
Optimal Alignment of Three Sequences On A GPU

Junjie Li and Sanjay Ranka and Sartaj Sahni
Department of Computer and Information Science and Engineering

University of Florida, Gainesville, FL 32611, USA
(jl3, ranka, sahni)@cise.ufl.edu

Abstract

We develop two algorithms–layered and sloped–to
align three sequences on a GPU. Our algorithms can
be used to determine the alignment score as well as
the actual alignment. Experiments conducted using an
NVIDIA C2050 GPU show that our sloped algorithm is
3 times as fast as the layered one. Further, the sloped
algorithm delivers a speedup of up to 90 relative to
the single core algorithm running on our host CPU
when determining the score of the best alignment and
a speedup between 21 and 56 when computing the best
alignment as well as its score.

1 Introduction

Multiple sequence alignment is a fundamental prob-
lem in bioinformatics. In this problem, we are given
a set of N sequences Ψ = {S0, S1, . . . , SN−1} where
|Si| = li and i ∈ {0, 1, . . . , N − 1}. For DNA sequences,
the alphabet for Ψ is the four letter set {A,C,G, T}
and for protein sequences, the alphabet is the 20 letter
set {A,C − I,K −N,P − T, V WY }. We are to insert
gaps into the sequences so that the resulting sequences
are of the same length; in the resulting sequences, each
character is said to be aligned with the gap or character
in the corresponding position in each of the other
sequences; and the alignment score is maximized. On a
single core CPU, the best multiple sequence alignment
(i.e., the one with maximum score) of Ψ can be found
in O(|S0| ∗ |S1| ∗ . . . ∗ |SN−1|) time using dynamic
programming [18]. In this paper, we focus on GPU
algorithms for the optimal alignment of 3 sequences
(i.e., N = 3).

Several papers have been written on three-sequence
alignment. We briefly mention a few here. Murata
et al. in [16] developed algorithms for the optimal
alignment of 3 sequences using a constant gap weight.
Gotoh [2] developed algorithms to align three sequences
using an affine gap penalty model. Huang [5] reduced
the memory requirement of these algorithms to be
quadratic in the sequence length. Powell et al. [17] have
developed a faster three-sequence alignment algorithm

using a speed-up technique based on Ukkonen’s greedy
algorithm [19]. Hung et al. [6] use a position specific
gap penalty model for three-sequence alignment. Yue
et al. [21] propose a divide-and-conquer algorithm for
three-sequence alignment and Lin et al. [10] propose a
parallel algorithm for three-sequence alignment.

Besides being of interest in its own right, three-
sequence alignment has been proposed as a base step
in the alignment of a larger number of sequences.
For example, Kruspe and Stadler [7] report improved
accuracy when three-sequence alignment is used instead
of pairwise sequence alignment in their progressive
multiple sequence alignment program aln3nn. Three-
sequence alignment also helps in the tree alignment
problem [20].

In practice, heuristics that trade optimality for com-
putational efficiency are often used when N > 2 due to
the high computational complexity of multiple sequence
alignment, However, with the advent of low-cost paral-
lel computers, there is renewed interest in developing
computationally practical algorithms that guarantee
optimality of the constructed alignment and several
researchers have developed efficient GPU algorithms
for the optimal alignment of 2 sequences (e.g., [8],
[9]). GPU adaptations for heuristic multiple sequence
alignment have also been developed [3] [11] [12] [14] [13].
However, it appears that no algorithms for three-
sequence alignment on a GPU have yet been developed.

In this paper, we develop two single-GPU algorithms
for the optimal alignment of three sequences. The
first of these uses a layering approach while the second
uses a sloped approach. Experimental results using an
NVIDIA GPU show that the sloped approach results
in a faster algorithm and that this algorithm is an
order of magnitude faster than a single-core alignment
algorithm running on the host computer. The rest of
the paper is organized as follows. In section 2, we
review the NVIDIA GPU architecture used by us and in
Section 3, we describe the optimal single-core algorithm
for multiple sequence alignment for the case N = 3.
In section 4, we describe our GPU adaptation of this
algorithm for the case when we want to report only the
score of the best alignment and in Section 5, we describe

our adaptation for the case when the best alignment
as well as its score are to be reported. Experimental
results are presented in Section 6 and we conclude in
Section 7.

2 GPU Architecture

Our work targets the NVIDIA C2050 GPU. The
C2050 comprises 448 processor cores grouped into 14
groups with 32 cores per group. Each group is called a
SM (streaming multiprocessor). Each SM has 64KB
of shared memory/L1 cache that may be set up as
either 48KB of shared memory and 16KB of L1 cache
or 16KB of shared memory and 48KB of L1 cache.
In addition, each SM has 32K registers. The 14
SMs access a common 3GB of DRAM memory, called
device or global memory, via a 768KB L2 cache. A
C2050 is capable of performing up to 1.288 TFLOPS of
single-precision operations and 515 GFLOPS of double
precision operations. A C2050 connects to the host
processor via a PCI-Express bus. The master-slave
programming model in which one writes a program for
the host or master computer and this program invokes
kernels that execute on the GPU is supported. The
programming language is CUDA, which is an extension
of C to include GPU support. The key challenge in
deriving high performance on this machine is to be
able to effectively minimize the memory traffic between
the SMs and the global memory of the GPU. Data
that is used repeatedly should go to registers or shared
memory while data that is used less frequently but of
larger size should go to device memory. This effectively
requires design of novel algorithmic and implementation
approaches and is the main focus of this paper.

3 Three Sequence Alignment
Algorithm

The input to the 3-sequence alignment problem is a
set Ψ = {S0, S1, S2} of 3 sequences and a substitution
matrix sub such as BLOSUM [4] or PAM [1], which
defines the score for character pairs xy. The output is
a 3 × l matrix M where l ≥ max(|S0|, |S1|, |S2|). Row
i of M is Si, 0 ≤ i < 3, with gaps possibly inserted at
various positions and such that each column of M has
at least one non-gap character. M defines an alignment
whose score is

score(M) =

l−1∑
i=0

obj(M [0][i],M [1][i],M [2][i])

In this paper, we define obj to be the sum-of-pairs
function [18]:

obj(M [0][i],M [1][i],M [2][i]) = sub[M [0][i]][M [1][i]]

+sub[M [0][i]][M [2][i]]

+sub[M [1][i]][M [2][i]]

The alignment M is optimal iff it maximizes score(M).
The dynamic programming algorithm to construct M
first computes an (|S0|+1)×(|S1|+1)×(|S2|+1) matrix
H using the recurrences given below [18].

H[i][j][k] = max



H[i− 1][j − 1][k − 1] + obj(S0[i− 1], S1[j − 1], S2[k − 1])

H[i− 1][j − 1][k] + obj(S0[i− 1], S1[j − 1],−)

H[i− 1][j][k − 1] + obj(S0[i− 1],−, S2[k − 1])

H[i][j − 1][k − 1] + obj(−, S1[j − 1], S2[k − 1])

H[i− 1][j][k] + obj(S0[i− 1],−,−)

H[i][j − 1][k] + obj(−, S1[j − 1],−)

H[i][j][k − 1] + obj(−,−, S2[k − 1])

where ”−” denotes a GAP and β is the GAP penalty.
The initial conditions are (i > 0, j > 0, k > 0):

H[0][0][0] = 0

H[i][0][0] = 2 × i× β

H[0][j][0] = 2 × j × β

H[0][0][k] = 2 × k × β

H[i][j][0] = max


H[i− 1][j − 1][0] + obj(S0[i− 1], S1[j − 1],−)

H[i− 1][j][0] + obj(S0[i− 1],−,−)

H[i][j − 1][0] + obj(−, S1[j − 1],−)

H[i][0][k] = max


H[i− 1][0][k − 1] + obj(S0[i− 1],−, S2[k − 1])

H[i− 1][0][k] + obj(S0[i− 1],−,−)

H[i][0][k − 1] + obj(−,−, S2[k − 1])

H[0][j][k] = max


H[0][j − 1][k − 1] + obj(−, S1[j − 1], S2[k − 1])

H[0][j − 1][k] + obj(−, S1[j − 1],−)

H[0][j][k − 1] + obj(−,−, S2[k − 1])

The score of the optimal alignment is
H[|S0|][|S1|][|S2|] and the corresponding alignment
matrix M may be constructed using a backtrace
process that starts at H[|S0|][|S1|][|S2|]. The time
required to compute the H values is O(|S0||S1||S2|).
An additional O(l) time is required to construct the
optimal alignment matrix

4 Computing the Score of the
Best Alignment

In this section, we describe two GPU algorithms,
LAY ERED and SLOPED, to compute H.

4.1 Layered Algorithm

GPU Computational Strategy

In this algorithm, which is called LAY ERED, the
three-dimensional matrix H is partitioned into s× s×

(|S2|+1) chunks (cuboids) as shown in Figure 1, where
s is an algorithm design parameter.

|S |+10

|S |+12

|S |+11

s
s

0

111085

97

63

4

1

2

N

W E

S

Figure 1: The partitioning of the three-dimensional
matrix H

Let d be the number of chunks in the partitioning
of H. These chunks form an (|S1| + 1)/s × (|S0| +
1)/s matrix whose elements may be numbered from 0
through d−1 in antidiagonal (i.e., top-right to bottom-
left) order as in Figure 1. Let p be the number of SMs
in the GPU (for the C2050, p = 14). SM i of the GPU
will compute the H values for all chunks j such that j
mod p = i, 0 ≤ j < c, 0 ≤ i < p.

Each SM works on its assigned chunks serially. For
example, when p = 3 and d = 12, SM 0 is assigned
chunks 0, 3, 6, and 9. This SM will first compute the
H values for chunk 0, then for chunk 3, then for chunk
6, and finally for chunk 9. In general, SM i computes
chunk i, followed by i+ p and so on.

The H values of a chunk are computed by the SM
to which the chunk is assigned one layer at a time,
where a layer is comprised of all H values in an s × s
horizontal slice of the chunk. As can be seen, the
total number of layers is |S2| + 1. Within a layer, the
computations are done in antidiagonal order beginning
with the antidiagonal that is comprised of the top left
element of the layer (or slice). All values on the same
antidiagonal of the layer are computed in parallel in a
SIMD (singe instruction multiple data) fashion. When
one layer has been computed, the SM moves to the
next layer. When all layers have been computed, the
SM moves to the next chunk assigned to it. In order to
achieve high performance, the computed H values for a
layer are stored in the shared memory of the SM until
the computation of the next layer is complete as the
current layer’s H values are needed to compute those
of the next layer. At any time during the computation,
only two layers of H values are kept in shared memory
and the memory space for these two layers is used in a
round-robin fashion to save shared memory.

From the dynamic programming recurrence for H,

we see that the H values in a chunk depend only on
those on the shared boundary (east vertical face) of
the chunks to its west and northwest and those on the
shared boundary (south vertical face) of the chunks to
its north and northwest. With respect to the (|S1| +
1)/s× (|S0|+ 1)/s matrix of chunks, it is necessary for
the SM that computes the H values for chunk (i, j) to
communicate the computed H values on its east vertical
face to the SM that will compute the chunks (i, j + 1)
and (i + 1, j + 1) (the top left corner of this matrix is
indexed (0, 0) and the values on its south vertical face
to the SM that will compute the chunks (i + 1, j) and
(i+1, j+1)). The s×(|S2|+1) H values on each of these
vertical faces are communicated to the appropriate SMs
via the GPU’s global memory. Each SM writes the H
values on its east and south faces to global memory.
When an SM has completed the computation for its
current layer, it polls the global memory to determine
whether the boundary values need for the next layer
are ready. If so, it proceeds to the next layer. If not,
it idles. In case there is no next layer in the current
chunk, the SM proceeds to its next assigned chunk.

Analysis

To run the layered algorithm, each SM requires
O(s2) shared memory to store the values associated
with a layer and O(|S0||S1||S2|/s) global memory to
communicate the H values on its east and south faces.
Since shared memory is very small on current GPUs,
the available shared memory constrains the chunk
size s. Because of the high cost of data transfer
between SMs and global memory (relative to the cost
of arithmetic), the run time performance of a GPU
algorithm is often correlated to the volume of data
transferred between the SMs and global memory. The
layered algorithm transfers a total of O(|S0||S1||S2|/s)
data between the GPU’s global memory and the SMs.

The computational time (excluding time taken by the
global memory I/O traffic) is computed by first noting
that the c cores of an SM can do the computation for
one layer in O(s2/c) time computing the H values on
each antidiagonal of a layer in parallel. So, the time
to do the computation for one chunk is O(s2|S2|/c).
Since the computation for the ith chunk cannot begin
until the first layers of its west, north, and northwest
neighbor chunks have been computed, each SM, other
than SM 0, experiences a startup delay. As the
antidiagonal from which the first chunk assigned to the
last SM, SM p− 1, is O(

√
p), the startup delay for SM

p− 1 is O(
√
p ∗ (s2/c)). When |S2| is sufficiently large

(larger than d√pe) SMs experience (almost) no further
delay in working on their assigned SMs. The number
of chunks assigned to an SM is O(|S0||S1|/(ps2)). So,

the total computation time (exclusive of global memory
I/O time) is O(|S0||S1||S2|/(pc) +

√
p ∗ (s2/c)).

While computation time exclusive of global I/O time
increases as s increases (because the startup delay for
SMs increases), global I/O time decreases as s increases.
Our experiments show that for large |S0|, |S1| and
|S2|, the reduction in global I/O memory traffic that
comes from increasing s is substantially higher than the
increase in time spent on computational tasks. Thus,
within limits, choosing a large s will reduce the overall
time requirements. As noted earlier, the value of s,
is however, upper bounded by the amount of shared
memory per SM.

4.2 Sloped Algorithm

GPU Computational Strategy

In this algorithm, which is called SLOPED, we
partition H into s × s × (|S2| + 1) chunks and assign
these chunks to SMs as in the layered algorithm.
However, instead of computing the H values in a
chunk by horizontal layers and within a layer by
antidiagonals, the H values are computed by ”sloped”
planes comprised of H[i][j][k]s for which q = i + j + k
is the same. The first sloped plane has q = 0, the
next has q = 1, and the last has q = 2s + |S2| − 2.
The computation for the plane q + 1 begins after that
for the plane q completes. Within a plane q, the H
values for all i, j, and k for which i + j + k = q can
be done in parallel. The number of parallel steps in the
computation of a chunk is therefore 2s + |S2| − 1. In
contrast, the layered algorithm cannot compute all H
values in a chunk’s layer in parallel. The computation
of a layer is done by antidiagonals in 2s− 1 steps with
each step computing the values on one antidiagonal in
parallel. The total number of parallel steps employed
by the layered algorithm in the computation of a chunk
is (2s−1)∗(|S2|+1). Hence, when both the layered and
sloped algorithms use the same s, the sloped algorithm
uses fewer steps with each step comprised of more work
that can be done in parallel. Under these conditions,
the sloped algorithm is expected to perform better than
the layered algorithm. However, as noted earlier, the
value of s is constrained by the amount of local SM
memory available. As we shall see below, the sloped
algorithm requires more SM memory and so must use
a smaller s.

Analysis

To compute the H values on a sloped plane q, we
need the H values from the planes q − 1, q − 2, and
q − 3. For efficient computation, we must therefore
have adequate SM memory for 4 sloped planes. Since a

sloped plane may have up to (s+1)2 H values, each SM
must have sufficient memory to accommodate 4(s+ 1)2

H values, which is twice the number of H values that
the layered algorithm stores in the shared memory of an
SM. The sloped algorithm generates the same amount
of I/O traffic between the SMs and global memory as
does the layered algorithm. The two algorithms also
require the same amount of global memory.

Proceeding as for LAY ERED, we see that the delay
time for SM p − 1 is O(

√
p(s3/c)) where O(s3/c) is

the time taken to compute the small pyramid. The
time to compute all the chunks assigned to an SM is
O(|S0||S1||S2|/(pc). So, the total time (exclusive of
global I/O traffic time) is O(|S0||S1||S2|/(pc) +

√
p ∗

(s3/c)). Although the analysis shows the total time for
SLOPED is larger than that for LAY ERED because
of the larger delay to start SM p−1, when S0, S1, and S2

are large, the greater parallelism afforded by SLOPED
coupled with the need for fewer synchronization steps
dominates and the measured run time is smaller for
SLOPED.

5 Computing the Best
Alignment

The layered and sloped algorithms may be extended
to compute not only the score of the best alignment
but also the best alignment. We describe three possible
extensions for the layered algorithm. These extensions
represent a tradeoff among conceptual and implemen-
tation simplicity, computational requirements for the
traceback done to compute the best alignment from
the scores, and the amount of parallelism. Identical
extensions may be made to the sloped algorithm.

5.1 LAY ERED −BT1

To compute the best alignment, we need to maintain
additional information that can be used during the
traceback. In particular, for each position (i, j, k) of
H, we associate the coordinates (is, js, ks) of the local
start point of the optimal path to (i, j, k). This local
start point is a position on the boundary of north,
northwest, or west neighbor chunk of the chunk that
contains the position (i, j, k). LAY ERED − BT1 is a
3-phase algorithm:

(1) Phase 1: This is an extension of LAY ERED in
which each chunk stores, in global memory, not
only the H values needed by its neighboring chunks
but also the local start point of the optimal path
to each boundary cell.

(2) Phase 2: For each chunk, we sequentially deter-

mine, the start point and end point of the subpath
of the best alignment that goes through this chunk.
This is done by tracing the best path backwards
from position (|S0|, |S1|, |S2|) to position (0, 0, 0)
using the local start points of boundary cells
computed in Phase 1. This traceback goes from
the boundary of one chunk to the boundary of
a neighbor chunk without actually entering any
chunk.

(3) Phase 3: The subpath of the best path within each
chunk is computed by recomputing the H values
for the chunks through which the best alignment
path traverses. Note that Phase 2 determines
which chunks the best path goes through. Using
the saved boundary H values, it is possible to
compute the subpaths for all chunks in parallel.

The global memory required by LAY ERED − BT1
is more than that required by LAY ERED as Phase 1
stores a 3D position with H value saved. Assuming
4 bytes for each coordinate of a 3D position and 4
bytes for an H value, LAY ERED − BT1 requires
16 bytes per boundary cell while LAY ERED requires
only 4. Additionally, in the Phase 3 computation,
we need to store with every position in a chunk
which of the 7 options on the right hand side of the
dynamic programming recurrence for H resulted in the
max value. This can be done using 3 bits (or more
realistically, 1 byte) per position in a chunk.

5.2 LAY ERED −BT2

Although LAY ERED − BT2 is also a three phase
algorithm, LAY ERED − BT2 partitions each chunk
into subchunks of height h (Figure 2). The three phases
are as follows:

(1) Phase 1: Chunks are assigned to SMs as in
LAY ERED. In addition to the H and local start
points stored in global memory by LAY ERED −
BT1, we store the H values of the positions on the
bottom face of each subchunk.

(2) Phase 2: Use the local start point data stored
in global memory by the Phase 1 computation to
determine the start and end points of the subpaths
of the best alignment path within each chunk. This
phase computes the same start and end points as
computed in Phase 2 of LAY ERED −BT1.

(3) Phase 3: The subpath of the best path within each
chunk is computed by recomputing the H values
for the chunks through which the best alignment
path traverses. For each chunk through which this
path passes, the computation begins at the first

layer of the topmost subchunk through which the
path passes (see Figure 2, shaded subchunks are
the subchunks through which the best alignment
path passes). The computation for the different
chunks through which the best alignment path
passes can be done in parallel as in LAY ERED−
BT1.

0 631

a

fed

c

bh

s

s

Figure 2: Some of the chunks traversed by the optimal
path

The major differences between LAY ERED − BT1
and LAY ERED −BT2 are:

(1) Since LAY ERED − BT2 saves H values on the
bottom face of each subchunk in addition to data
saved by LAY ERED − BT1, it generates more
I/O traffic than LAY ERED − BT1 and also
requires more global memory. The amount of
additional I/O traffic and global memory required
is O(S1||S2||S3|/h).

(2) For each chunk through which the best alignment
path passes, LAY ERED−BT1 begins the Phase
3 computations at layer 1 of that chunk while
LAY ERED−BT2 begins this computation at the
first layer of the topmost subchunk through which
this path passes.

5.3 LAY ERED −BT3

For LAY ERED − BT3, the local start points are
defined to be positions on neighboring subchunks of
the subchunk that contains the position (i, j, k) (rather
than points on neighboring chunks of the chunk that
contains (i, j, k)). The three phases of LAY ERED −
BT3 are:

(1) Phase 1: Chunks are assigned to SMs as in
LAY ERED. For each subchunk, we store in
global memory, the H values on its south, east,
and bottom faces as well as the local start point of

the optimal path to each of the positions on these
faces.

(2) Phase 2: For each subchunk, we sequentially
determine, the start point and end point (if any) of
the subpath of the best alignment path that goes
through this subchunk.

(3) Phase 3: The subpath (if any) of the best path
within each subchunk is computed by recomputing
the H values for those subchunks through which
the best alignment path traverses. Note that Phase
2 determines the subchunks through which the best
path goes. Using the saved boundaryH values, it is
possible to compute the subpaths for all subchunks
in parallel.

LAY ERED−BT3 has more global I/O traffic than
LAY ERED − BT2 in Phase 1 and also requires more
global memory. Phase 2 of both algorithms do the same
amount of work. We expect Phase 3 of LAY ERED −
BT3 to be faster than that of LAY ERED − BT2
because of better load balancing resulting from the finer
granularity of the per-subchunk work and the fact that
there are more subchunks than chunks, which leads to
more parallelism. For example, suppose one chunk has
50 subchunks through which the best alignment path
passes and another chunk has only 1 such subchunk.
Phase 3 of LAY ERED − BT2 can use at most 2 SMs
with 1 working on all 50 subchunks of the first chunk
and the other working on the single subchunk of the
second chunk. The workload over the two assigned SMs
is unbalanced and the degree of parallelism is only 2.
Phase 3 of LAY ERED−BT3, however, is able to use
up to 51 SMs assigning 1 subchunk to each SM resulting
in better workload balancing and a higher degree of
parallelism.

6 Experimental Results

In this section, we present experimental results for
our scoring and alignment algorithms. All of these ex-
periments were conducted on an NVIDIA Tesla C2050
GPU. The host machine has an Intel i7-x980 3.33GHz
CPU and 12GB DDR3 RAM.

6.1 Computing the score of the best
alignment

We fixed s = 67 for LAY ERED and s = 47 for
SLOPED and experimented with real instances of
different sizes. These two s values were determined
from our experimental results which produced the least
running time. The sequences used were retrieved from
NCBI Entrez Gene [15] and their sizes are represented

Table 1: Running time (seconds) for different instances

(113,166,364) (347,349,365) (267,439,452) (764,771,773) (1399,1404,1406)
LAY ERED 0.034 0.165 0.162 1.250 6.643
SLOPED 0.044 0.087 0.090 0.416 1.921
Scoring 0.570 3.610 4.270 37.500 -
Traceback 0.630 4.010 4.760 41.600 -

as a tuple (|S0|, |S1|, |S2|). The running time is shown
in Table 1. The running time of the single-core
scoring method and the single-core traceback method
running on our host CPU is referred to as Scoring
and Traceback in Table 1, respectively, for comparison
purpose. As can be seen, SLOPED is about three
times as fast as LAY ERED for large instances and is
up to 90 times as fast as the single-core CPU algorithm!
In our tests speedup increases with instance size.

6.2 Computing the alignment

Because of memory limitations, our scoring algo-
rithms can handle sequences whose size is up to approx-
imately (2500, 2500, 2500) while our alignment algo-
rithms can handle sequences of size up to approximately
(1500, 1500, 1500). We used s = 47, h = 40 for
layered algorithms and s = 31, h = 100 for the sloped
algorithms which were determined by experiments to
be the optimal values.

We tested our alignment algorithms, with parameters
set as above, on the real instances used earlier for
the scoring experiments. The measured run times are
reported in Table 2 and Figure 3 (L− for LAY ERED,
S− for SLOPED). We do not report the time for
Phase 2 as this is negligible compared to that for the
other phases. Although BT2 and BT3 reduce the run
time of the third phase, the overall time is dominated
by that for Phase 1. Again, the SLOPED algorithms
are about three times as fast as the LAY ERED algo-
rithms. The SLOPED algorithms provide a speedup
between 21 to 56 relative to the single core algorithm
running on our host CPU.

7 Conclusion

We have developed two GPU algorithms to optimally
align three sequences. The sloped scoring algorithm,
which is 3 times as fast as the layered algorithm,
provides a speedup of up to 90 relative to a single-
core algorithm running on our host CPU. The sloped
alignment algorithm is also 3 times as fast as the
layered one and provides a speedup between 21 and
56 relative to the single core algorithm. The strategies
we used in this paper can also be extended to affine gap
model though the computation will require more cubic

Table 2: Running time (seconds) of traceback methods for real instances
(113,166,364) (347,349,365) (267,439,452) (764,771,773) (1399,1404,1406)

Phase 1 Phase 3 Total Phase 1 Phase 3 Total Phase 1 Phase 3 Total Phase 1 Phase 3 Total Phase 1 Phase 3 Total
L−BT1 0.062 0.012 0.076 0.298 0.042 0.342 0.348 0.035 0.386 2.814 0.121 2.941 14.994 0.277 15.300
L−BT2 0.062 0.005 0.069 0.298 0.010 0.310 0.347 0.010 0.359 2.813 0.014 2.834 14.982 0.021 15.036
L−BT3 0.062 0.005 0.069 0.298 0.010 0.310 0.347 0.009 0.360 2.812 0.016 2.836 14.977 0.023 15.040
S −BT1 0.013 0.002 0.030 0.064 0.005 0.111 0.077 0.006 0.125 0.583 0.021 0.736 3.513 0.058 3.850
S −BT2 0.014 0.002 0.032 0.067 0.002 0.114 0.080 0.002 0.127 0.606 0.003 0.748 3.648 0.005 3.946
S −BT3 0.014 0.002 0.032 0.067 0.002 0.114 0.080 0.002 0.127 0.604 0.004 0.747 3.636 0.006 3.939

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

(113,166,364) (347,349,365) (267,439,452) (764,771,773) (1399,1404,1406)

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Instances

Single-core
L-BT1
L-BT2
L-BT3
S-BT1
S-BT2
S-BT3

Figure 3: Plot of running time (seconds) of traceback
methods for real instances

matrices to store temporary values.

8 Acknowledgment

This work was supported, in part, by the National
Science Foundation under grants CNS0963812,
CNS1115184, and the National Institutes of Health
under grant R01-LM010101.

References

[1] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt.
A model of evolutionary change in proteins. Atlas
of protein sequence and structure, 5(suppl 3):345–
351, 1978.

[2] Osamu Gotoh. Alignment of three biological
sequences with an efficient traceback procedure.
Journal of Theoretical Biology, 121(3):327–337,
1986.

[3] Adam Gudy and Sebastian Deorowicz. A
parallel gpu-designed algorithm for the constrained
multiple sequence alignment problem. In Tadeusz
Czachrski, Stanislaw Kozielski, and Urszula

Stanczyk, editors, Man-Machine Interactions 2,
volume 103 of Advances in Intelligent and Soft
Computing, pages 361–368. Springer Berlin /
Heidelberg, 2011.

[4] S. Henikoff and J. G. Henikoff. Amino acid substi-
tution matrices from protein blocks. Proceedings
of the National Academy of Sciences of the United
States of America, 89(22):10915–10919, November
1992.

[5] Xiaoqiu Huang. Alignment of three sequences
in quadratic space. ACM SIGAPP Applied
Computing Review, 1(2):7–11, 1993.

[6] Che-Lun Hung, Chun-Yuan Lin, Yeh-Ching
Chung, and Chuan Yi Tang. Introducing variable
gap penalties into three-sequence alignment for
protein sequences. In Advanced Information
Networking and Applications-Workshops, 2008.
AINAW 2008. 22nd International Conference on,
pages 726–731. IEEE, 2008.

[7] Matthias Kruspe and Peter F Stadler. Progressive
multiple sequence alignments from triplets. BMC
bioinformatics, 8(1):254, 2007.

[8] Junjie Li, Sanjay Ranka, and Sartaj Sahni. Pair-
wise sequence alignment for very long sequences on
gpus. Computational Advances in Bio and Medical
Sciences, IEEE International Conference on, 0:1–
6, 2012.

[9] Junjie Li, Sanjay Ranka, and Sartaj Sahni. Parallel
syntenic alignment on gpus. In Proceedings
of the 3rd ACM Conference on Bioinformatics,
Computational Biology and Biomedicine, BCB ’12.
ACM, 2012.

[10] Chun Yuan Lin, Chen Tai Huang, Yeh-Ching
Chung, and Chuan Yi Tang. Efficient parallel
algorithm for optimal three-sequences alignment.
In Parallel Processing, 2007. ICPP 2007. Interna-
tional Conference on, pages 14–14. IEEE, 2007.

[11] Cheng Ling, K. Benkrid, and A.T. Erdogan. High
performance intra-task parallelization of multiple
sequence alignments on cuda-compatible gpus.

In Adaptive Hardware and Systems (AHS), 2011
NASA/ESA Conference on, pages 360 –366, june
2011.

[12] W. Liu, B. Schmidt, G. Voss, and W. Muller-
Wittig. Gpu-clustalw: Using graphics hardware
to accelerate multiple sequence alignment. High
Performance Computing-HiPC 2006, page 363374,
2006.

[13] W. Liu, B. Schmidt, G. Voss, and W. Muller-
Wittig. Streaming algorithms for biological se-
quence alignment on gpus. Parallel and Distributed
Systems, IEEE Transactions on, 18(9):1270 –1281,
sept. 2007.

[14] Yongchao Liu, B. Schmidt, and D.L. Maskell. Msa-
cuda: Multiple sequence alignment on graphics
processing units with cuda. In Application-specific
Systems, Architectures and Processors, 2009.
ASAP 2009. 20th IEEE International Conference
on, pages 121 –128, july 2009.

[15] Donna Maglott, Jim Ostell, Kim D. Pruitt, and
Tatiana Tatusova. Entrez gene: gene-centered
information at ncbi. Nucleic Acids Research,
33(suppl 1):D54–D58, 2005.

[16] M Murata, JS Richardson, and Joel L Sussman. Si-
multaneous comparison of three protein sequences.
Proceedings of the National Academy of Sciences,
82(10):3073–3077, 1985.

[17] David R Powell, Lloyd Allison, and Trevor I Dix.
Fast, optimal alignment of three sequences using
linear gap costs. Journal of Theoretical Biology,
207(3):325–336, 2000.

[18] Bertil Schmidt. Bioinformatics: High Performance
Parallel Computer Architectures. CRC Press, Inc.,
Boca Raton, FL, USA, 1st edition, 2010.

[19] Esko Ukkonen. On approximate string matching.
In Foundations of Computation Theory, pages
487–495. Springer, 1983.

[20] Andrés Varón, Ward C Wheeler, et al. The tree
alignment problem. BMC bioinformatics, 13:293,
2012.

[21] Feng Yue and Jijun Tang. A divide-and-conquer
implementation of three sequence alignment and
ancestor inference. In Bioinformatics and
Biomedicine, 2007. BIBM 2007. IEEE Interna-
tional Conference on, pages 143–150. IEEE, 2007.

