15),

(4–16), and (4–17). After that, it sends the outgoing volumes/rates to the downstream

neighbors by a VOL RATE packet. After a node i receives VOL RATE packets from all

upstream neighbors k and learns v(k, i), it is able to assign its source volume by (4–11),

the outgoing volumes by (4–12)-(4–13), and the new outgoing rates by (4–14)-(4–15),

(4–16), and (4–17). It sends the outgoing volumes/rates to downstream neighbors in

VOL RATE. When the sink receives VOL RATE from all upstream neighbors, it knows

that Step 2 is completed.

Step 2 transmits |N | packets. Each node i sends only one packet of size O(|Di|). Each

iteration, including Step 1 and Step 2, completes within the maximum round trip time

between the sink and any source in the network.

4.3.5 Property

DPA carries out three computations to set volume bounds, volumes, and rates,

respectively. We show that all three computations lead to better lifetime vectors.

First, consider the computation of volume bounds. The total forwarding capability

of a node, which is determined by (4–6)-(4–7) and (4–8), is distributed as volume bounds

based on the rate-bound property in (4–9), which essentially performs volume shift from

feeding sources with larger volume per unit of rate (i.e., larger lifetime) to those with

smaller volume per unit of rate. Such volume shift increases the lifetime vector. The

only problem is that a volume bound may not be fully turned into volume if there is an

upstream exhausted node which sets a tighter volume bound. This problem is solved by

84

rate reduction, which contiguously updates a reduction factor by (4–16) until the volume

matches the bound.

Second, the volume assignments in (4–10) and (4–12)-(4–13) are aggressive in the

sense that they try to fully utilize all volume bounds, by setting the source volumes as

high as possible and by forwarding all incoming volumes at each node.

Third, the rate reduction in (4–14)-(4–15), (4–16) and (4–17) artificially decreases

the link rates if the volume bounds are not fully turned into the volumes. In subsequent

iterations, due to (4–9), decreased rates lead to decreased volume bounds on those links,

allowing other links that can fully utilize their bounds to have higher volume bounds.

In summary, the volume bound computation performs volume shift from large-lifetime

sources to small-lifetime sources; the volume computation and the rate reduction technique

ensure that the volume bounds are fully utilized. Together, they improve the lifetime

vector as DPA executes through its iterations. As the lifetime vector moves increasingly

closer to its maximum value, the room for improvement becomes smaller and smaller. Our

simulations will show that DPA converges rapidly.

Theorem 4. When DPA stabilizes the link volumes, the resulting volume schedule

produces the maximum lifetime vector.

Proof: Let G be the subgraph consisting of all paths from sources to the first

encountered exhausted nodes or to the sink if no exhausted nodes are encountered. Rate

reduction has no impact on the link rates inside G. When link volumes are stabilized in G,

link rates and volume bounds must also be stabilized because their linear inter-dependency

in (4–5), (4–9), (4–12)-(4–13) and (4–14)-(4–15). We prove by induction that

v(i, j) = b(i, j), ∀(i, j) ∈ G. (4–18)

Consider the base case with Ui = ∅. Node i is not exhausted and hence

βi × v(i) +
∑
j∈Di

γi × v(i, j) < ei

85

By (4–11) and (4–12)-(4–13), it can be rewritten as

βi × b(i) +
∑
j∈Di

γi × b′(i, j) < ei

where b′(i, j) is defined in (4–8). Therefore, the real constraint for the value of b(i) is

(4–6)-(4–7). Since we should set b(i)’s value as large as possible, we have

b(i) =
∑
j∈Di

b(i, j)

By (4–12)-(4–13), we have v(i, j) = b(i, j). Next we make inductive assumption that

v(k, i) = b(k, i), ∀k ∈ Ui, and prove the case when Ui 6= ∅. (This is a valid inductive

assumption for a DAG routing graph, which has no loop for circular reasoning.) The proof

is similar to the base case, except that v(k, i) and b(k, i) are included in the formulas.

To prove that the resulting volume schedule achieves the maximum lifetime vector, we

have to show that the two conditions in Theorem 3 are satisfied.

First, we prove by contradiction that the first condition holds. If not, the sink will

be in G. Consider an arbitrary link (i, sink). We have proved earlier that v(i, sink) =

b(i, sink), which is not possible because b(i, sink) is infinity.

Second, we prove that the second condition of Theorem 1 holds. Let s and w be two

unrestricted feeding sources of node i. Let P1 be a path from s to i that has no exhausted

node. Let P2 be a path from w to i that has no exhausted node. Both P1 and P2 are in

G. Hence, for each link on the paths, its volume is equal to its volume bound. By (4–5),

(4–9), (4–14)-(4–15), (4–2)-(4–3) and (4–18), the ratio of volume to rate is kept constant

over the links of P1, and equal to v(s)
gs

, the lifetime of s. Similarly, the ratio of volume to

rate is kept constant over the links of P2, and equal to v(w)
gw

, the lifetime of w. Moreover,

these two ratios have to be the same when P1 and P2 intersect at i due to (4–9) and

(4–18).

By assigning link rates in proportion to link volumes, Eq. (4–14)-(4–15) attempts

to equalize the links’ volume-to-rate ratios, which means, after each iteration, the rate

86

is shifted away from downstream links with smaller volume-to-rate ratios to links with

larger volume-to-rate ratios. The construction of the initial rate schedule ensures that

every routing path is a forwarding path and there is no potential feeding source at the

beginning. An unrestricted feeding source may become a potential feeding source by

shifting its rate away from a path. When an unrestricted feeding source of i has a larger

lifetime than other unrestricted feeding sources of i (due to routing paths that are not

through i), the node’s downstream link towards i will have smaller volume-to-rate ratio

than its other links. Only in this case, due to (4–14)-(4–15), its rate will be contiguously

shifted away from feeding i, and eventually turns itself into a potential source of i.

We have proved earlier the first condition of Theorem 3 that there is an exhausted

node on every path from a source to the sink. Let G′ be the subgraph consisting of all

paths from sources to the last encountered exhausted nodes, and C ′ be the set of those

last encountered exhausted nodes, which forms a cut of the network that separates the

sink from all sources. When link volumes are stabilized in G′, link rates and volume

bounds must also be stabilized because their linear inter-dependency in (4–5), (4–9),

(4–12)-(4–13) and (4–14)-(4–15). We prove by contradiction that

v(i, j) = b(i, j), ∀(i, j) ∈ G′. (4–19)

Suppose, ∃(k, i) ∈ G′, v(k, i) < b(k, i). Based on the definition of G′, any path from i to

the sink must contain an exhausted node. By (4–8), (4–10), (4–12)-(4–13) and the above

assumption, we have

∑

k∈Ui

α× v(k, i) + βi × v(i) +
∑
j∈Di

γi × v(i, j) < ei

In addition, from (4–6)-(4–7) and (4–2)-(4–3), we have that, ∃(i, j) ∈ E, v(i, j) < b(i, j).

Following the same token, we know that j must not be exhausted and it also has a

downstream link whose volume is smaller than bound. Repeating the above reasoning, we

can construct a path all the way to the sink without passing an exhausted node, which

87

contradicts with the fact that any path from i to the sink must contain an exhausted

node.

By (4–5), (4–9), (4–14)-(4–15), (4–2)-(4–3) and (4–19), the ratio of volume to rate is

kept constant on any path segment in G′ that does not contain an exhausted node (which

performs rate reduction). It is easy to see that the lifetime of a restricted feeding source

u of a node i can only be equal to or smaller than that of an unrestricted source because,

due to rate reduction, the radio of volume to rate will decrease when we traverse a path

backward from i to u and cross an exhausted node. 2

4.3.6 Termination Conditions

By Theorem 4, we shall terminate DPA when it has stabilized the link volumes, which

can be detected by adding a flag that is transitively carried by the control messages. The

flag is initially unset. A node sets the flag if it changes a link volume by an amount that

is not negligibly small. It is up to the application requirement to decide on how small

is negligible. The sink will stop if it does not receive a flag that is set. Alternatively,

DPA may also be terminated artificially after a certain number of iterations, or when the

resulting lifetime vector meets the application requirement.

4.3.7 Overhead

DPA has a flooding-based design. Flooding would be considered as inefficient for

point-to-point tasks such as routing a packet from a source to a destination. But for a

global task such as building a volume schedule that involves every node and every link,

flooding is the obvious choice that allows every node to participate in the distributed

computation.

While the flooding design itself may appear non-innovative, the novelty of DPA is

in the details that establishes the constraints and formulas for nodes to perform localized

operations — iteratively computing their individual volume bounds from rates, volumes

from volumes bounds, and rates from volumes with reduction — yet globally, as a net

outcome, produce a progressively better lifetime vector, approaching to the optimal result.

88

During each iteration, node i sends two control packets, one BOUND of size O(|Ui|)
and one VOL RATE of size O(|Di|). Upstream/downstream neighbors represent a subset

of all nodes within the communication range of i. The packet size is limited when we

choose a small number of upstream/downstream neighbors for routing purpose. We

performed many simulations in Section 4.4, which shows that DPA converges quickly

towards the optimal lifetime vector. To achieve no more than 5% deviation from the

optimal, for networks of 1,000 nodes, less than 25 iterations are needed. In addition, the

overhead (i.e. number of iterations) increases slowly with network size.

If the network is designed to collect tens of thousands of data packets from each

source, the small overhead of DPA (in tens of control packets per node) is negligible. If the

number of iterations is pre-determined, we can take the small energy consumption of DPA

into account by reducing the nodes’ energy (ei) for an appropriate amount.

4.3.8 Network Dynamics

After DPA computes a volume schedule, because of network dynamics, the nodes

may not always be able to follow the schedule exactly to forward packets. For example,

a wireless link may be temporarily down due to environmental noise interference. The

packets to be carried by this link will have to be sent to other downstream neighbors. If

all outgoing links with non-zero volumes are temporarily down, then packets have to be

forwarded to outgoing links with zero volumes. Consequently, the actual lifetime vector

will deviate from the one predicted by the volume schedule.

To keep up with changes, DPA may be re-executed to compute a new volume

schedule. There is a tradeoff between overhead and better lifetime vector. The frequency

of executing DPA is dependent on the amount of overhead allowed. For example, suppose

the sink collects aggregate information from the network periodically based on the

application model characterized by (4–3), and data packets are longer than control packets

(INIT/RATE/BOUND/VOL RATE). If DPA is allowed to consume no more than 0.5% of

89

all energy, then the sink may execute DPA for 5 iterations each time after it receives 2,000

data packets.

The only alternative solution [24, 25] in the literature is centralized. It is much harder

for a centralized algorithm to handle network dynamics because that requires the sink to

collect the complete network information before each execution.

4.4 Simulation

In this section, we use simulations to evaluate the performance of DPA. We begin

with a simple network topology with a few nodes and then move to increasingly larger

random networks.

4.4.1 A Simple Illustrative Test Case

The first simulation is performed on the routing graph shown in Fig. 4-4, where

a circle represents a source node, a square represents a non-source node, and the

two numbers beside a node are the initial energy (in Joules) and the source rate (in

packets/min), respectively. DPA itself does not dictate how the routing graph should

be constructed. Instead, it can work with any routing graph that contain the potential

routing paths it can choose from (see Section 4.1). DPA works at the application level; it

is independent of which MAC protocol is used. Suppose α = β = 0.000012 Joule/packet

and γ = 0.0000432 Joule/packet, which are chosen based on the parameters in [23] and

will be used in all our simulations.

Tables 4-1 shows the lifetime vectors after the first, second, 10th, and 20th iterations

of DPA, as well as the maximum lifetime vector (MLV) in the last column, which is

computed numerically based on Hou’s centralized algorithm [25]. The result demonstrates

that the sequence of lifetime vectors produced by DPA converges rapidly towards MLV.

Table 4-2 shows the source volumes that are assigned by DPA to the source nodes after

the first, second, 10th, and 20th iterations, as well as the optimal source volumes that

produce MLV. Recall that the source volume is the number of packets that a source can

90

successfully deliver to the sink over its lifetime. Source q has a larger lifetime than w but a

smaller source volume. That is because its source rate is smaller.

4.4.2 Convergence Speed of DPA

The second simulation studies the convergence speed of DPA on large sensor

networks, each having 500 nodes that are randomly deployed in a 1, 000 × 1, 000 area.

The sink consists of 4 base stations, evenly spaced along one edge of the deployment area.

Each sensor has a transmission range of 100 and an initial energy of 5 joules. There are

100 data sources randomly selected from the 500 sensors. Their source rates are all 1

packet per minute. The routing graph is constructed based on hop count. Each sensor

picks its downstream neighbors from those neighbors that are one hop closer to the

sink. (All other simulations will also use random networks produced in the above setting

except that, when the network size is not 500 nodes, we change the deployment area

proportionally while keeping the same node density.)

Consider the lifetime vector Vx produced by DPA after the xth iteration. We measure

how much Vx deviates from MLV by the following two metrics. Let tx(s) be the lifetime of

source s in Vx. Let t∗(s) be the lifetime of s in MLV. The max deviation of Vx is defined as

max
s∈S

{|tx(s)− t∗(s)|
t∗(s)

},

and the avg deviation is defined as

1

|S|
∑
s∈S

|tx(s)− t∗(s)|
t∗(s)

.

Fig. 4-5 shows the avg/max deviations of lifetime vectors produced by DPA on 500-node

sensor networks. The deviations drop quickly to an insignificant level after a small number

of iterations. Each of the data points used to produce the figures in this section is the

average of 100 simulation runs on different random networks. Table 4-3 presents some

data points for Fig. 4-5. For example, the avg/max deviations are merely 0.066 and

0.013 respectively after 20 iterations — that means, in the worse case, the lifetime of any

91

source deviates from its optimal value by no more than 6.6%, and on the average case, the

lifetime of a source deviates from the optimal by 1.3%.

4.4.3 Scalability of DPA

We evaluate the scalability of DPA on random networks of 500 to 3,000 nodes (with

20% being sources). We set a target (avg or max) deviation to be 0.025, 0.05, 0.075 or 0.1.

We then count the number of iterations that DPA has to perform in order to produce a

lifetime vector whose deviation is bounded by the target value. The simulation results are

presented in Fig. 4-6. It shows that the overhead for DPA to satisfy a target deviation,

which is measured by the number of iterations, grows slowly with the network size. Recall

that a node sends at most 2 small control packets in each iteration. Even for a network

of 3,000 nodes, only 12 iterations are needed to achieve an avg deviation of 5%, and 32

iterations are needed for a max deviation of 5%.

4.4.4 Comparison with Hou’s Centralized Algorithm

We use LP to stand for Hou’s centralized algorithm [25] based on iterative linear

programming. Our DPA can also be used as a centralized algorithm when the information

about the network is available at the sink. The target max deviation for DPA is set to be

0.025. Fig. 4-7 compares the running times of the two algorithms. It shows that DPA are

orders of magnitude faster than LP, and the gap widens when the network size increases.

Next we compare the communication overhead of the two algorithms when LP is

used as a centralized algorithm while DPA is used as a distributed algorithm. For LP,

the sink has to collect network information, including, for each node, source rate (4

bytes), node energy (4 bytes), transmission power γ (4 bytes), node ID, and IDs of its

downstream neighbors (2 bytes each). The sink has also to download the resulting volume

schedule to the network, which includes, for each node, its source volume and the volumes

of its outgoing links (4 bytes each). For DPA, in every iteration, a node sends out the

volumes/rates of its outgoing links and the volume bounds of its incoming links (4 bytes

each).

92

The communication overhead of DPA spreads evenly among all nodes. The

communication overhead of LP concentrates on nodes surrounding the sink. For

5,000-node random networks, the left plot in Fig. 4-8 shows the nodal communication

overhead in ascending order. The overhead is measured by the number of bytes that a

node has to transmit. Clearly, some nodes in LP (at the right end of the figure) bear a

huge burden of communication overhead.

The right plot in Fig. 4-8 shows the maximum nodal overhead with respect to

network size. The maximum nodal overhead of LP increases much faster than that of

DPA.

4.4.5 Comparison with Other Centralized and Distributed Solutions

We compare DPA with two additional algorithms: SLP (following the same name

used in [24]) that is a linear programming solution for maximizing the minimum lifetime of

all sources, and MPR (Minimum-Power Routing [17, 22]) that is a distributed algorithm

for energy-efficient routing.

First we run DPA, SLP, and MPR on 100-node random networks (with all nodes

being sources). Fig. 4-9 compares the lifetime vectors produced by the algorithms. Each

curve represents the lifetime vector in ascending order generated from one of the three

algorithms. The smallest lifetime in the vector produced by DPA is more than 100%

larger than that by MPR. For SLP, the result shows that maximizing the minimum

lifetime of sources does not maximize the lifetime vector of the network. DPA produces

far better source lifetimes in the lower three quarters of the vector. Second, we compare

the algorithms on larger networks. Fig. 4-10 shows the avg/max deviations of the lifetime

vectors produced by SLP and MPR on networks of 500 to 3,000 nodes (with 20% being

sources). The deviations are large when comparing with those of DPA, which can be made

arbitrarily small.

93

4.5 Summary

We have proposed a distributed progressive algorithm for maximizing the lifetime

vector in a wireless sensor network, the first algorithm of its kind for this problem. The

design of the algorithm was based on the necessary and sufficient conditions that we

have proved for producing the maximum lifetime vector. Simulations are performed to

demonstrate the performance of the algorithm.

94

sources 1st iter. 2nd iter. 10th iter. 20th iter. MLV
k 41.9 41.9 41.3 41.9 41.9
v 41.9 41.9 41.3 41.9 41.9
u 36.9 63.2 131.2 129.4 125.8
x 33.6 60.7 109.0 121.6 125.8
m 129.9 146.2 158.9 157.3 157.3
j 108.8 154.2 160.2 157.3 157.3
w 151.0 140.5 156.7 157.3 157.3
q 335.5 200.5 239.5 251.7 251.6

Table 4-1. Data source lifetimes (in days)

sources 1st iter. 2nd iter. 10th iter. 20th iter. MLV
k 60.4 60.4 59.4 60.4 60.4
v 120.8 120.8 118.8 120.8 120.8
u 53.1 90.9 188.9 186.3 181.2
x 48.3 87.5 156.9 175.1 181.2
m 187.0 210.6 228.8 226.5 226.4
j 156.6 222.0 230.6 226.5 226.4
w 434.8 404.6 451.2 453.0 452.9
q 483.1 288.7 344.8 362.5 362.3

Table 4-2. Data source volumes (in thousands of packets)

1st iter. 10th iter. 20th iter. 30th iter.
max dev. 2.28 0.25 0.066 0.031
avg dev. 0.39 0.045 0.013 0.007

Table 4-3. Some data points used to produce Fig. 4-5

k

z u

BS
base station

s w

i

x

path

link with non-zero volume

source node

non-source node

exhausted node

link with zero volume

p p
1 2 p3

Figure 4-1. There is no exhausted node on P1 or P2; nodes s and w are unrestricted
feeding sources of i. There is an exhausted node x on P3; node u is a restricted
feeding source of i. There is no forwarding path from z to i; node z is a
potential source of i.

95

r a t e
s c h e d u l e

v o l u m e b o u n d
d i s t r i b u t i o n

v o l u m e
s c h e d u l e

1 s t i t e r a t i o n

2 n d i t e r a t i o n

r a t e
s c h e d u l e

r a t e
s c h e d u l e

v o l u m e b o u n d
d i s t r i b u t i o n

v o l u m e
s c h e d u l e

I n i t i a l i z a t i o n

3 r d i t e r a t i o n

Figure 4-2. Iterations of DPA

k

s u

BS
base station

w

i

x

path

link with non-zero volume

source node

non-source node

exhausted node

link with zero volume

Figure 4-3. There is no exhausted node from s to i; node s is an unrestricted feeding
sources of i. There is an exhausted node x from u to i; node u is a restricted
feeding source of i. The upstream bottleneck x may prevent source u from
fully utilizing the volume bound set by i on link (k, i).

BS BS

[10,1]
[10,2]

[30,1]

[30,2]
[40,1]

[10,1]

[20,1]

[80,1][10,0]
[10,0]

[60,0]

[10,0]

z

j y

wu

x

mi

v

p

q

k

Figure 4-4. A simple illustrative test case.

96

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

Iterations

max dev.
avg dev.

Figure 4-5. max deviation and avg deviation of lifetime vector with respect to the number
of iterations that DPA has performed

 0
 10
 20
 30
 40
 50
 60
 70
 80

 500 1000 1500 2000 2500 3000

It
er

at
io

ns

Number of nodes

Avg deviation

0.025
0.05

0.075
0.1

 0
 10
 20
 30
 40
 50
 60
 70
 80

 500 1000 1500 2000 2500 3000

It
er

at
io

ns

Number of nodes

Max deviation

0.025
0.05

0.075
0.1

Figure 4-6. DPA scales well. Its overhead grows slowly with the network size.

 10

 100

 1000

 10000

 100000

 1e+006

 500 600 700 800 900 1000

T
im

e
(m

ill
is

ec
on

ds
)

Number of nodes

LP
DPA Max<0.025

Figure 4-7. Comparison of running time between LP and DPA

97

 0

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000

O
ve

rh
ea

d
(k

ilo
by

te
s)

LP
DPA Max<0.025

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 500 1000 1500 2000 2500 3000M
ax

 n
od

al
 o

ve
rh

ea
d

(k
ilo

by
te

s)

Number of nodes

LP
DPA Max<0.025

Figure 4-8. Left plot : comparison of nodal overhead distribution between LP and DPA.
Right plot : comparison of maximum nodal overhead between LP and DPA

 0
 10
 20
 30
 40
 50
 60
 70

 0 10 20 30 40 50 60 70 80 90 100

L
if

et
im

e
(d

ay
s)

DPA
SLP

MPR

Figure 4-9. Network lifetimes of DPA, SLP and MPR

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 500 1000 1500 2000 2500 3000

A
vg

 d
ev

ia
tio

n

Number of nodes

SLP
MPR

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 500 1000 1500 2000 2500 3000

M
ax

 d
ev

ia
tio

n

Number of nodes

SLP
MPR

Figure 4-10. Avg and max deviations of SLP and MPR

98

CHAPTER 5
CONCLUSION

Two important problems in multihop wireless networks are studied. They are

end-to-end flow rate fairness and lifetime fairness.

We propose two approaches to achieve global end-to-end flow rate maxmin in

multihop wireless networks. The first approach is a cross-layer design. A generalized

maxmin model is first proposed for multihop wireless networks. At the network layer, our

design allocates network capacity to end-to-end flows for maxmin bandwidth allocation.

At the MAC layer, it achieves the allocated bandwidth shares for the flows through

a two-level weighted fair queuing algorithm. We demonstrate the effectiveness of the

proposed solution in enhancing end-to-end fairness. The second approach proposed is

a fully distributed approach. We transform the global maxmin objective to four local

conditions and prove that, if the four local conditions are satisfied in the whole network,

then the global maxmin objective must be achieved. We then design a distributed

rate adaptation protocol based on the four conditions. Our approach does not modify

the backoff scheme of IEEE 802.11. It replaces per-flow queueing with per-destination

queueing. Most important, it achieves far better fairness (or weighted fairness) among

end-to-end flows than existing approaches.

We propose a distributed progressive algorithm for maximizing the lifetime vector

in a wireless sensor network, the first algorithm of its kind for this problem. The design

of the algorithm is based on the necessary and sufficient conditions that we have proved

for producing the maximum lifetime vector. With our progressive algorithm, a result is

available at any time and is getting better as more time is spent. We demonstrate that

the algorithm is able to converge rapidly towards the maximum lifetime vector with low

overhead.

99

REFERENCES

[1] “IEEE Standard for Telecommunications and Information Exchange Between Systems
- LAN/MAN Specific Requirements - Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC)
Quality of Service Enhancements. IEEE Std 802.11e.” (Nov 2005).

[2] Akyol, U., Andrews, M., Gupta, P., Hobby, J., Saniee, I., and Stolyar, A. “Joint
Scheduling and Congestion Control in Mobile Ad-Hoc Networks.” Proc. of IEEE
INFOCOM’08 (2008).

[3] amd S. Sahni, J. Park. “An Online Heuristic for Maximum Lifetime Routing
in Wireless Sensor Networks.” IEEE Transactions on Computers 55 (2006).8:
1048–1056.

[4] Balakrishnan, H., Padmanabhan, V., Seshan, S., and Katz, R. “A comparisonof
mechanisms for improving TCP performance over wireless links.” Proc. of ACM
SIGCOMM’96 (1996).

[5] Bejerano, Y., Han, S.-J., and Li, L. E. “Fairness and load balancing in wireless lans
using association control.” Proc. of ACM MobiCom’04 (2004).

[6] Bertsekas, Dimitri and Gallager, Robert. Data networks. Prentice-Hall Inc, 1992, 2nd
ed.

[7] Bhardwaj, M. and Chandrakasan, A.P. “Bounding the lifetime of sensor networks via
optimal role assignments.” Proc. of IEEE INFOCOM’02 3 (2002): 1587C1596.

[8] Blough, D. and Santi, P. “Investigating upper bounds on network lifetime extension
for cell-based energy conservation techniques in stationary ad hoc networks.” Proc. of
ACM MobiCom’02 (2002): 183C192.

[9] Bonomi, F. and Fendick, K. “The Rate-Based Flow Control Framework for the
Available Bit Rate ATM Service.” IEEE Network (1995): 9(2):25–39.

[10] Bose, P., Morin, P., Stojmenovic, I., and Urrutia, J. “Routing with Guaranteed
Delivery in Ad Hoc Wireless Networks.” Proc. of 3rd Int’l Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications (DialM’99)
(1999).

[11] Chang, J. and Tassiulas, L. “Energy conserving routing in wireless ad-hoc networks.”
Proc. of IEEE INFOCOM’00 (2000).

[12] Chen, L., Low, S. H., Chiang, M., and Doyle, J. C. “Cross-layer Congestion Control,
Routing, and Scheduling Design in Ad Hoc Wireless Networks.” Proc. of IEEE
INFOCOM’06 (2006).

[13] Chen, S. and Yang, N. “Congestion Avoidance based on Light-Weight Buffer
Management in Sensor Networks.” IEEE Transactions on Parallel and Distributed

100

Systems, Special Issue on Localized Communication and Topology Protocols for Ad
Hoc Networks 17 (2006).9.

[14] Chen, S. and Zhang, Z. “Localized Algorithm for Aggregate Fairness in Wireless
Sensor Networks.” Proc. of ACM Mobicom’06 (2006).

[15] Chen, X., Zhai, H., Wang, J., and Fang, Y. “TCP Performance over Mobile Ad Hoc
Networks.” Canadian Journal of Electrical and Computer Engineering 29 (2004):
129–134.

[16] Chiu, D. and Jain, R. “Analysis of the Increase/Decrease Algorithms for Congestion
Avoidance in Computer Networks.” Journal of Computer Networks and ISDN 17
(1989).1: 1–14.

[17] Doshi, S., Bhandare, S., and Brown, T.X. “An on-demand minimum energy routing
protocol for a wireless ad hoc network.” ACM Mobile Computing and Communica-
tions Review 6 (2002).3.

[18] Faffe, Jeffrey M. “Bottleneck Flow Control.” IEEE Transactions on Communications
COM-29 (1981).7: 954–962.

[19] Fang, Z. and Bensaou, B. “Fair Bandwidth Sharing Algorithms based on Game
Theory Frameworks in Wireless Ad-Hoc Networks.” Proc. of IEEE INFOCOM’04
(2004).

[20] Gambiroza, V., Sadeghi, B., and Knightly, E. W. “End-to-End Performance and
Fairness in Multihop Wireless Backhaul Networks.” Proc. of Mobicom’04, Philadel-
phia, PA, USA (2004).

[21] Gao, Q., Zhang, J., and Hanly, S. “Cross-Layer Rate Control in Wireless Networks
with Lossy Links: Leaky-Pipe Flow, Effective Network Utility Maximization and
Hop-by-Hop Algorithms.” Proc. of IEEE INFOCOM’08 (2008).

[22] Gomez, J., Campbell, A., Naghshineh, M., and Bisdikian, C. “Conserving
transmission power in wireless ad hoc networks.” Proc. of 9th International Con-
ference on Network Protocols (ICNP) (2001).

[23] Heinzelman, W. “Application-Specific Protocol Architecture for Wireless Networks.”
Ph.D. Thesis, MIT (2000).

[24] Hou, Y. T., Shi, Y., and Sherali, H. “On Lexicographic Max-Min Node Lifetime for
Wireless Sensor Networks.” Proc. of IEEE ICC’04 7 (2004): 3790–3796.

[25] Hou, Y. Thomas, Shi, Yi, and Sherali, Hanif D. “Rate Allocation in Wireless Sensor
Networks with Network Lifetime Requirement.” Proc. of ACM MobiHoc’04 (2004):
67–77.

101

[26] Huang, X. L. and Bensaou, B. “On Max-Min Fairness and Scheduling in Wireless
Ad-hoc Networks: Analytical Framework and Implementation.” Proc. of MobiHoc’01,
Long Beach, California (2001).

[27] Kalpakis, K., Dasgupta, K., and Namjoshi, P. “Maximum lifetime data gathering and
aggregation in wireless sensor networks.” Proc. of IEEE ICN’02 (2002).

[28] Kar, K., Sarkar, S., and Tassiulas, L. “Achieving Proportionally Fair Rates Using
Local Information in Aloha Networks.” IEEE Transactions on Automated Control 49
(2004).10.

[29] Karp, B. and Kung, H. “GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks.” Proc. of ACM MobiCom’00 (2000).

[30] Kelly, F., Maulloo, A., and Tan, D. “Rate control in communication networks:
shadow prices, proportional fairness and stability.” Journal of the Operational
Research 49 (1998).

[31] Kleinberg, J. M., Rabani, Y., and Tardos, E. “Fairness in Routing and Load
Balancing.” IEEE Symposium on Foundations of Computer Science (1999).

[32] Li, B. “End-to-End Fair Bandwidth Allocation in Multi-hop Wireless Ad Hoc
Networks.” Proc. of IEEE ICDCS’05 (2005).

[33] Li, Q., Aslam, J., and Rus, D. “Online power-aware routing in wireless Ad-hoc
networks.” Proc. of ACM MobiCom’01 (2001): 97–107.

[34] Lin, X. and Shroff, N. B. “The Impact of Imperfect Scheduling on Cross-Layer
Congestion Control in Wireless Networks.” IEEE/ACM Trans. on Networking 14
(2006).2.

[35] Low, S. H. and Lapsley, D. E. “Optimization Flow Control, I: Basic Algorithms and
Convergence.” IEEE/ACM Transactions on Networking (1999).

[36] Luo, H., Cheng, J., and Lu, S. “Self-Coordinating Localized Fair Queueing in
Wireless Ad Hoc Networks.” IEEE Transactions on Mobile Computing 3 (2004).1.

[37] Luo, H., Lu, S., and Bharghavan, V. “A New Model for Packet Scheduling in
Multihop Wireless Networks.” Proc. of MobiCom’00 (2000).

[38] Madan, R., Luo, Z. Q., and Lall, S. “A distributed algorithm with linear convergence
for maximum lifetime routing in wireless sensor networks.” Proc. of the Allerton
Conference on Communication, Control and Computing (2005).

[39] Massoulie, L. and Roberts, J. “Bandwidth Sharing: Objectives and Algorithms.”
EEE Transactions on Networking 10 (2002).3.

[40] Mo, J. and Walrand, J. “Fair End-to-End Window-Based Congestion Control.”
IEEE/ACM Trans. on Networking 8 (2000).5.

102

[41] Mosely, Jeannine. Asynchronous distributed flow control algorithms, Ph.D. thesis.
Ph.D. thesis, MIT, Dept. of Electrical Engineering and Computer Science, 1984.

[42] Perkins, C. E. and Royer, E. M. “Ad Hoc On-demand Distance Vector Routing.”
Proc. of the 2nd IEEE Workshop on Mobile Computing Systems and Applications
(1999).

[43] Qiu, Y. and Marbach, P. “Bandwidth Allocation in Wireless Ad-Hoc Networks: A
Price-based Approach.” Proc. of IEEE INFOCOM’03 (2003).

[44] Radunovic, B. and Boudec, J. Le. “A Unified Framework for Max-Min and Min-Max
Fairness with Applications.” Proc. of Allerton?2 (2002).

[45] Rodoplu, V. and Meng, T. “Minimum energy mobile wireless networks.” IEEE
Journal of Selected Areas in Communications 17 (1999).8: 1333–1344.

[46] Sankar, A. and Liu, Z. “Maximum Lifetime Routing in Wireless Ad-hoc Networks.”
Proc. of IEEE INFOCOM’04 (2004).

[47] Sarkar, S. and Tassiulas, L. “End-to-end Bandwidth Guarantees Through Fair Local
Spectrum Share in Wireless Adhoc Networks.” IEEE Transactions on Automatic
Control 50 (2005).9.

[48] Shi, Y. and Hou, T. “Theoretical Results on Base Station Movement Problem for
Sensor Networks.” Proc. of IEEE INFOCOM (2008).

[49] Singh, S., M.Woo, and Raghavendra, C. “Power-aware routing in mobile ad-hoc
networks.” Proc. of MOBICOM (1998) (1998): 181–190.

[50] Stojmenovic, I. and Lin, X. “Power-aware localized routing in wireless networks.”
IEEE Tran. on Parallel and Distributed Systems 12 (2001).11: 1122–1133.

[51] Tassiulas, L. and Sarkar, S. “Maxmin Fair Scheduling in Wireless Networks.” Proc. of
IEEE INFOCOM’02 (2002).

[52] Wang, X. and Kar, K. “Distributed Algorithms for Max-min Fair Rate Allocation in
Aloha Networks.” Proc. of the 42nd Annual Allerton Conference, Urbana-Champaign
(2004).

[53] Wattenhofer, R., Li, L., Bahl, P., and Wang, Y. “Distributed topology control for
power efficient operation in multihop wireless ad hoc networks.” Proc. of INFOCOM
(2001) (2001).

[54] Wu, Y., Fahmy, S., and Shroff, N. B. “On the Construction of a Maximum-Lifetime
Data Gathering Tree in Sensor Networks: NP-Completeness and Approximation
Algorithms.” Proc. of IEEE INFOCOM’08 (2008).

103

[55] Xue, Y., Li, B., and Nahrstedt, K. “Optimal Resource Allocation in Wireless Ad Hoc
Networks: A Price-based Approach.” IEEE Transactions on Mobile Computing 5
(2006).4.

[56] Yi, Y. and Shakkottai, S. “Hop-by-Hop Congestion Control over a Wireless Multi-hop
Network.” Proc. of IEEE INFOCOM’04, Hong Kong, China (2004).

[57] Zhai, H. and Fang, Y. “Distributed Flow Control and Medium Access in Multihop Ad
Hoc Networks.” IEEE Transactions on Mobile Computing 5 (2006).11.

[58] Zhu, Junhua, Chen, Shan, Bensaou, Brahim, and Hung, Ka-Lok. “Tradeoff between
Lifetime and Rate Allocation in Wireless Sensor Networks: A Cross Layer Approach.”
Proc. of IEEE INFOCOM’07 (2007).

[59] Zussman, G. and Segall, A. “Energy Efficient Routing in Ad Hoc Disaster Recovery
Networks.” Proc. of IEEE INFOCOM’03 (2003).

104

BIOGRAPHICAL SKETCH

Liang Zhang was born in Beijing, China. He received his B.E. and M.E. degrees in

computer science and technology from Tsinghua University, China, in 1999 and 2002,

respectively. After that, he had worked in Oracle R&D Center in China for one year. In

2003, he joined the Department of Computer and Information Science and Engineering at

the University of Florida, to pursue his Ph.D. degree. His advisor is Dr. Shigang Chen.

His research focused on fairness in multihop wireless networks.

105

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 End-to-End Flow Rate Fairness
	1.2 Lifetime Fairness in Sensor Networks
	1.3 Maximizing Lifetime Vector and Maximizing Rate Vector in Sensor Networks
	1.4 Related Work
	1.4.1 Flow Rate Fairness
	1.4.2 Lifetime Fairness in Sensor Networks

	2 CROSS-LAYER DESIGN FOR ACHIEVING END-TO-END MAXMIN
	2.1 Network Model and maxmin Model
	2.1.1 Network Model
	2.1.2 Maxmin Model

	2.2 A generalized maxmin model
	2.2.1 Resources in WMNs
	2.2.2 Generalized Maxmin Model

	2.3 Packet Scheduling Algorithm
	2.3.1 Overview
	2.3.2 Inter-node Scheduling

	2.4 Performance Evaluation
	2.5 Summary

	3 FULLY DISTRIBUTED SOLUTION FOR ACHIEVING GLOBAL END-TO-END MAXMIN
	3.1 Preliminaries
	3.1.1 Network Model and Problem Statement
	3.1.2 Congestion Avoidance and Buffer-Based Backpressure

	3.2 Link Classification
	3.2.1 Saturated Buffer
	3.2.2 Three Link Types
	3.2.3 Saturated Clique

	3.3 Local Conditions for Global Maxmin: Single-Destination Case
	3.3.1 Basic Idea
	3.3.2 Normalized Rate
	3.3.3 Local Conditions for Global Maxmin
	3.3.4 Correctness Proof

	3.4 Local Conditions for Global Maxmin: Multiple-Destinations Case
	3.4.1 Per-Destination Packet Queueing
	3.4.2 Virtual Nodes, Virtual Links, and Virtual Networks
	3.4.3 Localized Requirements for Global Maxmin

	3.5 Distributed Global Maxmin Protocol (GMP)
	3.5.1 Overview
	3.5.2 Measurement Period
	3.5.3 Adjustment Period

	3.6 Simulation
	3.6.1 Effectiveness of GMP
	3.6.2 Performance Comparison

	3.7 Summary

	4 DISTRIBUTED PROGRESSIVE ALGORITHM FOR MAXIMIZING LIFETIME VECTOR IN WIRELESS SENSOR NETWORKS
	4.1 Network Model and Problem Definition
	4.1.1 Sensor Network Model
	4.1.2 Volume Schedule
	4.1.3 Maximum Lifetime Vector Problem
	4.1.4 Routing Graph

	4.2 Necessary and Sufficient Conditions for Maximizing Lifetime Vector
	4.3 Distributed Progressive Algorithm
	4.3.1 Rate Schedule, Volume-Bound Distribution, Volume Schedule
	4.3.2 Initialization Phase
	4.3.3 Iterative Phase --- Step 1: From Rates to Volume Bounds
	4.3.4 Iterative Phase --- Step 2: From Volume Bounds to Volumes and Rates
	4.3.5 Property
	4.3.6 Termination Conditions
	4.3.7 Overhead
	4.3.8 Network Dynamics

	4.4 Simulation
	4.4.1 A Simple Illustrative Test Case
	4.4.2 Convergence Speed of DPA
	4.4.3 Scalability of DPA
	4.4.4 Comparison with Hou's Centralized Algorithm
	4.4.5 Comparison with Other Centralized and Distributed Solutions

	4.5 Summary

	5 Conclusion
	REFERENCES
	BIOGRAPHICAL SKETCH

