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Abstract— We study several basic properties related to the task
of localizing a source using distance-difference measurements to
it. These properties enable minimalistic realizations of localiza-
tion systems. We establish conditions for the unique identification
of a source in Euclidean plane, and derive minimum number
of sensors needed for unique source identification within the
Euclidean plane and a polygonal monitoring region. Compared
to four possible intersections of two hyperbolas, this taskleads
to at most 2 intersections, which correspond to potential source
estimates.

I. I NTRODUCTION

The Difference of Time-of-Arrival (DTOA) localization
problem deals with estimating the location of a source using
distance-difference measurements from multiple sensors.This
classical problem has been extensively studied in applications
in aerospace systems [1], [2], wireless communication net-
works [3], and wireless sensor networks [4], [5]. There are
two basic formulations of the DTOA localization problem: (i)
the distance-differences to a source are measured from known
sensor locations, and the problem is to estimate the location
of the source; and (ii) a device (i.e., a mobile node) receives
distance-differences from beacon nodes with known locations,
and the problem is to estimate the location of the device, that
is self-localization. The classic DTOA localization methods
include two general approaches: (i) linear algebraic solution
which typically involves matrix inversion and solution to a
quadratic equation [6], [7], [2], and (ii) application of general
intersection method of hyperbolic curves [8].

The renewed interest in this problem is in part due to the
need for minimalistic implementations suitable for nodes with
limited computational resources and networks with limited
number of sensors. In terms of computation, the computational
geometry method for DTOA localization in Euclidean plane
[10], [11], [12] offers efficient computation. This method
employs a binary search on a distance-difference curve inR2

using a second distance-difference as the objective function.
To support the binary search, this method establishes the uni-
modality of the directional derivative of the objective function

within each of a small number of suitably decomposed regions
of R2 [12]. However, despite the extensive literature on DTOA
localization, several basic aspects needed for minimalistic
network realizations do not seem to be reported.

In this paper, we present a number of results that establish
basic properties of DTOA localization. We first consider the
unique identification of a source and establish the following:

1) DTOA localization uniquely identifies a source in Eu-
clidean planeR2 iff the sensors do not lie on a hyper-
bola1.

2) At least four sensors are necessary for unique localiza-
tion of a source in Euclidean plane, and it is sufficient to
place the four sensors at the corners of a parallelogram
to achieve this.

3) A minimal sensor set to achieve unique source identifi-
cation (i.e., a sensor set none of whose proper subsets
is also a uniquely identifying sensor set) has between 4
and 6 sensors.

4) Three sensors are sufficient to uniquely identify any
source in a monitoring region bounded by a polygon.
These sensors, however, must be placed outside the
polygon.

We then consider the computational aspects of DTOA localiza-
tion that utilizes the intersection of hyperbolas corresponding
to distance-difference measurements. In general, two hyperbo-
las may have four intersection points, but we show that two
hyperbolas that correspond to distance-differences to a source
that have a common focus may have at most 2 intersections.
We also show that when non-collinear sensors are used, at
most 2 points can have the same DTOA values. These results
establish that the DTOA problem is more structured and easier
in this sense compared to computing intersection points of
hyperbolas.

This paper is organized as follows. In Section II, we present
some fundamental properties and definitions. Properties of

1For convenience, in this paper, the term hyperbola is used torefer to even
a portion of a hyperbola.
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Fig. 1. Examples of the locusL12

sensor sets that uniquely identify all sources in Euclidean
space are developed in Section III. Our detailed analysis
of Section IV establishes the bound on the the number of
intersections of two DTOA hyperbolas. In Section V we show
that at most 2 points can have the same set of DTOA values.
The minimum number of sensors needed to uniquely identify
all sources in a bounding polygon is derived in Section VI.
Finally, we conclude in Section VII.

II. PRELIMINARIES AND DEFINITIONS

Let Si = (xi, yi), 1≤ i ≤ k, be the locations ofk sensors in
Euclidean spaceR2. These locations are assumed to be distinct.
For any pointP =(x,y) in R2, the distance,d(P,Si), between
P and Si is

√

(x− xi)2 +(y− yi)2. A signal originating atP
at time 0 arrives atSi at time proportional tod(P,Si). For
simplicity, we assume that the arrival time isd(P,Si). The
difference,∆i j, in the time of arrival (DTOA) atSi and S j is
given by

∆i j(P) = d(P,Si)−d(P,S j).

From the triangle inequality, it follows that|∆i j(P)| ≤
d(Si,S j). Furthermore, the locus,Li j(δ), of points defined by

Li j(δ) = {P|∆i j(P) = δ}

is a hyperbola2 (see Figure 1).
In this paper, we consider theDTOA localization problem of

estimating the location of a sourceS from the measurements
of ∆i j(S), 1 ≤ i < j ≤ k. When ∆i j(P) = ∆i j(Q) for every
i, j ∈ {1,2, ...,k}, the pointsP and Q are indistinguishable.
Actually, since∆i j(P) = ∆1 j(P)−∆1i(P), for all i and j, P
and Q are indistinguishable iff∆1 j(P) = ∆1 j(Q) for every
j ∈ {2, ...,k}. So, the set of sensor locations (also referred to
as the sensor set)SS = {S1,S2, · · · ,Sk} can uniquely identify

2Strictly speaking,Li j(δ) is one branch of a hyperbola andLi j(−δ) is the
other branch. As mentioned earlier, for convenience, in this paper, we use the
term hyperbola to refer to one branch of a hyperbola.
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Fig. 2. Three non-collinear sensorsS1, S2, andS3 form a triangle and two
hyperbolasL12(δ12) and L13(δ13) intersect each other atP1 and P2.

every sourceS in Euclidean spaceR2 iff for every pair P
and Q of distinct points in Euclidean spaceR2, we have
∆1 j(P) 6= ∆1 j(Q) for at least onej ∈ {2,3, · · · ,k}. A sensor
set that can uniquely identify (localize) every possible point
in Euclidean space is called anidenti f ying sensor set, ISS.
Two points that are indistinguishable areduals.

The DTOA method localizes the source by determining
the common intersections of the hyperbolas3 L1 j(∆1 j(S)),
2≤ j ≤ k. When these hyperbolas have more than one common
intersection, the source is not uniquely localized. Figure2
gives an example of two hyperbolasL12(δ12) and L13(δ13)
that intersect at two distinct locationsP1 andP2. So, usingL12

andL13 alone, we are unable to uniquely localize the source.
We are able only to assert that the source location is either
P1 or P2. To uniquely identify the source using the DTOA
method, the hyperbolasL1 j, 2≤ j ≤ k should have exactly one
common intersection. Alternatively, these hyperbolas should
have exactly one common intersection inside a region in which
the source is known to lie.

III. PROPERTIES OFIDENTIFYING SENSORSETS

In this section, we establish, in Theorem 1 a necessary and
sufficient condition for a sensor setSS to be anISS. Theorem 2
shows that everyISS has at least 4 sensors and Theorem 4
shows that everyISS with more than 6 sensors has a subset
of size at most 6 that is anISS.

Theorem 1: The sensor setSS = {S1, · · · ,Sk} is an ISS iff
no hyperbola passes through all points ofSS.

Proof:
We first show that ifSS is an ISS, then no hyperbola may

pass through all points ofSS. By contradiction, suppose there
exists a hyperbola, sayL, that passes through all points of in
SS. Let P1 andP2 be the two foci ofL. From the definition of
a hyperbola, it follows thatd(P1,Si)−d(P2,Si) = d(P1,S j)−
d(P2,S j), 1≤ i < j ≤ k. So, ∆i j(P1) = d(P1,Si)− d(P1,S j) =

3A point in R2 is a common intersection of a set of hyperbolas iff this point
is on each of the hyperbolas
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d(P2,Si)− d(P2,S j) = ∆i j(P2), 1≤ i < j ≤ k. Hence,P1 and
P2 are indistinguishable andSS is not anISS, a contradiction.

Next, we show that ifSS is not anISS, then at least one
hyperbola passes through all points ofSS. Let P1 and P2 be
two different points that are indistinguishable. So,∆1 j(P1) =
d(P1,S1)−d(P1,S j) = d(P2,S1)−d(P2,S j) = ∆1 j(P2), 2≤ j ≤
k. Hence,d(P1,S1)−d(P2,S1) = d(P1,S j)−d(P2,S j), 2≤ j ≤
k. Therefore there is a hyperbola withP1 andP2 as as its foci
that passes through all points ofSS.

Theorem 2: If SS is an ISS, then |SS| ≥ 4 and there exist
ISSs that have exactly 4 sensors.

Proof:
We first prove that 3 sensors are not sufficient to constitute

an ISS and so,|SS| ≥ 4 wheneverSS is an ISS. Let SS =
{S1,S2,S3}. When S1, S2, and S3 are collinear, the straight
line through these three sensors is a trivial hyperbola through
the points ofSS. From Theorem 1, it follows thatSS is not
an ISS. WhenS1, S2, andS3 are not collinear, they define a
nontrivial triangle as shown in Figure 2. Clearly, there exists
a negative constant,δ12, such that the hyperbolaL12(δ12)
intersects the lineS1S3 at two distinct pointsQ1 and Q2.
Observe that the hyperbolaL13(−d(S1,S3)) is actually a ray
that originates atS1 and intersectsL12(δ12) at Q1 only. Let δ13

be a negative constant slightly greater than−d(S1,S3). The
hyperbolaL13(δ13) intersectsL12(δ12) at two distinct points
P1 andP2 (see Figure 2). So,P1 andP2 are indistinguishable
andSS is not anISS.

Next, we show that wheneverSS = {S1,S2,S3,S4} are the
corners of a parallelogram with side length> 0, SS is an
ISS. We show this by proving that no 4 distinct points of
a hyperbola define the corners of a parallelogram. The result
then follows from Theorem 1.

Consider the hyperbolaL of Figure 3. LetS1, S2, S3, and
S4 be 4 points on this hyperbola. The case shown in Figure 3
has S1 and S4 on one part (arm) of the hyperbola andS2

andS3 on the second part. (There are two other cases for the
location of the 4 points–exactly 3 points on one part ofL and
4 points on one part ofL.) Let Q1 and Q2, respectively, be
the intersections of the line segmentsS1S2 andS3S4 with the
x-axis, which is the semimajor axis ofL. If the 4 identified
points onL are the corners of a parallelogram,S1S2 andS3S4

are parallel and of equal length. However, if these segments
are parallel,d(S1,Q1) < d(S4,Q2) andd(S2,Q1) < d(S3,Q2).
So, d(S1,S2) = d(S1,Q1)+ d(S2,Q1) < d(S4,Q2)+ d(S3,Q2)
= d(S3,S4). So,S1S2 andS3S4 cannot be parallel and of equal
length. The remaining two cases are similar.

Corollary 1: An infinite number of hyperbolas pass through
any 3 non-collinear sensors in Euclidean spaceR2.

Corollary 2: WheneverSS contains the corners of a par-
allelogram with side length> 0, SS is an ISS. In particular,
whenever 4 sensors ofSS are at the 4 corners of a square with
side length> 0, SS is an ISS.

An ISS is a minimal ISS (MISS) iff no proper subset of the
ISS is also anISS. Theorem 4 establishes an upper bound of
6 on the size of anMISS. To prove this theorem, we need to
use Bezout’s bound on the number of intersections of curves
in Euclidean space.
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Fig. 3. A hyperbolaL that passes throughSi (1≤ i ≤ 4).

Theorem 3: [Bezout’s Theorem [13]]: Let C1 and C2 be
curves of degreem andn, respectively, in Euclidean spaceR2.
If C1 andC2 have no curves in common, then the number of
intersections ofC1 andC2 is at mostmn.

Corollary 3: Two hyperbolas in Euclidean spaceR2 have
at most 4 intersections.

Lemma 1: At most 1 hyperbola may pass through any set
of 5 or more distinct points.

Proof: Consider any setSS with 5 or more points. If
two hyperbolas pass through the points ofSS, then these two
hyperbolas intersect at the points ofSS and so have more than
4 intersections. This violates Corollary 3. Hence, at most 1
hyperbola may pass through the points ofSS.

Theorem 4: Every SS that is aMISS satisfies 4≤ |SS| ≤ 6.
Proof: 4≤ |SS| follows from Theorem 2 and the fact that

a MISS is an ISS. |SS| ≤ 6 may be shown by contradiction.
Suppose that|SS| > 6. Let SS′ be a subset ofSS such that
|SS′|= 5. From Lemma 1,SS′ has at most 1 hyperbola passing
through its 5 points. If no hyperbola passes through these
points, thenSS′ is an ISS (Theorem 1) andSS cannot be an
MISS. So, we may assume that exactly one hyperbola passes
throughSS′. SinceSS is anISS, SS contains at least one point
Si that does not lie on this hyperbola. Hence, there is no
hyperbola that passes through the 6 pointsSS′

S

{Si}. From
Theorem 1, it follows thatSS′

S

{Si} ⊂ SS is an ISS. This
contradicts the assumption thatSS is anMISS.

IV. N UMBER OF INTERSECTIONS OFL12 AND L13

Although two hyperbolas in Euclidean space may have up
to 4 intersections (Corollary 3), two DTOA hyperbolasL12

andL13 may have no more than 2 intersections whenS1, S2,
andS3 are non-collinear. Without loss of generality (w.l.o.g),
we choose our coordinate system as in Figure 4. The features
of this choice are (a)S1S2 falls on they-axis, (b) the midpoint
of S1S2 is the originO of the coordinate system, and (c)S3

lies on the right side of they-axis. We see thatS1S2, S2S3, and
S1S3 partition the Euclidean spaceR2 into seven regions (a)-
(g). At most one intersection ofL12 andL13 lies in the union of
regions (a), (b), (f), and (g) and at most one intersection lies in
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Fig. 4. Regions of monitoring area: (a) top left, (b) inside,(c) bottom right,
(d) top, (e) bottom left, (f) bottom, and (g) top right. The sign of the directional
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Lr with focusS and semimajor axisy-axis. The
asymptotes ofL are shown by two broken linesl1 and l2 through the origin
O. The broken linesl1 ′ and l2

′ through the vertexB are parallel tol1 and l2,
respectively.

the union of regions (c), (d), and (e). To prove these assertions,
we need a result from [12] that establishes the monotonicity
of the directional derivative of∆13(P) along the hyperbola
L12(∆12(P)) within each of the 7 regions of Figure 4.

Theorem 5: [X. Xu, N. S. V. Rao, and S. Sahni [12]]For
any pointP in Euclidean spaceR2, the directional derivative of
∆13(P) along the hyperbolaL12(∆12(P)) is monotone in each
of seven regions specified by three non-collinear sensors, as
shown in Figure 4. The directional derivative is positive in
regions (a), (b), (f), and (g), and is negative in regions (c),
(d), and (e).

In the following, we useLl and Lr to refer to the two
symmetric parts (arms) of the hyperbolaL (see Figure 5). The
two partsLl and Lr intersect only at the vertexB. l1 and l2
are the two asymptotes of the hyperbola andl′1 and l′2 are
lines that intersect at the vertexB and are parallel to these
asymptotes. From our choice of coordinate system, it follows
that the asymptotes intersect atO.

Lemma 2: 1) Lr(Ll) strictly lies between l1(l2) and
l1
′(l2′).

2) The shortest Euclidean distance between a pointP on Lr

(Ll) and the asymptotel1 (l2) decreases monotonically
asP gets farther from the vertexB.

3) The shortest Euclidean distance between a pointP on
Lr (Ll) and the linel′1 (l′2) increases monotonically asP
gets farther from the vertexB.

Proof: Follows from the definition of a hyperbola, its
asymptotes, and the linesl′1 and l′2.

In Theorem 6, we show that whenS1 is closer to the source
S than areS2 andS3, L12(∆12(S)) andL13(∆13(S)) have at most
2 intersections including the sourceS. This restriction on the
source being closer toS1 than the remaining two sensors is
removed in Theorem 7. We often useLi j as an abbreviation
for Li j(∆i j(S)).

Theorem 6: WhenS1 is closer to the sourceS than areS2

andS3, L12 andL13 have at most 2 intersections.
Proof:

Let Pi = (xi,yi), 1≤ i ≤ m be intersections ofL12 andL13.
From the definition of a hyperbola, it follows that∆12(Pi) =
∆12(Pi′) and∆13(Pi) = ∆13(Pi′) for 1≤ i < i′ ≤ m.

There are 4 possible cases for the relationship between the
line S2S3 and the hyperbolaL12–(1) the line is belowLr

12,
(2) the line intersectsLl

12, (3) the line intersectsLr
12 and

∠S3S1S2 ≥ 90, and (4) the line intersectsLr
12 and∠S3S1S2 <

90. These 4 cases are shown in Figures 6-9, respectively. We
show below thatL12 and L13 have at most 2 intersections in
each of these cases.

Case 1:S2S3 lies belowL12

When S2S3 lies below L12, L12 must lie wholly within
regions (a) top left, (b) inside, (d) top, and (g) top right,
(Figure 6). ∆13, from Theorem 5, monotonically increases
in regions (a), (b), and (g) and monotonically decreases in
(d). So, if no component ofL12 is in region (d), then∆13

monotonically increases along all ofL12 and the value of∆13

for each pointP on L12 is unique. Hence,L12 and L13 have
only 1 intersection. If region (d) contains a portion ofL12,
then when one moves the pointP from left to right alongL12,
(d) is the first region to be visited. So, when moving from
left to right alongL12, ∆13 monotonically decreases while we
are moving along the portion ofL12 that is inside region (d)
and then monotonically increases for the remainder ofL12.
HenceL12 has at most 2 distinct points for any given value
of ∆13. So,L12 andL13 have at most 2 intersections.

Case 2:S2S3 intersectsLl
12

When S2S3 intersectsLl
12, ∠S3S2S1 > 90 (Figure 7). So,

L12 cannot have a component in either of the regions (c)
(bottom right) and (f) (bottom). Additionally,L12 cannot have
a component in region (d) (top). To see this, observe thatLr

12
is wholly to the right of they-axis while region (d) is wholly
to the left of this axis. So, no portion ofLr

12 is in region (d).
To see that no portion ofLl

12 is in region (d) either, note that
Ll

12 is below l′2 (Lemma 2). Since,S2S3 intersectsLl
12 and l2

is strictly belowLl
12 (Lemma 2),S2S3 intersects the asymptote

l2. Now, sincel′2 is parallel tol2, S2S3 also intersectsl′2. which
implies that the slope ofS2S3 is less than that ofl′2. Hence,
the slope ofS1S3 is less than that ofl′2. From this, the fact
thatLl

12 lies belowl′2, and the fact that the intersection (vertex
B of L12) of Ll

12 and l′2 is belowS1, it follows that no portion
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Fig. 7. Case 2:S2S3 intersectsLl
12

of Lr
12 is inside the top region (d).

Consequently, as one moves from left to right alongL12,
the region (e) (i.e., bottom left) is the first region to be
visited. ∆13 monotonically decreases inside this region and
monotonically increases in the remaining regions thatL12 is
in. HenceL12 has at most 2 distinct points for any given
value of∆13. So,L12 andL13 have at most 2 intersections.

Case 3:S2S3 intersectsLr
12 and∠S3S1S2 ≥ 90

In this case, region (e) (bottom left) lies entirely below
L12 (Figure 8). Hence, no portion ofL12 is in region (e).
Since∠S3S1S2 ≥ 90, θ < 90 (see Figure 8). Hence,d(P,S1) >

d(P,S3) for every pointP inside region (c) (bottom right).
Since, by assumption,S1 is closer to the sourceS than isS3,
no portion ofL13 is in region (c). Hence,L12 andL13 have no
intersection in region (c).

If L12 has an overlap with region (d) (top), then region
(d) is the first region encountered as we move from left to
right along L12 and if L12 overlaps with region (c) (bottom
right), region (c) is the last region encountered as we move
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Fig. 8. Case 3:S2S3 intersectsLr
12 and∠S3S1S2 ≥ 90.

from left to right alongL12. ∆13 monotonically decreases in
region (d), L12 and L13 do not intersect in region (c), and
∆13 monotonically increases in the remaining regions that
L12 may overlap. So,L12 andL13 have at most 2 intersections.

Case 4:S2S3 intersectsLr
12 and∠S3S1S2 < 90

As in Case 3, no portion ofL12 is in region (e) (bottom
left). Further,L13 may overlap with either region (c) (bottom
right) or region (d) (top) but not both. To see this, suppose
that L13 overlaps with region (c). For this to happen,Lr

13
must crossS2S3. Using an argument similar to that used in
Case 2, we may show that the slope ofS2S3 is greater than
that of Lr

13. Furthermore, the remaining portion ofLr
13 once

after crossingS2S3 lies strictly belowS2S3. So, no portion
of Lr

13 is in region (d). SinceLl
13 is to the left of S1S3, no

portion of Ll
13 is in region (d) either. So,L13 may overlap

only one of the regions (c) and (d). Therefore,L12 and L13

cannot have an intersection in both region (c) and region (d).
Finally, if a portion of L12 is in region (d), region (d) is the
first region encountered as we move alongL12 from left to
right and if a portion ofL12 is in region (c), then region (c)
is the last region encountered.∆13 monotonically decreases
as we move from left to right alongL12 inside regions (c)
and (d) and monotonically increases in the remaining regions
thatL12 overlaps. So,L12 andL13 have at most 2 intersections.

Theorem 7: L12 andL13 have at most 2 intersections.

Proof:

Since, ∆23(P) = ∆13(P)− ∆12(P) for every point P, the
hyperbola pairs(L12,L13), (L12,L23), and (L13,L23) have the
same set of intersections. Suppose, w.l.o.g., that the source is
closer toS2 than toS1 andS3. It follows from Theorem 6 that
L21 andL23 have at most 2 intersections. Hence,L12 andL13

have at most 2 intersections.
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Fig. 10. Collinear sensors

V. I NDISTINGUISHABLE POINTS

WhenSS is not anISS, there is at least one pair of distinct
points that are indistinguishable. That is, there are distinct
points P1 and P2 for which ∆i j(P1) = ∆i j(P2), 1≤ i < j ≤ k
(or equivalently,∆1 j(P1) = ∆1 j(P2), 2≤ j ≤ k). P1 andP2 are
dual points. WhenSS is anISS, no pointP has a dual. In this
section, we first show that the indistinguishable relation is an
equivalence relation. Then, we show that each pointP may
have at most 1 dual point.

Theorem 8: The indistinguishable relation is an equiva-
lence relation onR2.

Proof:
A relation is an equivalence relation iff it is reflexive, sym-

metric, and transitive. Reflexivity is immediate as a point is in-
distinguishable from itself. Also, ifP1 andP2 are indistinguish-
able then so also areP2 andP1. So, the relation is symmetric.
For any three pointsP1, P2, and P3 such thatP1 and P2 are
indistinguishable andP2 andP3 are indistinguishable, we have
∆i j(P1) = d(P1,Si)−d(P1,S j) = d(P2,Si)−d(P2,S j) = ∆i j(P2)
and ∆i j(P2) = d(P2,Si) − d(P2,S j) = d(P3,Si) − d(P3,S j) =
∆i j(P3), 1 ≤ i < j ≤ k. So, ∆i j(P1) = d(P1,Si)− d(P1,S j) =
d(P3,Si) − d(P3,S j) = ∆i j(P3), 1 ≤ i < j ≤ k. Hence, the
indistinguishable relation is transitive.

Clearly, theindistinguishable relation partitions Euclidean
spaceR2 into a collection of disjoint equivalence classes. If
SS is anISS, then each equivalence class is of unit cardinality;
otherwise, the cardinality of at least one equivalence class is
more than 1.

When k = 2, each equivalence class corresponds to a hy-
perbola with fociS1 andS2 and vice verse. The cardinality of

each equivalence class in this case is infinite. Whenk > 2 and
the sensors are collinear (Figure 10), each point on the line
segmentS1Sk, exclusive ofS1 andSk, defines an equivalence
class of unit cardinality because no such point has a dual. All
points on the linel that runs through the collinear sensors
and that are to the left (right) ofS1(Sk), inclusive, form an
equivalence class of infinite cardinality. For each pointP not
on the linel, has a single dual pointP′ that is the reflection ofP
with respect tol. PointP and its dualP′ define an equivalence
class of cardinality 2.

When the sensors are not collinear (this can happen only
whenk > 2), Theorem 9 establishes that the cardinality of each
equivalence class is at most 2.

Theorem 9: When the sensors are not collinear, the cardi-
nality of each equivalence class defined by the indistinguish-
able relation is at most 2.

Proof:
We prove this by contradiction. LetSS be the sensor set.

Suppose there is an equivalence class whose cardinality is
more than 2. LetP1, P2, and P3 be any three points in this
equivalence class. SinceP1 andP2 are indistinguishable, from
the proof of Theorem 1, it follows that there is a hyperbolaL12,
whose foci areP1 andP2, that passes through the points ofSS.
Similarly, there is a hyperbolaL13, whose foci areP1 andP3,
that passes through the points ofSS. L12 andL13 intersect at at
least the points ofSS, which are more than 2 in number. This
contradicts Theorem 7, which states that these two hyperbola
may have at most two intersections.

VI. ISSS FORPOLYGONAL REGIONS

Although 4 properly positioned sensors are required to
uniquely identify a source in Euclidean space (Theorem 2),
in many real-world applications, the monitoring region is
bounded by a polygon and 3 sensors suffice. We assume that
the sensors are restricted to be placed on or inside the bounding
polygon. As an aside, we note that when the monitoring region
is a simple line segment, saySiS j, then two sensors placed at
Si andS j, respectively, are sufficient to uniquely identify any
source on this segment. To see this, observe that as we move
P from Si to S j along the line segmentSiS j, ∆i j(P) varies
monotonically from−d(Si,S j) to d(Si,S j). Hence, there is no
pair of indistinguishable points on this segment.

Lemma 3: Every non-degenerate simple polygon has an
MISS whose size is 3.

Proof:
Case 1:The simple polygon is convex.
Let S1 andS2 be the end points of an edge of the polygon.

Let S3 be any other point on this edge. Note that the 3 chosen
points are collinear and the entire convex polygon lies on one
side of the edge that these 3 points lie on. From the discussion
preceding Theorem 9, it follows that the dual of every point of
the polygon that is not on this edge is on the other side of this
edge. Points on the edge either have no dual or have dual(s)
outside the polygon. Hence every point in or on the polygon
is uniquely identifiable and{S1,S2,S3} is a size 3MISS for
the polygon.
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Fig. 11. SensorsS1, S2, andS3 on the boundary of a convex polygon. The
7 planar regions induced by these 3 sensors are (a) top left, (b) inside, (c)
bottom right, (d) top, (e) bottom left, (f) bottom, and (g) top right. The sign
of the directional derivative for each region is also shown.

An alternative construction for a size 3MISS is to
consider any 3 non-collinear pointsS1, S2, and S3 that are
on the boundary of the polygon (Figure 11). Now, the entire
convex polygon must be contained in the union of four
regions: (a) top left, (b) inside, (f) bottom, and (g) top right.
From Theorem 5, the directional derivative of∆13 along
L12 increases monotonically in each of these four regions.
Further, the intersection ofL12 and the convex polygon is a
continuous curveC that is limited to these four regions (see
Theorem 6). Since,∆13 is monotonically increasing alongC,
L12 andL13 have at most one intersection onC. Hence, every
point in or on the convex polygon is uniquely identifiable.

Case 2:The simple polygon is concave.
We start with a a minimum bounding convex polygon of the

concave polygon (Figure 12). LetS1, S2, andS3 be any three
points on the intersection of the boundary of these concave and
convex polygons. From Case 1, it follows that every point in
and on the boundary of the convex bounding polygon, and so
every point in and on the boundary of the concave polygon,
is uniquely identifiable.

In Lemma 3, we prove that by choosing 3 sensor locations
on the boundary of a simple polygon, anSS of size 3 uniquely
identifies any sourceS on or inside a simple polygon. We show
in Lemma 4 when a sensor is placed strictly inside a simple
polygon, 3 sensors are not sufficient to uniquely identify every
point in or on the polygon.

Lemma 4: Let SS be anISS set for a non-degenerate simple
polygon. If at least one location ofSS is inside the polygon,
|SS| ≥ 4.

Proof:
Suppose thatSS is anISS and that|SS|= 3. W.l.o.g, assume

S1 lies inside the simple polygon as shown in Figure 13. Note
that a portion of the simple polygon must lie inside the top
region. We may choose two negative constantsδ12 and δ13,
such thatL12(δ12) andL13(δ13) intersect at two distinct points
P1 in the top region andP2 in the top left region. Since both
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Fig. 12. A concave polygon, its bounding convex polygon, andthree sensors
S1, S2, and S3 placed on the common boundary of the concave and convex
polygons
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Fig. 13. S1 lies inside a simple polygon whileS2 andS3 are on the boundary.
P1 in the top region is a dual point ofP2 which lies in the top left region.

P1 andP2 are inside the simple polygon andP1 is the dual of
P2, SS is not anISS for the points of the simple polygon.

Theorem 10: 3 sensors can uniquely identify any source in
or on a non-degenerate simple polygon iff the sensors are on
the common boundary of the given polygon and its minimum
bounding convex polygon. In case the 3 boundary sensors
are collinear, 2 must be at the end points of an edge of the
bounding convex polygon and the third at an in-between point.

Proof:
Follows from Lemmas 3 and 4.

VII. C ONCLUSIONS

In this paper, we studied the impact of sensor deployment
on the uniqueness of sournce estimate in Euclidean plane
as well as in a simple polygon. We derived necessary and
sufficient conditions for each case. A tight bound on the size
of a minimal identifying sensor set inR2 was given. We re-
investigated the number of intersections of two hyperbolas
having a common focus, and showed it to be at most 2.
Specifically, at most one intersection lies in the union of
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inside region, top left region, top right region, and bottom
region, while at most one intersection lies in the union of
top region, bottom left region, and bottom right region. Each
sensor deployment corresponds to an equivalence relation on
R2. For each identifying sensor set, each equivalence class is
of unit cardinality. For each non-identifying sensor set, at least
one equivalence class is of greater than unit cardinality.

There are several future directions to be considered. It would
be interesting to study the effect of randomness in distance-
differences, which could be due to measurement errors or due
to the underlying process. In particular, if would be interesting
to investicate the effects on both uniqueness and mimimality
results presented in this paper. Applications of these methods
to practical radiation detection systems would be of future
interest.
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