
One-Dimensional Packet Classification Using Pipelined Multibit Tries ∗

Wencheng Lu and Sartaj Sahni

Department of Computer and Information Science and Engineering,

University of Florida, Gainesville, FL 32611

{wlu, sahni}@cise.ufl.edu

October 14, 2005

Abstract

We propose a heuristic for the construction of variable-stride multibit tries. These multibit tries are suitable

for one-dimensional packet classification using a pipelined architecture. The variable-stride tries constructed by

our heuristic require significantly less per-stage memory than required by optimal pipelined fixed-stride tries.

We also develop a tree packing heuristic, which dramatically reduces per-stage memory required by fixed- and

variable-stride multibit tries constructed for pipelined architecture.

Keywords
Packet classification, longest matching prefix, controlled prefix expansion, fixed-stride tries, variable-stride tries,
dynamic programming.

1 Introduction

Internet packets are classified into flows based on their header fields. This classification is done using a table of

rules in which each rule is a pair (F,A), where F is a filter and A is an action. If an incoming packet matches a

filter in the rule table, the associated action specifies what is to be done with this packet. Typical actions include

packet forwarding and dropping. A d-dimensional filter F is a d-tuple (F [1], F [2], · · · , F [d]), where F [i] is a range

that specifies destination addresses, source addresses, port numbers, protocol types, TCP flags, etc. A packet is

said to match filter F , if its header field values fall in the ranges F [1], · · · , F [d]. Since it is possible for a packet to

match more than one of the filters in a classifier, a tie breaker is used to determine a unique matching filter.

In one-dimensional packet classification (i.e., d = 1), F [1] is usually specified as a destination address prefix

and lookup involves finding the longest prefix that matches the packet’s destination address. Data structures for

longest-prefix matching have been extensively studied (see [2, 3], for surveys). In this paper, we are concerned

solely with 1-dimensional packet classification. It should be noted that data structures for 1-dimensional packet

classification are fundamental to the design and development of multi-dimensional packet classification (i.e., d > 1),

since data structures for multi-dimensional packet classification are usually built on top of those for 1-dimensional

packet classification.

In this paper we focus on the development of data structures suitable for ASIC-based pipelined architectures

for high speed packet classification. Basu and Narlikar [7] and Kim and Sahni [6] have proposed algorithms for the

∗This research was supported, in part, by the National Science Foundation under grant ITR-0326155

1

construction of optimal fixed-stride tries for one-dimensional prefix tables; these fixed-stride tries are optimized

for pipelined architectures. Basu and Narliker [7] list three constraints for optimal pipelined fixed-stride multibit

tries:

C1: Each level in the fixed-stride trie must fit in a single pipeline stage.

C2: The maximum memory allocated to a stage (over all stages) is minimized.

C3: The total memory used is minimized subject to the first two constraints.

Basu and Narliker [7] assert that constraint C3 reduces pipeline disruption resulting from rule-table updates.

Although the algorithm proposed in [7] constructs fixed-stride tries that satisfy constraints C1 and C2, the con-

structed tries may violate constraint C3. Kim and Sahni [6] have developed faster algorithms to construct pipelined

fixed-stride tries; their tries satisfy all three of the constraints C1–C3. FSTs that satisfy C1–C3 are called optimal

pipelined FSTs.

In this paper, we propose heuristics for the construction of pipelined variable-stride multibit tries. The pipelined

tries constructed by our algorithms are compared, experimentally, to those constructed by the algorithms of Kim

and Sahni [6]. The variable-stride multibit tries constructed by our heuristic require significantly less per-stage

memory than required by optimal pipelined fixed-stride tries. Also, we develop a tree packing heuristic, which

dramatically reduces per-stage memory required by pipelined fixed- and variable-stride multibit tries.

We begin, in Section 2, by reviewing basic concepts related to the trie data structure. This section also describes

multibit fixed- and variable-stride tries, and controlled prefix expansion [4]. In Section 3 we develop an (heuristic)

algorithm for pipelined variable-stride tries. In Section 4 we develop a tree packing (heuristic) algorithm for

mapping multibit tries to a pipelined architecture. An experimental evaluation of our algorithms is conducted in

Section 5.

2 Tries

2.1 1-bit Tries

A 1-bit trie is a binary tree-like structure in which each node has two element fields, le (left element) and re (right

element) and each element field has the components child and data. Branching is done based on the bits in the

search key. A left-element child branch is followed at a node at level i (the root is at level 0) if the ith bit of the

search key is 0; otherwise a right-element child branch is followed. Level i nodes store prefixes whose length is i+1

in their data fields. A prefix that ends in 0 is stored as le.data and one whose last bit is a 1 is stored as re.data.

The node in which a prefix is to be stored is determined by doing a search using that prefix as key. Let N be a

node in a 1-bit trie and let E be an element field (either left or right) of N . Let Q(E) be the bit string defined by

the path from the root to N followed by a 0 in case E is a left element field and 1 otherwise. Q(E) is the prefix

that corresponds to E. Q(E) is stored in E.data in case Q(E) is one of the prefixes to be stored in the trie.

2

Figure 1 shows a set of 8 prefixes and the corresponding 1-bit trie. The ∗ shown at the right end of each prefix

is used neither for the branching described above nor in the length computation. So, the length of P1 is 2.

Original prefixes

P5=0*
P1=10*
P2=111*
P3=11001*
P4=1*
P6=1000*
P7=100000*
P8=1000000*

(a) 8-prefix example of [4]

N0

N1

N21 N22

P5 P4

P1

P2

P3

P6

P7

P8

N31
N32

N41
N42

N5

N6

(b) Corresponding 1-bit trie

Figure 1: Prefixes and corresponding 1-bit trie [5]

2.2 Multibit Tries

The stride of a node is defined to be the number of bits used at that node to determine which branch to take. A

node whose stride is s has 2s element fields (corresponding to the 2s possible values for the s bits that are used).

Each element field has a data and a child component. A node whose stride is s requires 2s memory units (one

memory unit being large enough to accomodate an element field). Note that the stride of every node in a 1-bit

trie is 1.

In a fixed-stride trie (FST), all nodes at the same level have the same stride; nodes at different levels may have

different strides. In a variable-stride trie (VST), nodes may have different strides regardless of their level.

Suppose we wish to represent the prefixes of Figure 1(a) using an FST that has three levels. Assume that the

strides are 2, 3, and 2. The root of the trie stores prefixes whose length is 2; the level one nodes store prefixes

whose length is 5 (2 + 3); and level three nodes store prefixes whose length is 7 (2 + 3 + 2). This poses a problem

for the prefixes of our example, because the length of some of these prefixes is different from the storeable lengths.

For instance, the length of P5 is 1. To get around this problem, a prefix with a nonpermissible length is expanded

to the next permissible length [4]. For example, P5 = 0* is expanded to P5a = 00* and P5b = 01*. If one of the

newly created prefixes is a duplicate, dominance rules are used to eliminate all but one occurrence of the prefix.

Because of the elimination of duplicate prefixes from the expanded prefix set, all prefixes are distinct. Figure 2(a)

shows the prefixes that result when we expand the prefixes of Figure 1 to lengths 2, 5, and 7. Duplicate prefixes,

following expansion, are eliminated by favoring longer length original prefixes when longest length prefix matching

is desired. Figure 2(b) shows the corresponding FST whose height is 2 and whose strides are 2, 3, and 2.

3

(3 levels)

00* (P5a)
01* (P5b)
10* (P1)
11* (P4)
11100* (P2a)

11001* (P3)
10000* (P6a)

11101* (P2b)
11110* (P2c)
11111* (P2d)

10001* (P6b)
1000001* (P7)
1000000* (P8)

Expanded prefixes

(a) Expanded prefixes

00

01

10

11

100

110

111

101

001

010

011

000

100

110

111

101

001

010

011

000

00

01

10

11

P5

P3

P1

P4

P6

P6

P8

P7

P5

P2

P2

P2

P2

−

−

−

−

−

−

−

−

−−

−

(b) Corresponding fixed-stride trie

Figure 2: Prefix expansion and fixed-stride trie

Since the trie of Figure 2(b) can be searched with at most 3 memory accesses, it represents a time-performance

improvement over the 1-bit trie of Figure 1(b), which requires up to 7 memory accesses to perform a search.

However, the space requirements of the FST of Figure 2(b) are more than that of the corresponding 1-bit trie. For

the root of the FST, we need 4 units; the two level 1 nodes require 8 units each; and the level 3 node requires 4

units. The total is 24 memory units. Note that the 1-bit trie of Figure 1 requires only 20 memory units.

Let N be a node at level j of a multibit trie. Let s0, s1, · · ·, sj be the strides of the nodes on the path from

the root of the multibit trie to node N . Note that s0 is the stride of the root and sj is the stride of N . With node

N we associate a pair [s, e], called the start-end pair, that gives the start and end levels of the corresponding 1-bit

trie O covered by this node. By definition, s =
∑j−1

i=0 sj and e = s + sj − 1. The root of the multibit trie covers

levels 0 through s0 − 1 of O and node N covers levels 0 through sj − 1 of a corresponding subtrie of O. In the case

of an FST all nodes at the same level of the FST have the same [s, e] values. In the FST of Figure 2(b), the [s, e]

values for the level 0, level 1, and level 2 nodes are [0, 1], [2, 4] and [5, 6], respectively. Level 0 of the FST covers

levels 0 and 1 of the corresponding 1-bit trie while level 2 of this FST covers levels 2, 3, and 4 of the 1-bit trie.

Levels 0 and 1 of the FST together cover levels 0 through 4 of the 1-bit trie.

Starting with a 1-bit trie for n prefixes whose length is at most W , the strides for a space-optimal FST with

at most k levels may be determined in O(nW + kW 2) time1 [4, 5]. For a space-optimal VST whose height2 is

1The complexity of O(kW 2) given in [4, 5] assumes we start with data extracted from the 1-bit trie; the extraction of this data
takes O(nW) time.

2The height of a trie is the number of levels in the trie. Height is often defined to be 1 less than the number of levels. However, the
definition we use is more convenient in this paper.

4

constrained to k, the strides may be determined in O(nW 2k) time [4, 5].

3 Pipelined Variable-stride Multibit Tries

Algorithms to construct optimal pipelined FSTs (i.e., FSTs that satisfy constraints C1–C3) have been developed

in [6]. So, we consider only the construction of pipelined VSTs in this section. Optimal pipelined VSTs satisfy

constraints C1–C3 (although, in C1, we replace “fixed-stride trie” with “variable-stride trie”). Although we do

not develop an algorithm that constructs an optimal pipelined VST, the heuristic proposed by us, in this section,

constructs an “approximately optimal” VST, which when mapped onto a pipelined architecture using constraint

C1 results in a maximum per-stage memory requirement that is considerably less than that for an optimal pipelined

FST for the given rule table.

Let O be the 1-bit trie for the given filter set, let N be a node of O and let ST (N) be the subtree of O that is

rooted at N . Let Opt′(N, r) denote the approximately optimal (pipelined) VST for the subtree ST (N); this VST

has at most r levels. Let Opt′(N, r).E(l) be the (total) number of elements at level l of Opt′(N, r), 0 ≤ l < r.

We seek to construct Opt′(root(O), k), the approximately optimal pipelined VST for O that has at most k levels,

where k is the number of available pipeline stages.

Let Di(N) denote the descendents of N that are at level i of ST (N). So, for example, D0(N) = {N} and

D1(N) denotes the children, in O, of N . Our approximately optimal VST has the property that its subtrees

are approximately optimal for the subtrees of N that they represent. So, for example, if the root of Opt′(N, r)

represents levels 0 through i − 1 of ST (N), then the subtrees of (the root of) Opt′(N, r) are Opt′(M, r − 1) for

M ∈ Di(N).

When r = 1, OPT ′(N, 1) has only a root node; this root represents all levels of ST (N). So,

Opt′(N, 1).E(l) =

{

2height(N) l = 0
0 l > 0

(1)

where height(N) is the height of ST (N).

When r > 1, the number, q, of levels of ST (N) represented by the root of Opt′(N, r) is between 1 and height(N).

From the definition of Opt′(N, r), it follows that

Opt′(N, r).E(l) =

{

2q l = 0
∑

M∈Dq(N) Opt′(M, r − 1).E(l − 1) 1 ≤ l < r
(2)

where q is as defined below

q = argmin1≤i≤height(N){max{2i, max
0≤l<r−1

{
∑

M∈Di(N)

Opt′(M, r − 1).E(l)}}} (3)

Although the dynamic programming recurrences of Equations 1–3 may be solved directly to determine Opt′(root(O), k),

the time complexity of the resulting algorithm is reduced by defining auxialliary equations. For this purpose, let

Opt′STs(N, i, r − 1), i > 0, r > 1, denote the set of approximately optimal VSTs for Di(N) (Opt′STs(N, i, r − 1)

5

has one VST for each member of Di(N)); each VST has at most r − 1 levels. Let Opt′STs(N, i, r − 1).E(l) be the

sum of the number of elements at level l of each VST of Opt′STs(N, i, r − 1). So,

Opt′STs(N, i, r − 1).E(l) =
∑

M∈Di(N)

Opt′(M, r − 1).E(l), 0 ≤ l < r − 1 (4)

For Opt′STs(N, i, r − 1).E(l), i > 0, r > 1, 0 ≤ l < r − 1, we obtain the following recurrence

Opt′STs(N, i, r − 1).E(l) =

{

Opt′(LC(N), r − 1).E(l) + Opt′(RC(N), r − 1).E(l) i = 1
Opt′STs(LC(N), i − 1, r − 1).E(l) + Opt′STs(RC(N), i − 1, r − 1).E(l) i > 1

(5)

where LC(N) and RC(N), respectively, are the left and right children, in ST (N), of N .

Since the number of nodes in O is O(nW), the total number of Opt′(N, r) and Opt′STs(N, i, r − 1) values is

O(nW 2k). For each, O(k) E(l) values are computed. Hence, to compute all Opt′(root(O), k).E(l) values, we must

compute O(nW 2k2) Opt′(N, r).E(l) and Opt′STs(N, i, r − 1).E(l) values. Using Equations 1–5, the total time for

this is O(nW 2k2).

4 Mapping Onto A Pipeline Architecture

When the approximately optimal VST Opt′(root(O), k) of Section 3 is mapped onto a k stage pipeline in the most

straightforward way (i.e., nodes at level l of the VST are packed into stage l + 1, 0 ≤ l < k of the pipeline), the

maximum per-stage memory is

max
0≤l<k

{Opt′(root(O), k).E(l)}

We can do quite a bit better than this by employing a more sophisticated mapping strategy. For correct

pipeline operation, we need require only that if a node N of the VST is assigned to stage q of the pipeline, then

each descendent of N be assigned to a stage r such that r > q. Hence, we are motivated to solve the following tree

packing problem:

Tree Packing (TP)

Input: Two integers k > 0 and M > 0 and a tree T , each of whose nodes has a positive size.

Output: ”Yes” iff the nodes of T can be packed into k bins, each of capacity M . The bins are indexed 1 through

k and the packing is constrained so that for every node packed into bin q, each of its descendent nodes is packed

into a bin with index more than q.

By performing a binary (or other) search over M , we may use an algorithm for TP to determine an optimal

packing (i.e., one with least M) of Opt′(root(O), k) into a k-stage pipeline. Unfortunately, problem TP is NP-

complete. This may be shown by using a reduction from the partition problem [1]. In the partition problem, we

6

are given n positive integers si, 1 ≤ i ≤ n whose sum is 2B and we are to detemine whether any subset of the

given sis sums to B.

Theorem 1 TP is NP-complete.

Proof It is easy to see that TP is in NP. So we simply show the reduction from the partition problem. Let n, si,

1 ≤ i ≤ n, and B (
∑

si = 2B) be an instance of the partition problem. We may transform, in polynomial time,

this partition instance into a TP instance that has a k-bin tree packing with bin capacity M iff there is a partition

of the sis. The TP instance has M = 2B + 1 and k = 3. The tree T for this instance has three levels. The size of

the root is M ; the root has n children; the size of the ith child is 2si, 1 ≤ i ≤ n; and the root has one grandchild

whose size is 1 (the grandchild may be be made a child of any one of the n children of the root).

It is easy to see that T may be packed into 3 capacity M bins iff the given sis have a subset whose sum is B.

All VSTs have nodes whose size is a power of 2 (more precisely, some constant times a power of 2). The TP

construction of Theorem 1 results in node sizes that are not necessarily a power of 2. Despite Theorem 1, it is

possible that TP restricted to nodes whose size is a power of 2 is polynomially solvable. However, we have been

unable to develop a polynomial-time algorithm for this restricted version of TP. Instead, we propose a heuristic,

which is motivated by the optimality of the First Fit Decreasing (FFD) algorithm to pack bins when the size of

each item is a power of a, where a ≥ 2 is an integer. In FFD [1], items are packed in decreasing order of size; when

an item is considered for packing, it is packed into the first bin into which it fits; if the item fits in no exisiting

bin, a new bin is started. Although this packing strategy does not guarantee to minimize the number of bins into

which the items are packed when item sizes are arbitrary integers, the strategy works for the restricted case when

the size of each item is of the form ai, where a ≥ 2 is an integer. Theorem 2 establishes this by considering a

related problem–restricted max packing (RMP). Let a ≥ 2 be an integer. Let si, a power of a, be the size of the

ith item, 1 ≤ i ≤ n. Let ci be the capacity of the ith bin, 1 ≤ i ≤ k. In the restricted max packing problem,

we are to maximize the sum of the sizes of the items packed into the k bins. We call this version of max packing

restricted because the item sizes must be a power of a.

Theorem 2 FFD solves the RMP problem.

Proof Let a, n, ci, 1 ≤ i ≤ k and si, 1 ≤ i ≤ n define an instance of RMP. Suppose that in the FFD packing

the sum of the sizes of items packed into bin i is bi. Clearly, bi ≤ ci, 1 ≤ i ≤ k. Let S be the subset of items not

packed in any bin. If S = ∅, all items have been packed and the packing is necessarily optimal. So, assume that

S 6= ∅. Let A be the size of smallest item in S. Let xi and yi be non-negative integers such that bi = xiA + yi and

0 ≤ yi < A, 1 ≤ i ≤ k. We make the following observations:

(a) (xi + 1) ∗ A > ci, 1 ≤ i ≤ k. This follows from the definition of FFD and the fact that S has an unpacked

item whose size is A.

7

(b) Each item that contributes to a yi has size less than A. This follows from the fact that all item sizes (and

hence A) are a power of a. In particular, note that every item size ≥ A is a multiple of A.

(c) Each item that contributes to the xiA component of a bi has size ≥ A. Though at first glance, it may seem that

many small items could collectively contribute to this component of bi, this is not the case when FFD is used

on items whose size is a power of a. We prove this by contradiction. Suppose that for some i, xiA = B + C,

where B > 0 is the contribution of items whose size is less than A and C is the contribution of items whose

size is ≥ A. As noted in (b), every size ≥ A is a multiple of A. So, C is a multiple of A. Hence B is a multiple

of A formed by items whose size is smaller than A. However S has an item whose size is A. FFD should

have packed this item of size A into bin i before attempting to pack the smaller size items that constitute B.

The sum of the sizes of items packed by FFD is

FFDSize =
∑

1≤i≤k

xiA +
∑

1≤i≤k

yi (6)

For any other k-bin packing of the items, let b′i = x′
iA + y′

i, where x′
i and y′

i are non-negative integers and

0 ≤ y′
i < A, 1 ≤ i ≤ k, be the sum of the sizes of items packed into bin i. For this other packing, we have

OtherSize =
∑

1≤i≤k

x′
iA +

∑

1≤i≤k

y′
i (7)

From observation (a), it follows that x′
i ≤ xi, 1 ≤ i ≤ k. So, the first sum of Equation 7 is ≤ the first sum of

Equation 6.

From observations (b) and (c) and the fact that A is the smallest size in S, it follows that every item whose size

is less than A is packed into a bin by FFD and contributes to the second sum in Equation 6. Since all item sizes

are a power of a, no item whose size is more than A can contribute to a y′
i. Hence, the second sum of Equation 7

is ≤ the second sum of Equation 6. So, OtherSize ≤ FFDSize and FFD solve the RMP problem.

The optimality of FFD for RMP motivates our tree packing heuristic of Figure 3, which attempts to pack a

tree into k bins each of size M . It is assumed that the tree height is ≤ k. The heuristic uses the notions of a ready

node and a critical node. A ready node is one whose ancestors have been packed into prior bins. Only a ready

node may be packed into the current bin. A critical node is an, as yet, unpacked node whose height3 equals the

number of bins remaining for packing. Clearly, all critical nodes must be ready nodes and must be packed into the

current bin if we are to successfully pack all tree nodes into the given k bins. So, our heuristic ensures that critical

nodes are ready nodes. Further, it first packs all critical nodes into the current bin and then packs the remaining

ready nodes in decreasing order of node size. We may use the binary search technique to determine the smallest

M for which the heuristic is successful in packing the given tree.

3The height of a leaf is 1; the height of a non-leaf is 1 more than the maximum of the heights of its children.

8

Step 1: [Initialize]
currentBin = 1; readyNodes = tree root;

Step 2: [Pack into current bin]
Pack all critical ready nodes into currentBin;
if bin capacity is exceeded return failure;
Pack remaining ready nodes into currentBin in decreasing order of node size;

Step 3 [Update Lists]
if all tree nodes have been packed return success;
if currentBin == k return failure;
Remove all nodes packed in Step 2 from readyNodes;
Add to readyNodes the children of all nodes packed in Step 2;
currentBin + +;
Go to Step 2;

Figure 3: Tree packing heuristic

5 Experimental Results

Our algorithms for pipelines multibit tries were programmed in C++ and compiled using the GCC 3.3.5 compiler

with optimization level O3. The compiled codes were run a 2.80 GHz Pentium 4 PC. Our algorithms for pipelined

multibit tries were benchmarked against the best multibit trie algorithms of [6].

Basu and Narliker [7] and Kim and Sahni [6] have proposed algorithms for the construction of pipelined multibit

tries. Since the algorithms of [6] are superior to those of [7], we focus on the algorithms of [6]. [6] develops an

algorithm PFST-2, which is a 2-stage algorithm that results in pipelined FSTs that miminize total memory subject

to minimizing the maximum per-stage memory. Sahni and Kim [6] also propose two algorithms PU-2n and PART

that are based on FSTs but result in VSTs that are superior for pipeline applications than the optimal FSTs

generated by PFST-2. In particular, the PU-2n tries require smaller total memory than do the tries of PFST-2;

the maximum per-stage memory no more than that for PFST-2. The PART tries have a smaller maximum per-

stage memory requirement than the tries of PFST-2 but require more total memory. Henceforth, we abbreviate

PFST-2 to PFST. Let VST denote the algorithm of Sahni and Kim [5], which constructs VSTs with minimum

total memory and let PVST be our algorithm of Section 3. So, in all, we have 5 algorithms–PFST, PU-2n, PART,

VST and PVST–for the construction of pipelined multibit tries. Only one of these, PFST, results in an FST and

the others result in VSTs.

We first determine the effectiveness of our tree packing heuristic of Figure 3 relative to the straightforward

mapping (i.e., nodes at level l of the multibit trie are packed into stage l + 1, 0 ≤ l < k of the pipeline). For our

experiment, we use the 6 data sets–RRC04, RRC03b, RRC01, MW02, PA, and ME02–used in [6]. The number

of prefixes in these data sets is 109600, 108267, 103555, 87618, 85987, and 70306, respectively. Table 1 gives the

reduction in maximum per-stage memory when we use our tree packing heuristic rather than the straightforward

mapping. For example, on our 6 data sets, the tree packing heuristic reduced the maximum per-stage memory

9

required by the multibit trie generated by PVST by between 0% and 31%; the mean reduction was 11% and

the standard deviation was 10%. The reduction obtained by the tree packing heuristic was as high as 44% when

applied to the tries constructed by the algorithms of [6].

Algorithm Min Max Mean Standard Deviation
PFST 0% 41% 18% 15%
PU-2n 0% 41% 17% 15%
PART 0% 44% 15% 12%

VST 0% 20% 7% 7%
PVST 0% 31% 11% 10%

Table 1: Reduction in maximum per-stage memory resulting from tree packing heuristic

Tables 2 and 3, respectively, give the maximum per-stage memory and total memory requirements for the

multibit tries resulting from our 5 algorithms. In each case, the tries were mapped into k, 2 ≤ k ≤ 8, pipeline

stages using our tree packing heuristic. Figure 4 plots this data for RRC01.

10

k 2 3 4 5 6 7 8
RRC04 PFST 16384 512 256 146 136 64 64

PU-2n 16384 512 256 136 136 64 64
PART 16384 512 198 141 103 73 64

VST 890 235 147 108 88 72 62
PVST 890 188 119 89 71 64 53

RRC03b PFST 16384 512 256 154 151 64 64
PU-2n 16384 512 256 151 151 64 64
PART 16384 512 205 128 102 76 64

VST 927 236 147 109 88 73 62
PVST 927 189 118 89 70 64 56

RRC01 PFST 16384 512 152 89 74 64 63
PU-2n 16384 512 152 87 69 64 58
PART 16384 512 140 128 72 64 64

VST 543 214 142 105 85 72 61
PVST 543 172 112 84 67 64 50

MW02 PFST 16384 512 137 128 68 64 61
PU-2n 16384 512 137 128 64 64 54
PART 16384 512 128 93 70 64 64

VST 657 179 125 88 71 58 50
PVST 512 144 94 71 64 64 45

PA PFST 16384 512 127 75 64 64 52
PU-2n 16384 512 127 73 64 64 48
PART 16384 512 128 81 64 64 64

VST 588 178 125 88 72 59 53
PVST 512 142 93 70 64 64 46

ME02 PFST 15258 512 141 118 64 64 41
PU-2n 15258 512 141 118 64 64 39
PART 15258 512 141 91 73 64 43

VST 610 155 105 74 59 47 42
PVST 610 128 78 64 49 41 38

Table 2: Maximum per-stage memory (KB)

11

k 2 3 4 5 6 7 8
RRC04 PFST 16520 1286 799 558 551 449 443

PU-2n 16520 1286 798 549 542 425 417
PART 16520 1286 685 631 571 471 442

VST 1402 461 361 330 321 319 318
PVST 1402 504 400 387 389 391 371

RRC03b PFST 16535 1296 811 571 564 446 440
PU-2n 16535 1296 810 562 555 423 414
PART 16535 1296 698 640 556 488 447

VST 1439 463 361 329 320 317 317
PVST 1439 506 399 386 387 389 357

RRC01 PFST 16399 1142 522 423 435 429 386
PU-2n 16399 1142 522 415 412 404 361
PART 16398 1142 548 531 425 435 422

VST 1055 421 336 311 304 302 302
PVST 1055 470 379 370 371 374 354

MW02 PFST 16429 1035 477 480 407 400 355
PU-2n 16429 1035 477 472 388 378 333
PART 16429 1035 510 413 407 381 367

VST 913 363 284 261 255 254 253
PVST 961 415 328 320 321 323 290

PA PFST 16397 1011 447 365 375 368 323
PU-2n 16397 1011 447 358 356 347 302
PART 16395 1224 478 380 370 370 359

VST 844 360 282 260 255 254 253
PVST 923 411 327 318 320 322 282

ME02 PFST 23450 1015 480 413 317 327 283
PU-2n 23450 1015 480 411 315 312 268
PART 23450 1015 516 417 394 290 335

VST 1122 324 245 221 215 213 213
PVST 1122 375 285 277 256 256 238

Table 3: Total memory (KB)

12

2 3 4 5 6 7 8
 10

 100

 1000

 10000

100000

M
em

or
y

(x
10

24
)

k

PFST
PU−2n
PART
VST
PVST

(a) Maximum per-stage memory

2 3 4 5 6 7 8
 100

 1000

 10000

100000

M
em

or
y

(x
10

24
)

k

PFST
PU−2n
PART
VST
PVST

(b) Total memory

Figure 4: Maximum per-stage and total memory (KB) for RRC01

In all but two of the 42 tests (MW02 and PA with k = 7), PVST results in the least maximum per-stage

memory requirement. Tables 4 and 5 give the maximum per-stage and total memory required by the 5 algorithms

normalized by the requirements for PVST. The maximum per-stage memory requirement for the algorithms of [6]

are up to 32 times that of PVST while the requirement for VST is up to 35% more than that of PVST. On two

of our test cases, VST required up to 9% less per-stage memory than did PVST. On average, the total memory

required by the multibit tries produced by VST was 13% less than that required by the PVST tries; the tries

generated by the algorithms of [6] required, on average, about 3.5 times the total memory required by the PVST

tries.

Algorithm Min Max Mean Standard Deviation
PFST 1.00 32.00 5.16 8.90
PU-2n 1.00 32.00 5.14 8.91
PART 1.00 32.00 5.11 8.92

VST 0.91 1.35 1.18 0.11
PVST 1 1 1 0

Table 4: Maximum per-stage memory normalized by PVST’s maximum per-stage memory

Table 6 shows the time taken by the various algorithms to determine the pipelined multibit tries for the case

k = 8. The shown time includes the time for the tree packing heuristic. Figure 5 plots this data. VST has

an execution time comparable to that of the algorithms of [6] but produces significantly superior pipelined tries.

Although PVST takes about 3 times as much time as does VST, it usually generates tries that require significantly

less maximum per-stage memory.

13

Algorithm Min Max Mean Standard Deviation
PFST 1.09 20.90 3.57 5.22
PU-2n 1.02 20.90 3.54 5.23
PART 1.13 20.90 3.60 5.20

VST 0.79 1 0.87 0.06
PVST 1 1 1 0

Table 5: Total memory normalized by PVST’s total memory

Data Set PFST PU-2n PART VST PVST
RRC04 303 361 296 450 1256

RRC03b 302 355 379 441 1253
RRC01 372 410 311 428 1196
MW02 244 306 174 350 995

PA 274 308 167 334 993
ME02 1373 206 1394 296 838

Table 6: Execution time (msec) for computing 8-level multibit-stride trie

 RRC04 RRC03b RRC01 MW02 PA ME02
0

200

400

600

800

1000

1200

1400

1600

T
im

e
(m

se
c)

PFST
PU−2n
PART
VST
PVST

Figure 5: Execution time (msec) for computing 8-level multibit-stride trie

6 Conclusion

We have developed a tree packing heuritic that reduces the maximum per-stage memory required by the multibit

tries of [6] by as much as 44%. Our PVST algorithm results in VST multibit tries, which when mapped into a

pipelined architecture, have a maximum per-stage memory requirement that is up to 1/32 that required by the

tries of [6].

References

[1] E.Horowitz, S.Sahni, and S.Rajasekeran, Computer Algorithms/C++, W. H. Freeman, NY, 1997.

14

[2] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous, Survey and taxonomy of IP address lookup algorithms, IEEE

Network, 2001, 8-23.

[3] S. Sahni, K. Kim, and H. Lu, Data structures for one-dimensional packet classification using most-specific-rule

matching, International Journal on Foundations of Computer Science, 14, 3, 2003, 337-358.

[4] V. Srinivasan and G. Varghese, Faster IP lookups using controlled prefix expansion, ACM Transactions on

Computer Systems, Feb:1-40, 1999.

[5] S. Sahni and K. Kim, Efficient construction of multibit tries for IP lookup, IEEE/ACM Transactions on

Networking, 11, 4, 2003.

[6] K. Kim and S. Sahni, Efficient construction of pipelined multibit-trie Router-Tables, Paper in Review.

[7] A.Basu and G. Narlikar Fast Incremental Updates for Pipeline Forwarding Engines, InfoCom, 2003.

15

