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Abstract

We propose a heuristic for the construction of variable-stride multibit tries. These multibit tries are suitable
for one-dimensional packet classification using a pipelined architecture. The variable-stride tries constructed by
our heuristic require significantly less per-stage memory than required by optimal pipelined fixed-stride tries.
We also develop a tree packing heuristic, which dramatically reduces per-stage memory required by fixed- and
variable-stride multibit tries constructed for pipelined architecture.
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1 Introduction

Internet packets are classified into flows based on their header fields. This classification is done using a table of
rules in which each rule is a pair (F, A), where F is a filter and A is an action. If an incoming packet matches a
filter in the rule table, the associated action specifies what is to be done with this packet. Typical actions include
packet forwarding and dropping. A d-dimensional filter F is a d-tuple (F[1], F'[2],- - -, F[d]), where F[i] is a range
that specifies destination addresses, source addresses, port numbers, protocol types, TCP flags, etc. A packet is
said to match filter F', if its header field values fall in the ranges F'[1],---, F[d]. Since it is possible for a packet to
match more than one of the filters in a classifier, a tie breaker is used to determine a unique matching filter.

In one-dimensional packet classification (i.e., d = 1), F[1] is usually specified as a destination address prefix
and lookup involves finding the longest prefix that matches the packet’s destination address. Data structures for
longest-prefix matching have been extensively studied (see [2, 3], for surveys). In this paper, we are concerned
solely with 1-dimensional packet classification. It should be noted that data structures for 1-dimensional packet
classification are fundamental to the design and development of multi-dimensional packet classification (i.e., d > 1),
since data structures for multi-dimensional packet classification are usually built on top of those for 1-dimensional
packet classification.

In this paper we focus on the development of data structures suitable for ASIC-based pipelined architectures

for high speed packet classification. Basu and Narlikar [7] and Kim and Sahni [6] have proposed algorithms for the
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construction of optimal fixed-stride tries for one-dimensional prefix tables; these fixed-stride tries are optimized
for pipelined architectures. Basu and Narliker [7] list three constraints for optimal pipelined fixed-stride multibit

tries:
C1: Each level in the fixed-stride trie must fit in a single pipeline stage.
C2: The maximum memory allocated to a stage (over all stages) is minimized.
C3: The total memory used is minimized subject to the first two constraints.

Basu and Narliker [7] assert that constraint C3 reduces pipeline disruption resulting from rule-table updates.
Although the algorithm proposed in [7] constructs fixed-stride tries that satisfy constraints C1 and C2, the con-
structed tries may violate constraint C3. Kim and Sahni [6] have developed faster algorithms to construct pipelined
fixed-stride tries; their tries satisfy all three of the constraints C1-C3. FSTs that satisfy C1-C3 are called optimal
pipelined FSTs.

In this paper, we propose heuristics for the construction of pipelined variable-stride multibit tries. The pipelined
tries constructed by our algorithms are compared, experimentally, to those constructed by the algorithms of Kim
and Sahni [6]. The variable-stride multibit tries constructed by our heuristic require significantly less per-stage
memory than required by optimal pipelined fixed-stride tries. Also, we develop a tree packing heuristic, which
dramatically reduces per-stage memory required by pipelined fixed- and variable-stride multibit tries.

We begin, in Section 2, by reviewing basic concepts related to the trie data structure. This section also describes
multibit fixed- and variable-stride tries, and controlled prefix expansion [4]. In Section 3 we develop an (heuristic)
algorithm for pipelined variable-stride tries. In Section 4 we develop a tree packing (heuristic) algorithm for
mapping multibit tries to a pipelined architecture. An experimental evaluation of our algorithms is conducted in

Section 5.

2 Tries
2.1 1-bit Tries

A 1-bit trie is a binary tree-like structure in which each node has two element fields, le (left element) and re (right
element) and each element field has the components child and data. Branching is done based on the bits in the
search key. A left-element child branch is followed at a node at level i (the root is at level 0) if the ith bit of the
search key is 0; otherwise a right-element child branch is followed. Level i nodes store prefixes whose length is ¢4 1
in their data fields. A prefix that ends in 0 is stored as le.data and one whose last bit is a 1 is stored as re.data.
The node in which a prefix is to be stored is determined by doing a search using that prefix as key. Let N be a
node in a 1-bit trie and let F be an element field (either left or right) of N. Let Q(E) be the bit string defined by
the path from the root to N followed by a 0 in case F is a left element field and 1 otherwise. Q(FE) is the prefix
that corresponds to E. Q(F) is stored in E.data in case Q(FE) is one of the prefixes to be stored in the trie.



Figure 1 shows a set of 8 prefixes and the corresponding 1-bit trie. The * shown at the right end of each prefix

is used neither for the branching described above nor in the length computation. So, the length of P1 is 2.
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(a) 8-prefix example of [4] (b) Corresponding 1-bit trie

Figure 1: Prefixes and corresponding 1-bit trie [5]

2.2 Multibit Tries

The stride of a node is defined to be the number of bits used at that node to determine which branch to take. A
node whose stride is s has 2° element fields (corresponding to the 2° possible values for the s bits that are used).
Each element field has a data and a child component. A node whose stride is s requires 2° memory units (one
memory unit being large enough to accomodate an element field). Note that the stride of every node in a 1-bit
trie is 1.

In a fized-stride trie (FST), all nodes at the same level have the same stride; nodes at different levels may have
different strides. In a variable-stride trie (VST), nodes may have different strides regardless of their level.

Suppose we wish to represent the prefixes of Figure 1(a) using an FST that has three levels. Assume that the
strides are 2, 3, and 2. The root of the trie stores prefixes whose length is 2; the level one nodes store prefixes
whose length is 5 (2 + 3); and level three nodes store prefixes whose length is 7 (2 + 3 + 2). This poses a problem
for the prefixes of our example, because the length of some of these prefixes is different from the storeable lengths.
For instance, the length of P5 is 1. To get around this problem, a prefix with a nonpermissible length is expanded
to the next permissible length [4]. For example, P5 = 0* is expanded to P5a = 00* and P5b = 01*. If one of the
newly created prefixes is a duplicate, dominance rules are used to eliminate all but one occurrence of the prefix.
Because of the elimination of duplicate prefixes from the expanded prefix set, all prefixes are distinct. Figure 2(a)
shows the prefixes that result when we expand the prefixes of Figure 1 to lengths 2, 5, and 7. Duplicate prefixes,
following expansion, are eliminated by favoring longer length original prefixes when longest length prefix matching

is desired. Figure 2(b) shows the corresponding FST whose height is 2 and whose strides are 2, 3, and 2.
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Figure 2: Prefix expansion and fixed-stride trie

Since the trie of Figure 2(b) can be searched with at most 3 memory accesses, it represents a time-performance
improvement over the 1-bit trie of Figure 1(b), which requires up to 7 memory accesses to perform a search.
However, the space requirements of the FST of Figure 2(b) are more than that of the corresponding 1-bit trie. For
the root of the FST, we need 4 units; the two level 1 nodes require 8 units each; and the level 3 node requires 4
units. The total is 24 memory units. Note that the 1-bit trie of Figure 1 requires only 20 memory units.

Let N be a node at level j of a multibit trie. Let sg, s1, ---, s; be the strides of the nodes on the path from
the root of the multibit trie to node IN. Note that sq is the stride of the root and s; is the stride of V. With node
N we associate a pair [s, e, called the start-end pair, that gives the start and end levels of the corresponding 1-bit
trie O covered by this node. By definition, s = f;& sj and e = s + s; — 1. The root of the multibit trie covers
levels 0 through so — 1 of O and node N covers levels 0 through s; — 1 of a corresponding subtrie of O. In the case
of an FST all nodes at the same level of the FST have the same [s, €] values. In the FST of Figure 2(b), the [s, €]
values for the level 0, level 1, and level 2 nodes are [0, 1], [2,4] and [5, 6], respectively. Level 0 of the FST covers
levels 0 and 1 of the corresponding 1-bit trie while level 2 of this FST covers levels 2, 3, and 4 of the 1-bit trie.
Levels 0 and 1 of the FST together cover levels 0 through 4 of the 1-bit trie.

Starting with a 1-bit trie for n prefixes whose length is at most W, the strides for a space-optimal FST with
at most k levels may be determined in O(nW + kW?2) time! [4, 5]. For a space-optimal VST whose height? is

IThe complexity of O(kW?) given in [4, 5] assumes we start with data extracted from the 1-bit trie; the extraction of this data
takes O(nW) time.

2The height of a trie is the number of levels in the trie. Height is often defined to be 1 less than the number of levels. However, the
definition we use is more convenient in this paper.



constrained to k, the strides may be determined in O(nW?2k) time [4, 5].

3 Pipelined Variable-stride Multibit Tries

Algorithms to construct optimal pipelined FSTs (i.e., FSTs that satisfy constraints C1-C3) have been developed
in [6]. So, we consider only the construction of pipelined VSTs in this section. Optimal pipelined VSTs satisfy
constraints C1-C3 (although, in C1, we replace “fixed-stride trie” with “variable-stride trie”). Although we do
not develop an algorithm that constructs an optimal pipelined VST, the heuristic proposed by us, in this section,
constructs an “approximately optimal” VST, which when mapped onto a pipelined architecture using constraint
C1 results in a maximum per-stage memory requirement that is considerably less than that for an optimal pipelined
FST for the given rule table.

Let O be the 1-bit trie for the given filter set, let N be a node of O and let ST(N) be the subtree of O that is
rooted at N. Let Opt'(N,r) denote the approximately optimal (pipelined) VST for the subtree ST(N); this VST
has at most r levels. Let Opt’'(N,r).E(l) be the (total) number of elements at level I of Opt'(N,r), 0 <1 < r.
We seek to construct Opt’' (root(O), k), the approximately optimal pipelined VST for O that has at most k levels,
where k is the number of available pipeline stages.

Let D;(N) denote the descendents of N that are at level i of ST(N). So, for example, Do(N) = {N} and
Dy(N) denotes the children, in O, of N. Our approximately optimal VST has the property that its subtrees
are approximately optimal for the subtrees of N that they represent. So, for example, if the root of Opt’'(N,r)
represents levels 0 through ¢ — 1 of ST(NV), then the subtrees of (the root of) Opt'(N,r) are Opt'(M,r — 1) for
M € D;(N).

When r =1, OPT'(N, 1) has only a root node; this root represents all levels of ST(N). So,

Qheight(N) 1=0

/ —
Opt'(N,1).E(l) = { 0 >0 (1)
where height(N) is the height of ST(N).

When r > 1, the number, ¢, of levels of ST (N) represented by the root of Opt’ (N, r) is between 1 and height(N).

From the definition of Opt'(N,r), it follows that

24 =0
Opt' (N,r).E(l) = 2
pt'(N,7)-E () { S arey v Opt(M,r —1).B(I 1) 1<i<r (2)
where ¢ is as defined below
q= ngimgigheight(m{maX{QiaO<Dlﬂg?<_1{ Z Opt'(M,r —1).E(1)}}} (3)
= MeD;(N)

Although the dynamic programming recurrences of Equations 1-3 may be solved directly to determine Opt’ (root(O), k),
the time complexity of the resulting algorithm is reduced by defining auxialliary equations. For this purpose, let

Opt'STs(N,i,r —1),4> 0, r > 1, denote the set of approximately optimal VSTs for D;(N) (Opt'STs(N,i,r — 1)



has one VST for each member of D;(N)); each VST has at most r — 1 levels. Let Opt' STs(N,i,r — 1).E(l) be the
sum of the number of elements at level | of each VST of Opt'STs(N,i,r — 1). So,

Opt'STs(N,i,r —1).E(l)= > Opt'(M,r—1).E(),0<1<r—1 (4)
MeD;(N)

For Opt'STs(N,i,r — 1).E(l),i>0,r > 1,0 <l <r — 1, we obtain the following recurrence

Opt'(LC(N),r —1).E(l) + Opt'(RC(N),r — 1).E(l) i=1
Opt'STs(LC(N),i—1,r —1).E(l) + Opt' STs(RC(N),i —1,r —1).E(l) i>1
()

Opt'STs(N,i,r —1).E(l) = {

where LC(N) and RC(N), respectively, are the left and right children, in ST(N), of N.

Since the number of nodes in O is O(nW), the total number of Opt'(N,r) and Opt'STs(N,i,r — 1) values is
O(nW?2k). For each, O(k) E(l) values are computed. Hence, to compute all Opt’(root(O), k).E(l) values, we must
compute O(nW?2k?) Opt'(N,r).E(l) and Opt’ STs(N, i, — 1).E(l) values. Using Equations 1-5, the total time for
this is O(nW?2k?).

4 Mapping Onto A Pipeline Architecture

When the approximately optimal VST Opt’(root(O), k) of Section 3 is mapped onto a k stage pipeline in the most
straightforward way (i.e., nodes at level [ of the VST are packed into stage I + 1, 0 < I < k of the pipeline), the

maximum per-stage memory is

Oréllagk{Opt'(root(O), k).E(1)}

We can do quite a bit better than this by employing a more sophisticated mapping strategy. For correct
pipeline operation, we need require only that if a node N of the VST is assigned to stage ¢ of the pipeline, then
each descendent of N be assigned to a stage r such that r > ¢q. Hence, we are motivated to solve the following tree

packing problem:

Tree Packing (TP)

Input: Two integers k > 0 and M > 0 and a tree T, each of whose nodes has a positive size.

Output: ”Yes” iff the nodes of T can be packed into k bins, each of capacity M. The bins are indexed 1 through
k and the packing is constrained so that for every node packed into bin ¢, each of its descendent nodes is packed

into a bin with index more than q.

By performing a binary (or other) search over M, we may use an algorithm for TP to determine an optimal
packing (i.e., one with least M) of Opt'(root(O), k) into a k-stage pipeline. Unfortunately, problem TP is NP-

complete. This may be shown by using a reduction from the partition problem [1]. In the partition problem, we



are given m positive integers s;, 1 < ¢ < n whose sum is 2B and we are to detemine whether any subset of the

given s;s sums to B.
Theorem 1 TP is NP-complete.

Proof It is easy to see that TP is in NP. So we simply show the reduction from the partition problem. Let n, s;,
1 <i<n,and B (Y s; = 2B) be an instance of the partition problem. We may transform, in polynomial time,
this partition instance into a TP instance that has a k-bin tree packing with bin capacity M iff there is a partition
of the s;s. The TP instance has M = 2B + 1 and k = 3. The tree T for this instance has three levels. The size of
the root is M; the root has n children; the size of the ith child is 2s;, 1 < i < n; and the root has one grandchild
whose size is 1 (the grandchild may be be made a child of any one of the n children of the root).

It is easy to see that T may be packed into 3 capacity M bins iff the given s;s have a subset whose sum is B.

All VSTs have nodes whose size is a power of 2 (more precisely, some constant times a power of 2). The TP
construction of Theorem 1 results in node sizes that are not necessarily a power of 2. Despite Theorem 1, it is
possible that TP restricted to nodes whose size is a power of 2 is polynomially solvable. However, we have been
unable to develop a polynomial-time algorithm for this restricted version of TP. Instead, we propose a heuristic,
which is motivated by the optimality of the First Fit Decreasing (FFD) algorithm to pack bins when the size of
each item is a power of a, where a > 2 is an integer. In FFD [1], items are packed in decreasing order of size; when
an item is considered for packing, it is packed into the first bin into which it fits; if the item fits in no exisiting
bin, a new bin is started. Although this packing strategy does not guarantee to minimize the number of bins into
which the items are packed when item sizes are arbitrary integers, the strategy works for the restricted case when
the size of each item is of the form a’, where a > 2 is an integer. Theorem 2 establishes this by considering a
related problem-restricted max packing (RMP). Let a > 2 be an integer. Let s;, a power of a, be the size of the
ith item, 1 < i < n. Let ¢; be the capacity of the ith bin, 1 < i < k. In the restricted max packing problem,
we are to maximize the sum of the sizes of the items packed into the k& bins. We call this version of max packing

restricted because the item sizes must be a power of a.
Theorem 2 FFD solves the RMP problem.

Proof Leta,n,c, 1 <i<kands;, 1<1i<n define an instance of RMP. Suppose that in the FFD packing
the sum of the sizes of items packed into bin 7 is b;. Clearly, b; < ¢;, 1 < i < k. Let S be the subset of items not
packed in any bin. If S = (), all items have been packed and the packing is necessarily optimal. So, assume that
S # (. Let A be the size of smallest item in S. Let z; and y; be non-negative integers such that b; = z; A +y; and

0<y; <A, 1<i<k. Wemake the following observations:

(a) (zi+1)* A > ¢, 1 <4 <k. This follows from the definition of FFD and the fact that S has an unpacked

item whose size is A.



(b) Each item that contributes to a y; has size less than A. This follows from the fact that all item sizes (and

hence A) are a power of a. In particular, note that every item size > A is a multiple of A.

(¢) Each item that contributes to the x; A component of a b; has size > A. Though at first glance, it may seem that
many small items could collectively contribute to this component of b;, this is not the case when FFD is used
on items whose size is a power of a. We prove this by contradiction. Suppose that for some i, ;A = B+ C,
where B > 0 is the contribution of items whose size is less than A and C' is the contribution of items whose
size is > A. As noted in (b), every size > A is a multiple of A. So, C' is a multiple of A. Hence B is a multiple
of A formed by items whose size is smaller than A. However S has an item whose size is A. FFD should

have packed this item of size A into bin ¢ before attempting to pack the smaller size items that constitute B.

The sum of the sizes of items packed by FFD is

FFDSize= Y  ziA+ Y i (6)

1<i<k 1<i<k

For any other k-bin packing of the items, let b, = A + vy}, where x and y, are non-negative integers and

0 <yl <A 1<i<k,be the sum of the sizes of items packed into bin i. For this other packing, we have

OtherSize = Z A+ Z v (7)

1<i<k 1<i<k

From observation (a), it follows that z; < x;, 1 < i < k. So, the first sum of Equation 7 is < the first sum of
Equation 6.

From observations (b) and (c¢) and the fact that A is the smallest size in S, it follows that every item whose size
is less than A is packed into a bin by FFD and contributes to the second sum in Equation 6. Since all item sizes
are a power of a, no item whose size is more than A can contribute to a y;. Hence, the second sum of Equation 7

is < the second sum of Equation 6. So, OtherSize < FFDSize and FFD solve the RMP problem. ]

The optimality of FFD for RMP motivates our tree packing heuristic of Figure 3, which attempts to pack a
tree into k bins each of size M. It is assumed that the tree height is < k. The heuristic uses the notions of a ready
node and a critical node. A ready node is one whose ancestors have been packed into prior bins. Only a ready
node may be packed into the current bin. A critical node is an, as yet, unpacked node whose height3 equals the
number of bins remaining for packing. Clearly, all critical nodes must be ready nodes and must be packed into the
current bin if we are to successfully pack all tree nodes into the given k bins. So, our heuristic ensures that critical
nodes are ready nodes. Further, it first packs all critical nodes into the current bin and then packs the remaining
ready nodes in decreasing order of node size. We may use the binary search technique to determine the smallest

M for which the heuristic is successful in packing the given tree.

3The height of a leaf is 1; the height of a non-leaf is 1 more than the maximum of the heights of its children.



Step 1: [Initialize]
currentBin = 1; readyNodes = tree root;

Step 2: [Pack into current bin]
Pack all critical ready nodes into currentBin;
if bin capacity is exceeded return failure;
Pack remaining ready nodes into currentBin in decreasing order of node size;

Step 3 [Update Lists]
if all tree nodes have been packed return success;
if currentBin == k return failure;
Remove all nodes packed in Step 2 from readyN odes;
Add to readyNodes the children of all nodes packed in Step 2;
currentBin + +;
Go to Step 2;

Figure 3: Tree packing heuristic

5 Experimental Results

Our algorithms for pipelines multibit tries were programmed in C++ and compiled using the GCC 3.3.5 compiler
with optimization level 03. The compiled codes were run a 2.80 GHz Pentium 4 PC. Our algorithms for pipelined
multibit tries were benchmarked against the best multibit trie algorithms of [6].

Basu and Narliker [7] and Kim and Sahni [6] have proposed algorithms for the construction of pipelined multibit
tries. Since the algorithms of [6] are superior to those of [7], we focus on the algorithms of [6]. [6] develops an
algorithm PFST-2, which is a 2-stage algorithm that results in pipelined FSTs that miminize total memory subject
to minimizing the maximum per-stage memory. Sahni and Kim [6] also propose two algorithms PU-2n and PART
that are based on FSTs but result in VSTs that are superior for pipeline applications than the optimal FSTs
generated by PFST-2. In particular, the PU-2n tries require smaller total memory than do the tries of PFST-2;
the maximum per-stage memory no more than that for PFST-2. The PART tries have a smaller maximum per-
stage memory requirement than the tries of PFST-2 but require more total memory. Henceforth, we abbreviate
PFST-2 to PFST. Let VST denote the algorithm of Sahni and Kim [5], which constructs VSTs with minimum
total memory and let PVST be our algorithm of Section 3. So, in all, we have 5 algorithms—PFST, PU-2n, PART,
VST and PVST—for the construction of pipelined multibit tries. Only one of these, PFST, results in an FST and
the others result in VSTs.

We first determine the effectiveness of our tree packing heuristic of Figure 3 relative to the straightforward
mapping (i.e., nodes at level [ of the multibit trie are packed into stage [ + 1, 0 <! < k of the pipeline). For our
experiment, we use the 6 data sets—"RRC04, RRC03b, RRC01, MW02, PA, and MEO2-used in [6]. The number
of prefixes in these data sets is 109600, 108267, 103555, 87618, 85987, and 70306, respectively. Table 1 gives the
reduction in maximum per-stage memory when we use our tree packing heuristic rather than the straightforward

mapping. For example, on our 6 data sets, the tree packing heuristic reduced the maximum per-stage memory



required by the multibit trie generated by PVST by between 0% and 31%; the mean reduction was 11% and
the standard deviation was 10%. The reduction obtained by the tree packing heuristic was as high as 44% when

applied to the tries constructed by the algorithms of [6].

Algorithm | Min | Max | Mean | Standard Deviation
PFST | 0% | 41% | 18% 15%
PU-2n | 0% | 41% 17% 15%
PART | 0% | 44% 15% 12%

VST | 0% | 20% ™% ™%
PVST | 0% | 31% 11% 10%

Table 1: Reduction in maximum per-stage memory resulting from tree packing heuristic

Tables 2 and 3, respectively, give the maximum per-stage memory and total memory requirements for the
multibit tries resulting from our 5 algorithms. In each case, the tries were mapped into k, 2 < k < 8, pipeline

stages using our tree packing heuristic. Figure 4 plots this data for RRCO1.
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k 2 3 4 S 6 7| 8
RRC04 | PFST | 16384 | 512 | 256 | 146 | 136 | 64 | 64
PU-2n | 16384 | 512 | 256 | 136 | 136 | 64 | 64
PART | 16384 | 512 | 198 | 141 | 103 | 73 | 64

VST 890 | 235 | 147 | 108 | 88 | 72 | 62

PVST 890 | 188 | 119 | 89 | 71 | 64 | 53
RRCO3b | PFST | 16384 | 512 | 256 | 154 | 151 | 64 | 64
PU-2n | 16384 | 512 | 256 | 151 | 151 | 64 | 64
PART | 16384 | 512 | 205 | 128 | 102 | 76 | 64

VST 927 | 236 | 147 | 109 | 88 | 73 | 62

PVST 927 | 189 | 118 | 89 | 70 | 64 | 56
RRCO01 | PFST | 16384 | 512 | 152 | 89 | 74 | 64 | 63
PU-2n | 16384 | 512 | 152 | 87 | 69 | 64 | 58
PART | 16384 | 512 | 140 | 128 | 72 | 64 | 64

VST 043 | 214 | 142 | 105 | 85 | 72 | 61

PVST 943 | 172 | 112 | 84 | 67 | 64 | 50
MWO02 | PFST | 16384 | 512 | 137 | 128 | 68 | 64 | 61
PU-2n | 16384 | 512 | 137 | 128 | 64 | 64 | 54
PART | 16384 | 512 | 128 | 93 | 70 | 64 | 64

VST 657 | 179 | 125 | 88 | 71 | 58 | 50

PVST 512 | 144 | 94| 71| 64 | 64 | 45

PA | PFST | 16384 | 512 | 127 | 75 | 64 | 64 | 52
PU-2n | 16384 | 512 | 127 | 73 | 64 | 64 | 48
PART | 16384 | 512 | 128 | 81 | 64 | 64 | 64

VST o588 | 178 | 125 | 88 | 72 | 59 | 53

PVST 512 | 142 | 93 | 70| 64 | 64 | 46

MEO2 | PFST | 15258 | 512 | 141 | 118 | 64 | 64 | 41
PU-2n | 15258 | 512 | 141 | 118 | 64 | 64 | 39
PART | 15258 | 512 | 141 | 91| 73 | 64 | 43

VST 610 | 155 | 105 | 74 | 59 | 47 | 42

PVST 610 | 128 | 78 | 64 | 49 | 41 | 38
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Table 2: Maximum per-stage memory (KB)
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414
447
317
357

RRCO1

PFST
PU-2n
PART

VST
PVST

16399
16399
16398
1055
1055

1142
1142
1142
421
470

922
522
548
336
379

423
415
531
311
370

435
412
425
304
371

429
404
435
302
374

386
361
422
302
354

MWO02

PFST
PU-2n
PART

VST
PVST

16429
16429
16429
913
961

1035
1035
1035
363
415

477
477
510
284
328

480
472
413
261
320

407
388
407
255
321

400
378
381
254
323

355
333
367
253
290

PA

PFST
PU-2n
PART

VST
PVST

16397
16397
16395
844
923

1011
1011
1224
360
411

447
447
478
282
327

365
358
380
260
318

375
356
370
255
320

368
347
370
254
322

323
302
359
253
282

MEO02

PFST
PU-2n
PART

VST
PVST

23450
23450
23450
1122
1122

1015
1015
1015
324
375

480
480
516
245
285

413
411
417
221
277

317
315
394
215
256

327
312
290
213
256

283
268
335
213
238

Table 3: Total memory (KB)
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Figure 4: Maximum per-stage and total memory (KB) for RRCO01

In all but two of the 42 tests (MWO02 and PA with k& = 7), PVST results in the least maximum per-stage
memory requirement. Tables 4 and 5 give the maximum per-stage and total memory required by the 5 algorithms
normalized by the requirements for PVST. The maximum per-stage memory requirement for the algorithms of [6]
are up to 32 times that of PVST while the requirement for VST is up to 35% more than that of PVST. On two
of our test cases, VST required up to 9% less per-stage memory than did PVST. On average, the total memory
required by the multibit tries produced by VST was 13% less than that required by the PVST tries; the tries
generated by the algorithms of [6] required, on average, about 3.5 times the total memory required by the PVST

tries.
Algorithm | Min | Max | Mean | Standard Deviation
PFST | 1.00 | 32.00 5.16 8.90
PU-2n | 1.00 | 32.00 5.14 8.91
PART | 1.00 | 32.00 5.11 8.92
VST | 091 | 1.35 1.18 0.11
PVST 1 1 1 0

Table 4: Maximum per-stage memory normalized by PVST’s maximum per-stage memory

Table 6 shows the time taken by the various algorithms to determine the pipelined multibit tries for the case
k = 8. The shown time includes the time for the tree packing heuristic. Figure 5 plots this data. VST has
an execution time comparable to that of the algorithms of [6] but produces significantly superior pipelined tries.
Although PVST takes about 3 times as much time as does VST, it usually generates tries that require significantly

less maximum per-stage memory.
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Algorithm | Min | Max | Mean | Standard Deviation
PFST | 1.09 | 20.90 | 3.57 5.22
PU-2n | 1.02 | 20.90 | 3.54 5.23
PART | 1.13 | 20.90 | 3.60 5.20

VST | 0.79 1 0.87 0.06
PVST 1 1 1 0

Table 5: Total memory normalized by PVST’s total memory

Data Set | PFST | PU-2n | PART | VST | PVST
RRC04 303 361 296 | 450 1256
RRCO03b 302 355 379 | 441 1253
RRCO1 372 410 311 | 428 1196
MWO02 244 306 174 | 350 995
PA 274 308 167 | 334 993
MEO02 1373 206 1394 | 296 838

Table 6: Execution time (msec) for computing 8-level multibit-stride trie
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Figure 5: Execution time (msec) for computing 8-level multibit-stride trie

6 Conclusion

We have developed a tree packing heuritic that reduces the maximum per-stage memory required by the multibit

tries of [6] by as much as 44%. Our PVST algorithm results in VST multibit tries, which when mapped into a

pipelined architecture, have a maximum per-stage memory requirement that is up to 1/32 that required by the

tries of [6].
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