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Abstract— We study several basic properties related to the task
of localizing a source using distance-difference measuremmts to
it. These properties enable minimalistic realizations of dcaliza-
tion systems. We establish conditions for the unique iderfication
of a source in Euclidean plane, and derive minimum number
of sensors needed for unique source identification within ta
Euclidean plane and a polygonal monitoring region. Compard
to four possible intersections of two hyperbolas, this taskeads
to at most 2 intersections, which correspond to potential aace
estimates.

I. INTRODUCTION
The Difference of Time-of-Arrival (DTOA) localization

problem deals with estimating the location of a source using

distance-difference measurements from multiple sen3anis.
classical problem has been extensively studied in apitsit

in aerospace systems [1], [2], wireless communication net-
works [3], and wireless sensor networks [4], [5]. There are
two basic formulations of the DTOA localization problem): (i
the distance-differences to a source are measured fromrknowy4
sensor locations, and the problem is to estimate the latatio
of the source; and (ii) a device (i.e., a mobile node) receive
distance-differences from beacon nodes with known lonatio
and the problem is to estimate the location of the devicd, t

is self-localization. The classic DTOA localization mediso

include two general approaches: (i) linear algebraic smiut

which typically involves matrix inversion and solution to
quadratic equation [6], [7], [2], and (ii) application of mgral
intersection method of hyperbolic curves [8].

The renewed interest in this problem is in part due to tiw
need for minimalistic implementations suitable for nodéthw
limited computational resources and networks with Iimiteg
number of sensors. In terms of computation, the computaltior,
geometry method for DTOA localization in Euclidean plan

[10], [11], [12] offers efficient computation. This metho

employs a binary search on a distance-difference cuni®?in
using a second distance-difference as the objective fumcti

To support the binary search, this method establishes the
modality of the directional derivative of the objective fition

within each of a small number of suitably decomposed regions
of R? [12]. However, despite the extensive literature on DTOA
localization, several basic aspects needed for mininmalist
network realizations do not seem to be reported.

In this paper, we present a number of results that establish
basic properties of DTOA localization. We first consider the
unigue identification of a source and establish the follgwin

1) DTOA localization uniquely identifies a source in Eu-
clidean planeR? iff the sensors do not lie on a hyper-
bola'.

At least four sensors are necessary for unique localiza-
tion of a source in Euclidean plane, and it is sufficient to
place the four sensors at the corners of a parallelogram
to achieve this.

A minimal sensor set to achieve unique source identifi-
cation (i.e., a sensor set none of whose proper subsets
is also a uniquely identifying sensor set) has between 4
and 6 sensors.

Three sensors are sufficient to uniquely identify any
source in a monitoring region bounded by a polygon.
These sensors, however, must be placed outside the
polygon.

}We then consider the computational aspects of DTOA localiza
tion that utilizes the intersection of hyperbolas correxfing

to distance-difference measurements. In general, tworbgpe

2)

3)

das may have four intersection points, but we show that two

hyperbolas that correspond to distance-differences taieceo
that have a common focus may have at most 2 intersections.
e also show that when non-collinear sensors are used, at
ost 2 points can have the same DTOA values. These results
stablish that the DTOA problem is more structured and easie
'h this sense compared to computing intersection points of

yperbolas.

This paper is organized as follows. In Section II, we present
some fundamental properties and definitions. Properties of

UN1Eor convenience, in this paper, the term hyperbola is useelfén to even
a portion of a hyperbola.
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Fig. 2. Three non-collinear sensdbg, &, and S; form a triangle and two
hyperbolaslL12(812) and L13(d13) intersect each other & and P..

Fig. 1. Examples of the locuis;

every sourceS in Euclidean spacé?? iff for every pair P

and Q of distinct points in Euclidean spadg®, we have
sensor sets that uniquely identify all sources in Euclidedn;(P) # A1j(Q) for at least onej € {2,3,---,k}. A sensor
space are developed in Section Ill. Our detailed analysist that can uniquely identify (localize) every possiblénpo
of Section IV establishes the bound on the the number iof Euclidean space is called ddentifying sensor set, 1SS,
intersections of two DTOA hyperbolas. In Section V we shoWiwo points that are indistinguishable ateals.
that at most 2 points can have the same set of DTOA valuesThe DTOA method localizes the source by determining
The minimum number of sensors needed to uniquely identifiye common intersections of the hyperbdlds;j(A1j(S)),
all sources in a bounding polygon is derived in Section VR < j < k. When these hyperbolas have more than one common

Finally, we conclude in Section VII. intersection, the source is not uniquely localized. Fig@re
gives an example of two hyperbolas,(512) and L13(313)
Il. PRELIMINARIES AND DEFINITIONS that intersect at two distinct locatiofs andP,. So, usind_12

LetS = (x, yi), 1<i <k, be the locations ok sensors in andLi3 alone, we are unable to uniquely localize the source.

Euclidean spacB2. These locations are assumed to be distinc/e aré able only to assert that the source location is either

For any pointP =(xy) in R?, the distanced(P,S), between P, or P.. To uniquely identify. the source using the DTOA
P and§ is v/(x—x)2+ (y—y)2. A signal originating atP method, the hyperbolds;j, 2 < j <k should have exactly one

at time 0 arrives aS at time proportional tod(P.S). For common intersection. Alternatively, these hyperbolasutho
simplicity, we assume that the arrival time &P.S). The have exactly one common intersection inside a region in kwhic
difference,Ajj, in the time of arrival (DTOA) atS andS; is the source is known to lie.

given by

Aij(P) =d(P,S)—d(PS)). [1l. PROPERTIES OHDENTIFYING SENSORSETS

From the triangle inequality, it follows thaly;(P)| < In_ t_his sectiqn, we establish, in Theorem 1 a necessary and
d(S,S;). Furthermore, the locu;;(3), of points defined by sufficient condition for a sensor s8bto be anl SS. Theorem 2
shows that everySS has at least 4 sensors and Theorem 4
Lij(3) = {P|Aij(P) = &} shows that everySS with more than 6 sensors has a subset
of size at most 6 that is alsS.
Theorem 1. The sensor se§S= {S;,---,&} is an|SS iff
no hyperbola passes through all pointsS&
Proof:
We first show that ifSSis an|SS, then no hyperbola may
pass through all points &S. By contradiction, suppose there
exists a hyperbola, say, that passes through all points of in

j €{2,...,k}. So, the set of sensor locations (also referred % Let P, and P, be the two foci ofl.. From the definition of

as the sensor sef§S= can uniquely identify & Nyperbola, it follows thatl(Py,S) —d(P2,§) = d(P, §) —
B=10%8 quely ety 4p's), 1< < j < k So.4y(Py) = d(PLS) - d(PLS;) =

is a hyperbola (see Figure 1).

In this paper, we consider th&TOA localization problem of
estimating the location of a sour&from the measurements
of Aij(S), 1<i < j <k WhenAj(P) = Aj(Q) for every
i,j €{1,2,..,k}, the pointsP and Q are indistinguishable.
Actually, sinceAjj(P) = A1j(P) — Aqi(P), for all i and j, P
and Q are indistinguishable iffA1;(P) = A1j(Q) for every

2Strictly speakingLij(d) is one branch of a hyperbola ahg (—d) is the
other branch. As mentioned earlier, for convenience, is laiper, we use the  3A point in R? is a common intersection of a set of hyperbolas iff this point
term hyperbola to refer to one branch of a hyperbola. is on each of the hyperbolas



d(P,S)—d(P,Sj) = 4j(P2), 1<i < j < k. Hence,P; and I
P, are indistinguishable an8Sis not anlSS, a contradiction.
Next, we show that ifSSis not anlSS, then at least one L
hyperbola passes through all points$8. Let P; and P, be
two different points that are indistinguishable. $q;(P;) =
d(PL,S) —d(PL.S) = d(P,S1) —d(P2, S)) = Agj(P2), 2< | < S,
k. Henced(Py,S1) —d(P, S1) = d(P1. S)) —d(P2, §)), 2< <
k. Therefore there is a hyperbola wih andP, as as its foci Q, Q,
that passes through all points 8. [ ] o \

v

Theorem 2: If SSis anlISS, then|SS > 4 and there exist

ISSs that have exactly 4 sensors.
Proof:

We first prove that 3 sensors are not sufficient to constitute S;3
an ISS and so,|SS > 4 wheneverSS is anISS. Let SS=
{S1,9,S3}. When S, S, and S are collinear, the straight
line through these three sensors is a trivial hyperbolautino
the points ofSS. From Theorem 1, it follows tha$S is not
anSS. WhenS;, S, andS; are not collinear, they define a Theorem 3: [Bezout's Theorem [13]]: Let C; andC; be
nontrivial triangle as shown in Figure 2. Clearly, theresei curves of degreenandn, respectively, in Euclidean spafé.

a negative constand;,, such that the hyperbolfo(312) If C; andC, have no curves in common, then the number of
intersects the lineéS;S; at two distinct pointsQ; and Q,. intersections o2 andC; is at mostmn.

Observe that the hyperbolas(—d(S;,Ss)) is actually a ray CoroIIary 3 Two_ hyperbolas in Euclidean spa&® have
that originates aB, and intersects>(3;12) atQ only. Letd;3 at most 4 intersections.

be a negative constant slightly greater thad(S;,Ss). The ~ Lemma 1@ At most 1 hyperbola may pass through any set
hyperbolal13(313) intersectsL12(312) at two distinct points Of 5 or more distinct points.

P, andP, (see Figure 2). Sd?; and P, are indistinguishable Proof: Consider any se8S with 5 or more points. If
and SSis not anlSS. two hyperbolas pass through the pointsS¥ then these two

Next, we show that wheneveS= {S;, S, S3, S} are the hyperbolas intersect at the points$8and so have more than
corners of a parallelogram with side length0, SSis an 4 intersections. This violates Corollary 3. Hence, at most 1
ISS. We show this by proving that no 4 distinct points oftyPerbola may pass through the pointsS% u
a hyperbola define the corners of a parallelogram. The resultfheorem 4: Every SSthat is aMISS satisfies 4 [S§ < 6.
then follows from Theorem 1. Proof: 4 < |SS follows from Theorem 2 and the fact that

Consider the hyperbola of Figure 3. LetS;, S, Ss, and @ MISSis anlISS. |S§ < 6 may be shown by contradiction.

S be 4 points on this hyperbola. The case shown in FigureS3iPPose thatSS{ > 6. Let SS' be a subset oBS such that
has S and & on one part (arm) of the hyperbola argd |SS| :5._From Lemma 1SS has at most 1 hyperbola passing
andS; on the second part. (There are two other cases for tough its 5 points. If no hyperbola passes through these
location of the 4 points—exactly 3 points on one part.aind Points, thenSS is an|SS (Theorem 1) andsS cannot be an

4 points on one part of.) Let Q; and Q,, respectively, be MISS. So, we may assume that exactl_y one hyperbola passes
the intersections of the line segme&S; and $S; with the throughSS. SlnceS_S is anIS§ SScontains at least one pqmt
x-axis, which is the semimajor axis &f If the 4 identified S that does not lie on this hyperbola. Hence, there is no
points onL are the corners of a parallelograB®S; andSS;  NYyperbola that passes through the 6 po#J{S}. From

are parallel and of equal length. However, if these segmedtdeorem 1, it follows thaSSU{S} C SSis an1SS. This

are paralleld(S;, Q1) < d(St,Q2) andd(S, Q1) < d(Ss, Q). contradicts the assumption th&% is an MISS.

S0,d(S1,S) = d(S1, Q1) + d(S, Q1) < d(Su,Q2) +d(Ss, Q) -
=d(S,S). S0,SS andSS, cannot be parallel and of equal

length. The remaining two cases are similar. [ | IV. NUMBER OF INTERSECTIONS OH_12 AND L33

Corollary 1: _An infinite numberof _hyperbolas pass through Although two hyperbolas in Euclidean space may have up
any 3 non-collinear sensors in Eu_clldean spRte to 4 intersections (Corollary 3), two DTOA hyperbolas,
Corollary 2_: WheneverSS contalr)s the corners of a Par-andL,3 may have no more than 2 intersections wignS,
allelogram with side length- 0, SSis anISS. In particular, angs; are non-collinear. Without loss of generality (w.l.0.g),
whenever 4 sensors G5 are at the 4 corners of a square withye choose our coordinate system as in Figure 4. The features
side Iengt.h> 0, SSis anlsS . of this choice are (a%,S falls on they-axis, (b) the midpoint
An ISSis aminimal ISS (MISS) iff no proper subset of the of S;S; is the originO of the coordinate system, and (&)
ISSis also anlSS. Theorem 4 establishes an upper bound @i&s on the right side of thg-axis. We see th&#,S,, $, and
6 on the size of aMISS. To prove this theorem, we need tOSlS3 partition the Euclidean Spac@z into seven regions (a)-
use Bezout's bound on the number of intersections of CUrV@. At most one intersection af;» andL13 lies in the union of
in Euclidean space. regions (a), (b), (f), and (g) and at most one intersectiesil

Fig. 3. A hyperbolal that passes througg (1<i<4).



(L") and the asymptotl (I,) decreases monotonically
109 () asP gets farther from the verteR.
3) The shortest Euclidean distance between a pBion
1op ight (+) L" (L") and the linel; (I%) increases monotonically @
gets farther from the verteR.
Proof: Follows from the definition of a hyperbola, its
X asymptotes, and the linés andly,. u
In Theorem 6, we show that whéh is closer to the source
Sthan areS; andSg, L12(A12(S)) andLi3(A13(S)) have at most
2 intersections including the sour&: This restriction on the
S, source being closer t§ than the remaining two sensors is
potem () removed in Theorem 7. We often ukg as an abbreviation
for Lij(Aij(S)).
Theorem 6: When S, is closer to the sourc8 than areS,
Fig. 4. Regions of monitoring area: (a) top It_eft, (b) insi_(h:;, bott(_)m r_ight, andSs, Lo andLi3 have at most 2 intersections.
(d) top, (e) bottom left, _(f) b_ottom, ar_1d (g) top right. Thersiof the directional Proof:
derivative for each region is also given. . . .
Let B = (x,V¥i), 1 <i < m be intersections ok1> andLs.
From the definition of a hyperbola, it follows that,(P) =
A12(P|/) andAlg(R) = Alg(Pl/) forl<i<i’<m
There are 4 possible cases for the relationship between the
line $S; and the hyperbold.1>—(1) the line is belowl),,
(2) the line intersectd!,, (3) the line intersectd}, and
£S$S > 90, and (4) the line intersects, and £Z$S$,S, <
90. These 4 cases are shown in Figures 6-9, respectively. We
show below thal ;> and L3 have at most 2 intersections in
X each of these cases.
Case 1.$S; lies belowlq>
When £%; lies below Lip, L1, must lie wholly within
regions (a) top left, (b) inside, (d) top, and (g) top right,
(Figure 6).A;3, from Theorem 5, monotonically increases
in regions (a), (b), and (g) and monotonically decreases in
(d). So, if no component ot is in region (d), thenA;s
Fig. 5. A hyperbola. = L' JL" with focusSand semimajor axig-axis. The monOtonica”y increases along all biz and the value of3

asymptotes of. are shown by two broken linds andl» through the origin fOr €ach pointP on L2 is unique. Hencel ;> andLy3 have
O. The broken lines;" andl,’ through the vertesB are parallel td; andlz, only 1 intersection. If region (d) contains a portion lofs,

respectively. then when one moves the poidtfrom left to right alongL >,

(d) is the first region to be visited. So, when moving from
the union of regions (c), (d), and (e). To prove these assesti left to right alonglLis, A1z monotonically decreases while we
we need a result from [12] that establishes the monotonicilye moving along the portion df;» that is inside region (d)
of the directional derivative of\;3(P) along the hyperbola and then monotonically increases for the remaindet of
L12(A12(P)) within each of the 7 regions of Figure 4. Henceli» has at most 2 distinct points for any given value

Theorem 5: [X. Xu, N. S. V. Rao, and S. Sahni [12]For of Aj3. So,L12 andLi3 have at most 2 intersections.
any pointP in Euclidean spacB?, the directional derivative of
A13(P) along the hyperbolé;2(A12(P)) is monotone in each  Case 2.5 intersectsl_'12
of seven regions specified by three non-collinear sensers, aWhen $S3 intersectsL'lz, /£S3$S > 90 (Figure 7). So,
shown in Figure 4. The directional derivative is positive ih1> cannot have a component in either of the regions (c)
regions (a), (b), (f), and (g), and is negative in regions (cjbottom right) and (f) (bottom). Additionally\, 1> cannot have
(d), and (e). a component in region (d) (top). To see this, observe lthat
In the following, we usel' and L' to refer to the two is wholly to the right of they-axis while region (d) is wholly
symmetric parts (arms) of the hyperbalgsee Figure 5). The to the left of this axis. So, no portion &f, is in region (d).
two partsL' andL" intersect only at the verteB. |; andl, To see that no portion dI'12 is in region (d) either, note that
are the two asymptotes of the hyperbola dhdand I, are L}, is belowl}, (Lemma 2). SinceS;S; intersectsl, andl
lines that intersect at the vertd and are parallel to theseis strictly beIowL'12 (Lemma 2),$S; intersects the asymptote
asymptotes. From our choice of coordinate system, it falovi,. Now, sincel, is parallel tolo, $S; also intersects,. which

S,

top left (+) inside (+) S3 bottom right (-)

v

bottom left (-)

that the asymptotes intersect@t implies that the slope 0%S; is less than that oF,. Hence,
Lemma 2: 1) L'(L") strictly lies betweenl;(l,) and the slope ofS;; is less than that of,. From this, the fact
11/(127). thatL!, lies belowl), and the fact that the intersection (vertex

2) The shortest Euclidean distance between a gomiL" B of L) of L'12 andl} is belowS, it follows that no portion



Fig. 8. Case 3$$; intersectsl), and £/$$S, > 90.

from left to right alongLi2. A13 monotonically decreases in
region (d),Li2 and L1z do not intersect in region (c), and
A13 monotonically increases in the remaining regions that
L12 may overlap. Sol.12 andL3 have at most 2 intersections.

v

X Case 4.5%; intersectd ], and /55 S < 90

As in Case 3, no portion off12 is in region (e) (bottom
left). Further,L13 may overlap with either region (c) (bottom
right) or region (d) (top) but not both. To see this, suppose
that L13 overlaps with region (c). For this to happeid;,
must cross$S;. Using an argument similar to that used in
Case 2, we may show that the slopeS®&; is greater than
that of L}5. Furthermore, the remaining portion bf; once
after crossingSS; lies strictly below$S;. So, no portion
of L5 is in region (d). Since.!; is to the left of $;Ss, no
portion of L'13 is in region (d) either. Sol.13 may overlap
of L}, is inside the top region (d). only one of the regions (c) and (d). Therefotgp and L13

Consequently, as one moves from left to right aldng, cannot have an intersection in both region (c) and region (d)
the region (e) (i.e., bottom left) is the first region to bé&inally, if a portion ofLy, is in region (d), region (d) is the
visited. A;3 monotonically decreases inside this region aniirst region encountered as we move aldng from left to
monotonically increases in the remaining regions thatis right and if a portion ofL;> is in region (c), then region (c)
in. Henceli, has at most 2 distinct points for any giveris the last region encounteref;3 monotonically decreases
value ofA1s. So,L1» andLiz have at most 2 intersections. as we move from left to right along1»> inside regions (c)
and (d) and monotonically increases in the remaining region

Fig. 7. Case 25S; intersectsl),

Case 3:5S; intersects |, and /$S,S, > 90 thatL, overlaps. Sol.1> andL;3 have at most 2 intersections.
In this case, region (e) (bottom left) lies entirely below
Lio (Figure 8). Hence, no portion dfj» is in region (e). ]

Since/S$SS > 90, 6 < 90 (see Figure 8). Hencd(P S;) >

d(P.Sy) for every pointP inside region (c) (bottom right) Theorem 7: L2 andLji3 have at most 2 intersections.

Since, by assumptior§; is closer to the sourc8 than isSg, Proof:
no portion ofLy3 is in region (c). Hencel, 1> andLiz have no  Since, Ap3(P) = A13(P) — Ag2(P) for every pointP, the
intersection in region (c). hyperbola pairgLiz,L13), (Li2,L23), and(Lis,L23) have the

If Li2 has an overlap with region (d) (top), then regioisame set of intersections. Suppose, w.l.0.g., that theceasrr
(d) is the first region encountered as we move from left tdoser toS; than toS; andSs. It follows from Theorem 6 that
right alongLi2 and if L1 overlaps with region (c) (bottom Ly; andLy3 have at most 2 intersections. Hente; andLi3
right), region (c) is the last region encountered as we mobave at most 2 intersections. [ ]



each equivalence class in this case is infinite. Wker2 and

the sensors are collinear (Figure 10), each point on the line
segment§; S, exclusive ofS; andS;, defines an equivalence
class of unit cardinality because no such point has a duél. Al
points on the linel that runs through the collinear sensors
and that are to the left (right) d5(S), inclusive, form an
equivalence class of infinite cardinality. For each pdtnot

on the linel, has a single dual poift that is the reflection dP

with respect td. PointP and its duaP’ define an equivalence
class of cardinality 2.

When the sensors are not collinear (this can happen only
whenk > 2), Theorem 9 establishes that the cardinality of each
equivalence class is at most 2.

Theorem 9: When the sensors are not collinear, the cardi-
nality of each equivalence class defined by the indistirguis
able relation is at most 2.

Proof:

We prove this by contradiction. Le3S be the sensor set.
Suppose there is an equivalence class whose cardinality is
e o more than 2. LetP;, P, and P; be any three points in this

o . . N equivalence class. Sin¢g andP; are indistinguishable, from
the proof of Theorem 1, it follows that there is a hyperlolg
whose foci ard’; andP,, that passes through the pointsS®

°p Similarly, there is a hyperbolh; 3, whose foci aré?; andPs,
Fig. 10. Collinear sensors that passes through the pointsSs L, andL 3 intersect at at
least the points 08S, which are more than 2 in number. This
contradicts Theorem 7, which states that these two hyparbol

_ ) ) ~ may have at most two intersections.
WhenSSis not anlSS, there is at least one pair of distinct -

points that are indistinguishable. That is, there are risti
points P1 and P> for which Ajj(P1) = Aij(P2), 1<i<j<Kk
(or equivalentlyAqj(P1) = A1j(P), 2< j <K). PLandP, are
dual points. WhersSis anlSS, no pointP has a dual. In this ~ Although 4 properly positioned sensors are required to
section, we first show that the indistinguishable relat®mam uniquely identify a source in Euclidean space (Theorem 2),
equivalence relation. Then, we show that each p&nmhay in many real-world applications, the monitoring region is

><V

V. INDISTINGUISHABLE POINTS

VI. ISSs FORPOLYGONAL REGIONS

have at most 1 dual point. bounded by a polygon and 3 sensors suffice. We assume that
Theorem 8: The indiginguishable relation is an equiva- the sensors are restricted to be placed on or inside the baund
lence relation orR?, polygon. As an aside, we note that when the monitoring region
Proof: is a simple line segment, s&S;, then two sensors placed at

A relation is an equivalence relation iff it is reflexive, symS andS;, respectively, are sufficient to uniquely identify any
metric, and transitive. Reflexivity is immediate as a poénini  source on this segment. To see this, observe that as we move
distinguishable from itself. Also, #; andP; are indistinguish- P from S to S; along the line segmer§S;, Ajj(P) varies
able then so also af® andP;. So, the relation is symmetric. monotonically from—d(S,S;) to d(S, S;). Hence, there is no
For any three point®;, P,, and Ps such thatP; and P, are pair of indistinguishable points on this segment.
indistinguishable an&, andP; are indistinguishable, we have Lemma 3: Every non-degenerate simple polygon has an
Aij(P1) =d(P1,S) —d(P,S)) =d(P,S) —d(P,S)) =Aij(P2) MISSwhose size is 3.

and Aij(P2) = d(P2,S) —d(P2,S)) = d(P3,S) —d(Ps,Sj) = Proof:

Lij(Ps), 1<i< j<k So,4i(P) =d(P,S)—d(P,§) = Case 1:The simple polygon is convex.

d(Ps,S) —d(P3,Sj) = Aj(P3), 1<i < j<k Hence, the LetS andS, be the end points of an edge of the polygon.
indigtinguishabl e relation is transitive. Let S3 be any other point on this edge. Note that the 3 chosen

B points are collinear and the entire convex polygon lies om on

Clearly, theindigtinguishable relation partitions Euclidean side of the edge that these 3 points lie on. From the disaussio
spaceR? into a collection of disjoint equivalence classes. Ipreceding Theorem 9, it follows that the dual of every point o
SSis anlSS, then each equivalence class is of unit cardinalityhe polygon that is not on this edge is on the other side of this
otherwise, the cardinality of at least one equivalencescigas edge. Points on the edge either have no dual or have dual(s)
more than 1. outside the polygon. Hence every point in or on the polygon

When k = 2, each equivalence class corresponds to a hg-uniquely identifiable and$;, S, S3} is a size 3MISS for
perbola with fociS; andS; and vice verse. The cardinality ofthe polygon.



top right (+) top right (+)

inside (+) bottom right (-) inside (+) bottom right (-)

top left (+) top left (+)

bottom left (=) bottom left (=) G bottom (+)
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Fig. 11. Sensor§;, S, andS3 on the boundary of a convex polygon. TheFig. 12. A concave polygon, its bounding convex polygon, timde sensors

7 planar regions induced by these 3 sensors are (a) top befingide, (c) S, S, andS; placed on the common boundary of the concave and convex
bottom right, (d) top, (e) bottom left, (f) bottom, and (gptoight. The sign polygons
of the directional derivative for each region is also shown.

An alternative construction for a size B1ISS is to
consider any 3 non-collinear poinf, $, and S that are
on the boundary of the polygon (Figure 11). Now, the entire
convex polygon must be contained in the union of four
regions: (a) top left, (b) inside, (f) bottom, and (g) tophig
From Theorem 5, the directional derivative dfi3 along
Li2 increases monotonically in each of these four regions.
Further, the intersection df;> and the convex polygon is a
continuous curveC that is limited to these four regions (see
Theorem 6). Sincef13 is monotonically increasing along,

L12 andLi3 have at most one intersection @ Hence, every
point in or on the convex polygon is uniquely identifiable.

top left (+) inside (+) bottom right (-)

bottom left (-)

E

Case 2:The simple polygon is concave. Fig. 13. S lies inside a simple polygon whil& andS; are on the boundary.

We start with a a minimum bounding convex polygon of th&: in the top region is a dual point &% which lies in the top left region.
concave polygon (Figure 12). L&, S, andSs be any three
points on the intersection of the boundary of these concasle &, andP, are inside the simple polygon ami is the dual of
convex polygons. From Case 1, it follows that every point iR,, SSis not anl SS for the points of the simple polygon.
and on the boundary of the convex bounding polygon, and so ]
every point in and on the boundary of the concave polygon, Theorem 10: 3 sensors can uniquely identify any source in
is uniquely identifiable. or on a non-degenerate simple polygon iff the sensors are on

B the common boundary of the given polygon and its minimum

In Lemma 3, we prove that by choosing 3 sensor locatiobsunding convex polygon. In case the 3 boundary sensors
on the boundary of a simple polygon, 88 of size 3 uniquely are collinear, 2 must be at the end points of an edge of the
identifies any sourcBon or inside a simple polygon. We showbounding convex polygon and the third at an in-between point
in Lemma 4 when a sensor is placed strictly inside a simple Proof:
polygon, 3 sensors are not sufficient to uniquely identifgrgv ~ Follows from Lemmas 3 and 4.

point in or on the polygon. ]
Lemma 4: Let SSbhe anlSSset for a non-degenerate simple
polygon. If at least one location &S is inside the polygon, VIl. CONCLUSIONS
|SS| > 4. In this paper, we studied the impact of sensor deployment
Proof: on the uniqueness of sournce estimate in Euclidean plane

Suppose thaBSis anl SSand thatSS| = 3. W.l.o.g, assume as well as in a simple polygon. We derived necessary and
S lies inside the simple polygon as shown in Figure 13. Notufficient conditions for each case. A tight bound on the size
that a portion of the simple polygon must lie inside the topf a minimal identifying sensor set iR*> was given. We re-
region. We may choose two negative constaltsand 813, investigated the number of intersections of two hyperbolas
such thatl;»(d12) andLi3(d13) intersect at two distinct points having a common focus, and showed it to be at most 2.
P; in the top region andP, in the top left region. Since both Specifically, at most one intersection lies in the union of



inside region, top left region, top right region, and bottom
region, while at most one intersection lies in the union of
top region, bottom left region, and bottom right region. Eac
sensor deployment corresponds to an equivalence relation o
R2. For each identifying sensor set, each equivalence class is
of unit cardinality. For each non-identifying sensor séteast
one equivalence class is of greater than unit cardinality.
There are several future directions to be considered. Itdvou
be interesting to study the effect of randomness in distance
differences, which could be due to measurement errors or due
to the underlying process. In particular, if would be instirey
to investicate the effects on both uniqueness and mimiynalit
results presented in this paper. Applications of these ousth
to practical radiation detection systems would be of future
interest.
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