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Abstract. We propose a blocked version of Floyd’s all-pairs shortest-
paths algorithm. The blocked algorithm makes better utilization of cache
than does Floyd’s original algorithm. Experiments indicate that the
blocked algorithm delivers a speedup (relative to the unblocked Floyd’s
algorithm) between 1.6 and 1.9 on a Sun Ultra Enterprise 4000/5000 for
graphs that have between 480 and 3200 vertices. The measured speedup
on an SGI O2 for graphs with between 240 and 1200 vertices is between
1.6 and 2.
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1 Introduction

Traditionally, algorithms are developed, analyzed, and optimized for the RAM
computer model in which a computer has a single uniformly accessible memory
[11]. Contemporary computers, however, have multiple levels of memory and
the memory access time varies significantly from one memory level to the next.
For example, contemporary Sun and SGI workstations have an L1 cache, an L2
cache, and a main memory. The L1 cache in a Sun Ultra Enterprise 4000/5000
is 16 KB, the L2 cache is 4 MB, and main memory is in excess of 100 MB.
Additionally, a contemporary computer has a limited number of registers—ten
to twenty. Typically, it takes 1 cycle to access data from L1 cache. When the
desired data is not in L1 cache, we experience an L1 miss and the data is brought
from L2 cache to L1 cache using 6 to 10 cycles. If the desired data is not in L2
cache either, then we experience an L2 miss and data is fetched from main
memory into L2 cache at a cost of (say) 50 cycles, and from there to L1 cache.
We can reduce run time by organizing our computations so as to minimize the
number of L1 and L2 cache misses.

Although several theoretical models for computers with multiple-level mem-
ories have been proposed [3,?,?], these models have not found wide application,
and most of the work in the area of performance enhancement via cache opti-
mization has been experimentally oriented. Trace driven simulators have been
used to study the cache performance of a specific program running on a specific
computer, determine the portions of the code or the data structures that result
in a large fraction of the cache misses, and then optimize these code segments
and/or data structures. Trace driven simulations have also been used to develop



analytical models of cache behavior. See [4,15,19,22-24], for example, for some
ways in which trace driven simulators have been used in cache performance
enhancement studies.

La Marca and Ladner [13] develop a model for a single-level direct-mapped
cache. They use this model to analyze the performance of binary heaps and
cache-aligned d-heaps. LaMarca and Ladner [14] optimize the cache performance
of several sorting methods. Their cache optimized heapsort and mergesort codes
achieve a speedup of 1.85 and 1.38, respectively, when sorting 1,000,000 uni-
formly distributed integers on a Sprac 10 processor. Lam, Rothberg, and Wolf
[12] have considered the cache performance of a blocked matrix multiply code
relative to a traditional matrix multiply code. They report a speedup of 4.3 for
their blocked matrix multiply code for a matrix of size 300. Sulatycke and Ghose
[21] and Stewart [20] have also studied the cache performance of various ma-
trix multilication algorithms. Stewart [20] reports that the best way to muliply
the matrices A and B is to first transpose B and then use the classical three
loop algorithm on A and BT. He further reports that by simply reordering the
loops from the traditional 4jk order to an ikj order (i.e., interchange the second
and third for loops in the traditional code) the code performance is about the
same as when square blocks (as used in [12] are used); row blocks yield superior
speedup than column blocks and ikj ordering. Note that the transpose method,
ikj ordering, square blocking, and row blocking deliver speedup relative to the
traditional ijk code by reducing cache misses. Stewart [20] reports a speedup of
2.7 for the transpose method relative to the ¢jk code; both codes were written
in C and compiled using maximum compiler optimization; the matrix size was
1200, and the code was run on a SUN Ultra Enterprise 4000/5000 computer.

Al-Furaih and Ranka [5, 6] have studied cache optimization methods for sort-
ing and unstructured iterative computations.

In this paper we propose a blocked formulation of Floyd’s dynamic program-
ming algorithm to find the lengths of the shortest paths between all pairs of
vertices in a graph [11]. Blocked (or tiled) computation methods have been used
before (for example, [16,?,7,?,?,?]). Our blocked algorithm provides a speedup
(relative to the unblocked algorithm) between 1.6 and 1.9 on a Sun Ultra En-
terprise 4000/5000 for graphs that have between 480 and 3200 vertices. The
measured speedup on an SGI O2 for graphs with between 240 and 1200 vertices
is between 1.6 and 2. These speedups are comparable to the speedups cited above
for cache-optimized sorting and matrix multiplication codes on Sun platforms.

In Section 2 we give Floyd’s all-pairs shortest-paths algorithm. Section 3 ana-
lyzes the potential speedup benefits from reorganizing Floyd’s algorithm to make
better use of cache. This analysis uses data gathered using the cache simulation
tool Shade [17]. Our blocked version of Floyd’s algorithm and a correctness proof
are given in Section 4. Section 5 gives measured speedup results for our blocked
algorithm.



2 Floyd’s All-Pairs Shortest-Paths Algorithm

Let G = (V, E) be a directed graph with n vertices. Let cost be the cost adjacency
matrix for G. So cost(i,i) = 0, 1 < i < n; cost(i, ) is the length (or cost) of
edge (4,7) if (4,5) € E(G) and cost(i,j) = oo if i # j and (4,j) ¢ E(G).

In the all-pairs shortest-paths problem we are to determine a matrix A such
that A(%,j) is the length of a shortest path from ¢ to j. When G has no cycle
whose length (cost) is less than 0, the matrix A may be computed using dynamic
programming [11]. Let A¥ (4, j) be the length of a shortest path from i to j under
the constraint that the path contain no intermediate vertex whose index is more
than k. It is easy to see that A(i,j) = A™(i,j). When G has no cycle with
negative length, the following dynamic programming recurrence is valid:

A°(i, j) = cost(i, j) (1)
AR (i, §) = min{ A*1 (3, 5), AF1 (0, k) + AR (R, )} B> 1 2)

Equations 1 and 2 lead to the algorithm of Figure 1 to compute A. This
algorithm is known as Floyd’s algorithm. It may be shown [11] that A11Pairs
computes A*¥ (i, j) = A[i][j] in iteration k of the outermost for loop.

function AllPairs(int A, int n)
{// A[i1[j]1 = cost(i,j) initially
// A[i1[j] equals length of shortest
// i to j path on termination
for (k = 1; k <= n; k++)
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
A[i][j] = min(A[i] (5],
ATi]1[k] + AlkI[3D);

Fig. 1. Floyd’s shortest-paths algorithm

3 TUpper Bound On Attainable Speedup

We compute an upper bound on the maximum speedup attainable by rearranging
the computation of Figure 1 so as to optimize cache useage. In computing this
bound we assume that any rearrangement of the computation will not decrease
the number of accesses made to the elements of the array A.

We first obtain an equation to estimate the execution/run time of Floyd’s
algorithm of Figure 1. The execution time of a program is given by the following
equation [18]:



ezecution time = (CPU clock cycles +
memory stall cycles)

xclock cycle time (3)

where memory stall cycles is the number of cycles the CPU spends waiting for
a memory reference to complete. The following equations are also from [18].

CPU clock cycles = CPI x IC 4)

memory stall cycles = number of L1 misses X

L1 miss penalty (5)

number of L1 misses = IC % L1 misses per instruction (6)

L1 misses per instruction = memory references
per instruction
x L1 miss rate (7

where IC is the instruction count, CPI is the clock cycles per instruction,

L1 miss penalty is the number of cycles the CPU waits when there is an L1

cache miss, and L1 miss rate is the number of L1 misses per memory reference.
From these equations we obtain:

ezxecution time = (CPI x IC +
IC x L1 misses per instruction
x L1 miss penalty)

xclock cycle time (8)
We also see that

L1 miss penalty = L2 hit time + L2 miss rate X
L2 miss penalty 9)

where L2 hit time is the number of cycles to load an L1 cache line from L2
cache and L2 miss penalty = memory hit time is the number of cycles needed
to load an L2 cache line from main memory.

We use Equations 8 and 9 to estimate the run time of Floyd’s algorithm.
Since the L2 hit time and L2 miss penalty are architecture dependent and not
available to us, we use typical numbers for these—the L2 hit time is assumed to
be between 6 and 10 cycles and the L2 miss penalty is assumed to be 50 cycles.
For the L1 misses per instruction and the L2 miss rate we use data obtained by
using the cache simulator Shade on Floyd’s algorithm. Table 1 gives this data.



Table 1. Cache simulator data for algorithm of Figure 1

Matrix size L1 misses L2 miss
per instruction (%) |rate (%)
480 3.950 18.42
800 4.106 19.17
1600 4.133 19.42
2400 4.826 19.64
3200 5.553 20.07

Now we obtain a lower bound on the run time of a cache optimized version
of Floyd’s algorithm. Substituting Equation 7 into Equation 8 and making the
reasonable assumption that cache optimization will not decrease the total num-
ber of memory references (i.e., the number of memory references for the cache
optimized code is at least IC * memory references per instruction where IC
and memory references per instruction are for A11Pairs) yields

ezxecution time > (CPI x IC +
IC x memory references per
instruction
x L1 miss rate x
L1 miss penalty)
xclock cycle time (10)

The cache simulator gives 0.35 as the memory references per instruction for
A11Pairs. Substituting 0.35 for the number of memory references per instruction
and the right side of Equation 9 for the L1 miss penalty into Equation 10, we
get

execution time > (CPI x IC + 0.35 x IC x
L1 miss rate x (L2 hit time +
L2 miss rate x L2 miss penalty))
xclock cycle time (11)

We may obtain a lower bound for the L1 and L2 miss rate by determining the
minimum number of L1 and L2 misses that every reorganized version of Figure 1
must make. Since we intend to declare i, j, k, and n as register variables [8],
references to these variables do not access cache and so do not cause any cache
misses. Therefore, we focus on cache misses attributable to the array A. For our
analysis we use the cache characteristics of the Sun Enterprise 4000/5000 that



are shown in Table 2. By direct mapped we mean that each byte of main memory
has exactly one byte of cache to which it may be mapped. The line size of a cache
gives the unit of memory transfer. So in the Sun Enterprise 4000/5000 an L1
cache miss results in a 32-byte block of data being transferred from L2 cache
into L1 cache. The transferred block is one-half of an L2 line.

Table 2. Cache characteristics of the Sun Enterprise 4000/5000

Cache|Associativity|Cache size|Line size
L1 |Direct mapped| 16KB 32 bytes
L2 |Direct mapped 4MB 64 bytes

For the analysis we assume that A is an integer array and that each integer
is 4 bytes. Since Floyd’s algorithm accesses each of the n? elements of A, all n?
elements of A must get to L1 cache at some time. Each L1 cache miss brings
in exactly 32 bytes of data (i.e., 8 elements of A). Therefore, the number of L1
cache misses is at least n?/8. By a similar reasoning, the number of L2 cache
misses is at least n?/16. Further, Floyd’s algorithm makes 3n® read accesses to
A (i.e., in the right side of the min statement of Figure 1) and n® write accesses
(the left side of the min statement). We note that when the min statement of
Figure 1 is coded as an if statement, write accesses are made only when the
new a[i] [j] value is smaller than the old one. In this case the number of write
accesses ranges from 0 to n3. To keep the analysis simple, we use n® as the
write access count. The total number of accesses to A (read and write) is 4n>.
Therefore,

L1 miss rate = L1 misses per A reference
> n?/8/(4n®) = 1/(32n) (12)

L2 miss rate = L2 misses per A reference
> n?/16/(4n?) = 1/(64n) (13)

The equality between the miss rate and the misses per A reference follows
from our assumption that variables other than A will be register variables and
so all memory references are to elements of A. Since we assume that cache
optimization does not reduce the number of A references, these bounds apply to
all cache optimized versions of A11Pairs.

Substituting the bounds of Equations 12 and 13 into Equation 11, we get the
following lower bound on the run time of a cache optimized version of Floyd’s
algorithm.

ezxecution time > (CPI x IC +



0.35 x IC x1/(32n) x

(L2 hit time +

1/(64n) x L2 miss penalty)

xclock cycle time (14)

Dividing Equation 8 by Equation 14 yields an upper bound on the speedup
obtainable by optimizing cache utilization. Figure 2 plots this upper bound when
CPI ranges between 1 and 2, L2 hit time ranges from 6 to 10 cycles, and L2
miss penalty is 50 cycles. The L1 misses per instruction and the L2 miss rate
are taken from Table 1. Figure 2 gives the maximum speedup we can get by
optimizing the cache usage of Floyd’s algorithm on typical computers that have
a two-level cache.
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Fig. 2. Maximum achievable speedup for different matrix sizes

4 Blocked Version of Floyd’s Algorithm

4.1 The Algorithm

We partition the cost adjacency matrix into submatrices of size B x B. B is called
the blocking factor. Although this is not necessary, we assume, for simplicity, that
B divides n. Our blocked version of Floyd’s algorithm (Figure 1) will perform
B iterations of the outermost loop of Figure 1 on each B x B block of A before
advancing to the next B iterations. It is convenient to think of each set of B
iterations as divided into three phases. (Note that our implementation does not
actually preform the computation in the three phase order described below.)
For example, in phase 1 of the first set of B iterations, Equation 2 is used to



compute D¥ = A% 1 < k < B for the elements in the top left block, block (1,1).
Since these B iterations access only the A elements within block (1,1), we say
that block (1,1) is a self-dependent block in the first B iterations.
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Fig. 3. Blocks computed in each phase

In phase 2 of the first B iterations a modified Equation 2 is used to compute
Dk, 1 < k < B for the remaining blocks (1,*) and (x,1) that are on the same
row or column as the self-dependent block. For the remaining (1,*) blocks the
modified Equation 2 is

D*(i, j) = min{D*¥~' (4, ), DB (4, k) + D¥~*(k,5)},k > 1 (15)



where D° (i, j) = A°(i, j). For the remaining (*,1) blocks the modified Equation 2
is
D*(i,j) = min{D*"1(i, ), D* (i, k) + D" (k,§)},k > 1 (16)

In phase 3 D*¥, 1 < k < B is computed for the remaining blocks (i.e., for
blocks that are not on the same row or column as the self-dependent block).
This computation is done using Equation 17.

D*(i, j) = min{D*7*(4,5), DB (i, k) + DP(k,j)},k > 1 (17)

Phase 3 is followed by the next round of B iterations. These are also done in
three phases. This time block (2,2) is the self-dependent block. D*¥, B < k < 2B
are computed for the self-dependent block in phase 1 using the equation

D*(i,j) = min{D*~*(i, ), D* "' (i, k) + D" (%, 5)} (18)

In phase 2 D¥, B < k < 2B are computed for the remaining blocks that
are on the same row or column as the self-dependent block and in phase 3 D,
B < k < 2B is computed for the blocks that are not on the same row or column

as the self-dependent block. The phase 2 computation uses the following equation
for the (2,*) blocks

D*¥(i,j) = min{D*~' (4, j), D*?(i, k) + D*~'(k, j)} (19)
The (*,2) blocks use the following equation
D*(i, j) = min{D*~* (i, 5), D*~" (i, k) + D*P (k, j)} (20)
and the phase 3 blocks use the equation
D*(i, j) = min{D*~*(i, ), D* (i, k) + D*P (k, j)} (21)

The following equations are used to compute the (t,x), (*,t), and phase 3
blocks, respectively.

D*(i,j) = min{D*7' (i, ), D' (4,k) + D**(k, j)} (22)
D*(i,§) = min{D*7(i, 5), D*~' (i, k) + D'®(k, j)} (23)
D*(i, j) = min{D**(4, ), D*B (i, k) + DB (k, 5)} (24)

4.2 Correctness of Blocked Algorithm

The D*(i,5) values computed by the blocked algorithm are not necessarily the
same as the A* (i, j) values computed by the unblocked algorithm. For example,
when B = 4, the unblocked algorithm computes A'(4,7) = min{A4°(4,7), A°(4,1)+
A%(1,7)}, whereas the blocked algorithm computes D! (4,7) = min{D°(4,7), D*(4,1)+
D°(1,7)} = min{A°(4,7), D*(4,1) + A°(1,7)}. Since D*(4,1) = A*(4,1) is <
A°(4,1), DX(4,7) < AL(4,7).



To establish the correctness of the blocked algorithm we must show that
D"(i,5) = A™(i,j) for all i and j. That is, even though D*(i,j) and A*(i, )
may not be equal for k& < n, the values agree in the end when k = n. Actually
we will show that A and D agree at the end of each set of B iterations That
is, D¥(i,j) = Ak(i,7) for all i and j whenever k is a multiple of B. Hence
D™(i,j) = A™(i,7) for all ¢ and j.

Let k = ¢B. The proof is by induction on g. We may show that D*(i,j) =
Ak (4, §) for all i and j for 0 < g < n/B. The proof is omitted from this version
of the paper.

4.3 Optimal Blocking Factor

When computing the D values in a block during any round (i.e., an iteration
of the outermost loop) of function BoundedA11Pairs, at most three blocks are
active. The computation for the self-dependent block accesses elements only in
the self-dependent block. So during the self-dependent block computation only
1 block is active. The computation for a block R that is on the same row or
column as the self-dependent block acceses elements in R as well as elements in
the self-dependent block. Therefore, 2 blocks are active during the computation
for R. For a block R that is not on the same row or column as the self dependent
block, BlockedA11Pairs accesses elements from 3 blocks—block R, the block
that is in the same row as the self-dependent block and the same column as R,
and the block that is in the same column as the self-dependent block and in the
same row as R. Therefore, L1 cache misses are minimized by choosing the largest
block size B such that 3 block loads of the array D fit into L1 cache. Suppose
that the elements of D are 4-byte integers and that our L1 cache capacity is C
bytes and that each L1 cache line is S bytes. We must choose B to be the largest
integer such that 3B% x4 < C (equivalently, B < /C/12) and B is a multiple of
S/4. The second requirement is necessary as the smallest unit of data brought
into L1 cache is S bytes and these S bytes are contiguous bytes of memory.

For the Sun Ultra Enterprise 4000/5000 C = 16K and S = 32. Therefore,
the blocking factor should be the largest integer that is < /C/12 = 37 and is a
multiple of 32/4 = 8. That is, we should use B = 32 as the blocking factor. For
the SGI O2 C' = 32K and S = 32. The optimal blocking factor for the SGI 02
is the largest integer that is < /C/12 = 52 and is a multiple of 32/4 = 8. This
optimal blocking factor is 48.

5 Experimental Results

The speedup of our blocked shortest paths algorithm relative to the standard
unblocked algorithm was measured by programming the two algorithms in C++
(the g++ compiler with optimization option 05 was used) and running the two
programs on on a Sun Ultra Enterprise 4000/5000 and an SGI O2. Both programs
were compiled using the highest-level of compiler optimization possible.



We first present the results for the SUN Ultra Enterprise. Figure 4 gives the
measured speedups for different blocking factors and different n. As predicted
by our analysis, the otimal blocking factor is 32 for all n.
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Fig. 4. Speedup of BlockedAl1Pairs on a Sun Ultra Enterprise

Figure 5 compares the speedup obtained by BlockedAl1Pairs and the max-
imum speedup possible by optimizing cache utilization. The curve for maximum
possible speedup is that of Figure 2.

The speedup obtained by BlockedAllPairs is fairly close to the maximum
possible. One reason we do not achieve the predicted maximum speedup is that
the total instruction count for BlockedA11Pairs is more than that for A11Pairs.
Recall that in determining the maximum speedup curve of Figure 2 we assumed
that the instruction count for the cache optimized algorithm is the same as that
of Al1Pairs.

Figure 6 gives the L1 misses per instruction for the unblocked and blocked
versions of Floyd’s algorithm. The data for this figure were obtained using the
cache simulator Shade. As expected the blocked code shows better cache utiliza-
tion.

Table 3 shows the cache details for the SGI O2 computer and Figure 7 shows
the speedup obtained by the blocked algorithm on an SGI O2. Except for one
anomaly, maximum speedup is obtained when the blocking factor is the predicted
optimal factor of 48.

6 Conclusion

We have developed a blocked version of Floyd’s all-pairs shortest-paths algo-
rithm. Experimental results show that the blocked version obtains speedups close
to the maximum possible for a cache optimized version of Floyd’s algorithm.
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Table 3. Cache configuration of SGI

Cache type|Cache size
L1 32KB
L2 1MB
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Fig. 7. Speedup obtained by BlockedAl1lPairs on an SGI O2
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