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Fast Algorithms To Partition Simple Rectilinear Polygons*
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ABSTRACT

Two algorithms to partition hole-free rectilinear polygons are developed. One has complexity ∼

O(kn) and the other O(nlogk) where n is the number of vertices in the polygon and k is the smaller

of the number of vertical and horizontal inversions of the polygon. k is a measure of the simpli-

city of a polygon. Since k is small for most practical polygons, our algorithms are fast in prac-

tice. Experimental results comparing our algorithms with that of Imai and Asano [1] are also

presented.
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1 Introduction

Rectilinear polygons (Figure 1) arise frequently in VLSI layout and artwork analysis, com-

puter graphics, databases, image processing, etc. ([2], [3], [4], [5], [6]). The functions to be per-

formed on rectilinear polygons are often more easily performed using either a rectangle partition

or a rectangle cover. In either case the rectilinear polygon is decomposed into a set of rectangles

whose union is the original rectilinear polygon. If this set of rectangles is disjoint it is a partition.

In a cover the rectangles need not be disjoint.

W
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Y

Z

(a) hole-free

hole
hole

(b) with holes

Figure 1: Rectilinear polygons.

A minimal  nonoverlapping  cover  (MNC) of rectilinear polygon P is a rectangle partition of P

that contains the fewest possible number of rectangles. Ohtsuki [7] has developed an O(n5/2)

algorithm to find the MNC of a rectilinear polygon with n vertices. Imai and Asano [1] have

developed an O(n3/2  log n) algorithm to find the MNC and Liou, Tan, and Lee [8] have an

O(n  loglogn) algorithm for hole-free rectilinear polygons. The algorithm of [8] is not expected to

perform better than that of [1] as it uses finger search trees that are known to be impractical

(‘‘Finger search trees are sufficiently complicated that one would probably not want to use them

in an actual implementation’’, pg. 165 of [9]).

Nahar and Sahni [10] introduced a complexity measure for hole-free rectilinear polygons.

They defined the number of horizontal  inversions, kH, to be the minimum number of changes in
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(b) Independent chords
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Figure 2: MNC of a rectilinear polygon

horizontal direction during a walk around the polygon divided by 2. For example if we walk

around the polygon of Figure 1(a) beginning at vertex W such that the interior is to our left, then

we first walk rightwards up to vertex X then the direction is leftwards up to vertex Y and then it it

rightwards up to Z and then leftwards up to W. The direction of horizontal motion changes at W,

X, Y, Z. So, kH = 2. For the polygon of Figure 2(a) kH = 5. The number of vertical  inversions, kV, is
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defined analagously. kV = 1 for the polygons of Figures 1(a) and 2(a). The inversion  number, k, of

a hole-free rectilinear polygon is defined to be k = min { kH, kV }. The polygon of Figure 1(a) has

inversions number 1 and that of Figure 2(a) has inversion number 1 too. A polygon is simple if it

is hole-free and has a small inversion number. Nahar and Sahni [10] examined 2869 polygons

from VLSI mask data provided by UNISYS and found that 85% of these have k  = 1 and 95%

have k  ≤ 2 (Figure 3). They took advantage of this observation and developed a fast algorithm to

partition hole-free rectilinear polygons under the restriction that only horizontal cuts are permit-

ted. Their algorithm outperforms the scan line method on simple (and hence practical) polygons.

In this paper we extend the work of Nahar and Sahni [10] and obtain an ∼O(kn) and an

O(n  logk) (recall that k = min{kH, kV}) algorithm to find the MNC of a hole-free rectilinear

polygon. Thus our algorithms permit both horizontal and vertical cuts while that of [10] permits

only horizontal cuts. Experiments conducted with randomly generated polygons with low k show

that our algorithms outperform that of [1]. We do not compare our algorithms with that of [10] as

the algorithm of [10] does not obtain MNCs. Rather, it obtains a minimum partitioning under the

assumption that only horizontal (rather than both horizontal and vertical) cuts are permitted.

As noted earlier, most of the polygons that arise in VLSI layout and artwork analysis have a

small k. Hence our algorithms will reduce the run time of current VLSI software that uses rectil-

inear partitioning. Note that our algorithms are not recommended for rectilinear polygons with

high k. In the worst case, k can be Ο(n) and the complexity of our algorithms becomes ∼Ο(n2)

and Ο(nlogn), respectively. While the latter is still better than the asymptotic complexity of the

algorithm of [1], it should be noted that Ο(n3/2logn) is the only the worst case run time of the

algorithm of Imai and Asano [1] and that there algorithm takes much less time on many

instances. Hence, the algorithm of Imai and Asano can outperform our second algorithm on rec-

tilinear polygons for which k is not small.

Section 2 provides background material necessary for the development of our algorithms.

This section also defines much of the terminology we shall use. In Section 3, we develop the

∼Ο(kn) MNC algorithm. The Ο(nlogk) algorithm is developed in Section 4 and experimental
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results are provided in Section 5.

Number of vertices Number of polygons
0< n ≤ 10 1739
10< n ≤ 20 926
20< n ≤ 30 84
30< n ≤ 40 25
40< n ≤ 90 91

Figure 3: Distribution of polygons by number of vertices

2 Background

2.1 MNC Algorithm of [7]

We assume that the rectilinear polygon is oriented so that its vertical edges are parallel to

the y-axis and its horizontal edges are parallel to the x-axis. Two vertices (x 1, y 1) and (x 2, y 2) are

cohorizontal (covertical) iff y 1 = y 2 (x 1 = x 2). A vertex is convex (concave) iff the interior angle

made by the two edges incident at this vertex is 900 (2700). A chord is a line segment that lies

wholly within the polygon and joins two cohorizontal or two covertical concave vertices. A set

of chords is independent iff no two chords of the set intersect. Chords are used to generate an

MNC of a rectilinear polygon. Since the MNC is a rectilinear partition, we may restrict our-

selves to horizontal and vertical chords.

Example 1: Consider the hole-free polygon of Figure 2(a). Some of the cohorizontal vertex sets

are (r, q), (p,o), (t, s, m, n), and (v, u, l, k). Some of the covertical vertex sets are (z, a´), (w, v), and

(t, u, x, y). Some of the convex verteices are a, b, d, f, and g. And some of the concave vertices

are c, e, h, and i. The complete set of horizontal chords is {sm, ul, ix, hb´, ef´}, and the complete

set of vertical chords is {ux, sb´, c´f´ , pc, il}. Notice that horizontal chords are always indepen-

dent. So also are vertical chords. The chords sm and sb´ are not independent as they intersect at s.

The MNC algorithm of [7] uses the following three steps:
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Step 1: Find a maximum independent set of chords (i.e., a maximum cardinality set of

independent chords).

Step 2: Draw the chords in this maximum independent set. This partitions the polygon

into smaller rectilinear polygons.

Step 3: From each of the concave vertices from which a chord was not drawn in step 2

draw a maximum length vertical line that is wholly within the smaller rectilinear

polygon created in step 2 that contains this vertex.

In step 3 we may draw horizontal lines or vertical ones. The rectangles formed by the

polygon edges, chords of step 2 and lines of step 3 form an MNC [7].

Example 2: The chord set {ux, li, sm, hb´, ef´} is a maximum independent chord set for the

polygon of Figure 2(a). Figure 2(b) shows the polygon after the chords in this set are drawn.

Figure 2(c) shows the polygon after vertical lines are drawn as in Step 3. The rectangles in the

MNC are numbered 1 through 10.

The complexity of steps 2 and 3 of the algorithm of [7] is Ο(nlogn) where n is the number of

vertices in the rectilinear polygon. A simple sweep line algorithm can be used for this. We con-

centrate on step 1. A maximum independent chord set may be found [7] by first setting up a

bipartite graph G = ( H∪V, E) where each vertex in H represents a horizontal chord and each ver-

tex in V represents a vertical chord. There is an edge between two vertices iff the chords they

represent intersect (i.e., cross or meet). Figure 4 shows the bipartite graph for the polygon of Fig-

ure 2(a). The problem of finding a maximum independent chord set now becomes one of finding

a maximum independent vertex set (MIS) in a bipartite graph (two vertices are independent iff

there is no edge between them).

A maximum independent vertex set of a bipartite graph is related to a maximum matching

by the following theorem.

Theorem 1: [11] Let G = ( H∪V, E) be a bipartite graph. Let M be a maximum matching of G

and let F be the set of free vertices relative to this matching (i.e., F contains all vertices of G that
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Figure 4: Intersection graph of chords of polygon in Figure 2 (a).

are not matched in M).

(a) Every MIS of G has cardinality
�
H

�
+

�
V

�
-

�
M

�
.

(b) There is an MIS S of G such that F ⊆ S and for every edge (v, h) ∈ M exactly one of v

and h is in S.

Using the above theorem one may obtain the algorithm of Figure 5 to construct an MIS S

from a maximum matching M [12].

Example 3: Consider the maximum matching M = {(sm, sb´), (ux, ul), (li, ix), (hb´, pc), (c´f´, ef´)}

for the bipaprtite graph of Figure 4.

Iteration 1: F = ∅, S = ∅, and M = {(sm, sb´), (ux, ul), (li, ix), (hb´, pc), (c´f´, ef´)}. (sm, sb´) is

picked from M; sm is added to S and hb´ is added to F.

Iteration 2: F = {hb´}, S = {sm}, and M = {(ux, ul), (li, ix), (c´f´, ef´) }. hb´ is added to S and

processed.
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_______________________________________________________________________________
Procedure MaxInd(G,M,S);
{Given a bipartite graph G = ( H∪V, E) and a maximum matching M ⊆ E. Find an MIS S such that
S ⊆ H∪V}
begin

S := ∅;
F := {u � u ∈ H∪V and (u, x) /∈ M for any x}; {Free vertices}
while (F ≠ ∅ ) or (M ≠ ∅) do
begin

if F ≠ ∅ then
begin {add a free vertex to S}

Let u ∈ F; F := F - {u}; S := S ∪ {u};
end
else {add a vertex in M to S}
begin

Let (u, v) ∈ M; M := M - {(u, v)};
E := E - {(u, v)}; S := S ∪ {u};

end;
{ Process vertex u }
for all (u, v) ∈ E do
begin

E := E - {(u, v)};
if there is an h such that (v, h) ∈ M then
begin

M := M - {(v, h)}; F := F ∪ {h}; {h is free}
end;

end; {of for}
end;{of while}

end;{of MaxInd}
_______________________________________________________________________________

Figure 5

Iteration 3: F = ∅, S = {sm, hb´}, and M = {(ux, ul), (li, ix), (c´f´, ef´)}. (ux, ul) is considered; ux

is added to S and li is added to F.

Iteration 4: F = {li}, S = {sm, hb´, ux}, and M = {(c´f´, ef´)}. li is added to S and processed.

Iteration 5: F = ∅, S = {sm, hb´, ux, li}, and M = {(c´f´, ef´)}. (c´f´, ef´) is picked. c´f´ is added

to S.

We get the MIS S = {sm, hb´, ux, li, c´f´}.

One may easily verify that procedure MaxInd constructs an independent set of cardinality �
H � + � V � - � M �. From Theorem 1 it follows that this is an MIS. Step 1 of Ohstuki’s algorithm [7] is

implemented as:

Step 1a: Find a maximum matching of the bipartite graph that represents the chords.
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Step 1b: Find a maximum independent chord set using the maximum matching of Step 1a

and procedure MaxInd.

Ohtsuki used the O(n5/2) bipartite graph matching algorithm of Hopcroft and Karp [13] for

Step 1a. Since the remaining steps take less time than this, Ohtsuki’s implementation has com-

plexity O(n5/2). Imai and Asano [1] have developed an O(n3/2  log n) algorithm to find a maximum

matching of the intersection graph of horizontal and vertical line segments. This results in an

O(n3/2  log n) implementation of Ohtsuki’s method to find an MNC.

2.2 Maximum Matching In Convex Bipartite Graphs

The neighborhood, NEB(x), of a vertex x is defined to be the set of vertices adjacent to ver-

tex x. For the bipartite graph of Figure 4, NEB(h1) = {v 2, v 3} and NEB(v 1) = {h2 , h3}. A bipar-

tite graph G = ( H∪V, E) is convex  on  V iff the vertices in V can be ordered such that for every h ∈

H, NEB(h) = [FIRST(h), LAST(h)] (i.e. all vertices in the ordering beginning at vertex FIRST(h)

and going on to vertex LAST(h)) or null. Convex  on  H can be defined similarily. The bipartite

graph of Figure 4 is convex on H as

NEB(v 1) = {h2, h3} = [h2, h3].

NEB(v 2) = {h1, h2, h3, h4} = [h1, h4].

NEB(v 3) = {h1, h2, h3, h4, h5} = [h1, h5].

NEB(v 4) = {h2, h3} = [h2, h3].

NEB(v 5) = {h5} = [h5, h5].

A vertex x is matchable iff there is a vertex y ∈ NEB(x) such that NEB(y) ⊆ NEB(z) for all z

∈ NEB(x). Vertex h1 of Figure 4 is matchable as NEB(h1) = {v 2, v 3} and NEB(v 2) ⊆ NEB(z) for

all z ∈ NEB(h1). The importance of a matchable vertex x is that we can show that there is a max-

imum matching M that contains (x, y).

Theorem 2: Let x be a matchable vertex in a graph G. Let y be such that y ∈ NEB(x) and

NEB(y) ⊆ NEB(z) for all z ∈ NEB(x). There is a maximum matching that contains the edge (x, y).

Proof: Let M´ be a maximum matching of G that does not contain the edge (x, y). Since M´ is a
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maximum matching and (x, y) is an edge of G, both x and y cannot be free relative to M´. If only x

is free then (y, w) ∈ M´ and we can construct M = M´ - {(y, w)} ∪ {(x, y)}. If only y is free then (x,

a) ∈ M´ and we construct the maximum matching M = M´ - {(x, a)} ∪ {(x, y)}. If neither x nor y is

free then (x, a) ∈ M´ and (y, w) ∈ M´. Since a ∈ NEB(x), NEB(y) ⊆ NEB(a). Now since w ∈

NEB(y), w ∈ NEB(a). So, (w, a) is an edge of G. From M´, we may construct the maximum

matching M = M´ - {(x, a), (y, w)} ∪ {(x, y), (w, a)}.

Theorem 2 leads us to formulate the following strategy to find a maximum matching:

Step 1: If G has no edges then stop.

Step 2: If G has no matchable vertex then fail and stop.

Step 3: Select a matchable vertex x and a vertex y as in Theorem 2. Add (x, y) to M.

Delete x, y, and all edges incident to x and y from G.

Step 4: Go to Step 1.

It is evident that a maximum matching is found so long as we do not have a failure termina-

tion in Step 2. Graphs which do not cause the preceding strategy to fail are called matchable

graphs. For a bipartite graph G = (H ∪ V, E) that is convex on V and in which V = {v 1, v 2, ..., vnV
}

is ordered as required by the convex property the above strategy to find a maximum matching

takes the form given in procedure MaxMatch (Figure 6). This procedure is due to [12]. Step 2

has been eliminated as for any iteration i of the for loop if NEB(vi) ≠ ∅ then for every h ∈

NEB(vi), NEB(h) = [vi, LAST(h)]. By the choice of hj, NEB(hj) ⊆ NEB(h) for every h ∈ NEB(vi).

So, vertex vi is matchable and by Theorem 2 (hj, vi) may be added to M. As a result of this we

may conclude that every bipartite graph that is convex on V is matchable.

Starting with a maximum matching, the MIS of a bipartite graph that is convex on V can be

obtained in O(nH + nV) time where nH = � H � and nV = � V �. For this we use a strategy slightly

different from that used in procedure MaxInd (Figure 4). We assume that the maximum matching

M is obtained by using procedure MaxMatch (Figure 6) and that the vertices in V are ordered as

required by the convexity property and those in H are ordered so that FIRST(hi) ≤ FIRST(hi+1).

The strategy in the new independent set algorithm is to begin by placing all vertices in V
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_______________________________________________________________________________
Procedure MaxMatch(G,M);
{G = ( H∪V, E) is a bipartite graph that is convex on V. V = {v 1, ..., vnV

} is ordered as required by
the convex property. A maximum matching M is computed.}
begin

M := ∅;
for i := 1 to nV do

if NEB(vi) ≠ ∅ then
begin

Let hj ∈ H be such that LAST(hj) =
h ∈ NEB (vi)

min {LAST(h)}

M := M ∪ {(hj, vi)};
Delete hj, vi, and incident edges from G;

end
end;{of if & for}

end;{of MaxMatch}
_______________________________________________________________________________

Figure 6 Maximum matching algorithm of [12].

into the MIS S that is being constructed. From Theorem 1 we know that there is an MIS that con-

tains all free vertices and exactly one vertex from each pair of matched vertices in M. To con-

struct such an indenpent set, we examine the free vertices that are also in H (all free vertices in V

are already in S). They are examined in order (i.e. if hi and hj are free and i < j then hi is exam-

ined before hj). When a free vertex hi is examined, it is added to S. To ensure that the vertices in

S are still independent we need to examine the V vertices in the range [FIRST(hi), LAST(hi)].

These must be eliminated from S. Further each vertex vk in this range must be in the matching M

as hi is free and M is maximal. If vk is matched to hq in M then hq is to be added to S and the V ver-

tices in the range [FIRST(hq), LAST(hq)] eliminated from S. Note that LAST(hq) ≤ LAST(hi) as

otherwise MaxMatch will match vk to hi rather than hq.

Figure 7 gives an example bipartite graph that is convex on V. Consider the matching M =

{(v 1, h1), (v 2, h3), (v 3, h5), (v 4, h2), (v 5 , h6)}. We start with S = {v 1, v 2, v 3 , v 4, v 5} and Stack con-

tains the single interval [-∞, -∞]. The following describes the progress of the above strategy on

this example. A stack is used to keep track of processed intervals of V.

hi Stack Actions on S low high l r
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h1

h2

h3

h4

h5

h6

h7

v 1

v 2

v 3

v 4

v 5

NEB(h1) = [v 1 , v 3]

NEB(h2) = [v 2 , v 4]

NEB(h3) = [v 2 , v 3]

NEB(h4) = [v 3 , v 4]

NEB(h5) = [v 3 , v 3]

NEB(h6) = [v 4 , v 5]

NEB(h7) = [v 4 , v 4]

M = {(v 1 , h1), (v 2 , h3),

(v 3 , h5), (v 4 , h2),

(v 5 , h6)}

S = {v 1 , v 5 , h2 , h3 ,

h4 , h5 , h7}

Figure 7: Apply MaxInd1 to a convex (on V) bipartite graph.

h4 [-∞, -∞] Add h4 v 3 v 4 -∞ -∞

Delete v 4 v 3 v 4

Add h2 v 2 v 4

Delete v 3 v 2 v 3

Add h5 v 2 v 3

Delete v 2 v 2 v 2

Add h3 v 2 v 2

[-∞, -∞], [v 2, v 4] v 2 v 1

h7 [-∞, -∞], [v 2, v 4] Add h7 v 4 v 4 v 2 v 4
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[-∞, -∞] v 4 v 1 v 2 v 4

[-∞, -∞], [v 2, v 4]

The strategy described above is implemented in procedure MaxInd1 (Figure 8). This pro-

cedure is due to [12]. It uses a stack to keep track of intervals [l, r] of V that have already been

processed. These intervals are in decreasing order as you go down the stack and are disjoint.

The complexity of the algorithm is readily seen to be O(nH + nV).

An examination of procedures MaxMatch and MaxInd1 reveals that an MIS of a convex

bipartite graph G = (H ∪ V, E) can be found in O(nH + nV) time if we can do the following in this

much time:

a) Compute FIRST(hi) and LAST(hi), 1 ≤ i ≤ nH.

b) For each vi ∈ V with NEB(vi) ≠ ∅ compute hj ∈ NEB (vi) such that

LAST(hj) =
h∈NEB (vi)

min {LAST(h)} (Procedure MaxMatch).

3 ∼ O(kn) MNC Algorithm

3.1 Preliminaries

If the vertices of a polygon edge are both convex (concave) the edge is called a support  edge

(reflex  edge). A polygon edge is a left, right, top, or bottom edge if the polygon interior is to its

right, left, bottom, or top, respectively. The edges vw, za´, and d´e´ of the polygon of Figure 2(a)

are left support edges and edges xy and b´c´ are left reflex edges.

Theorem 4: Let P be a rectilinear hole-free polygon with horizontal and vertical inversion

numbers kH and kV respectively. The following are true.

(a) kH = number of right support edges plus number of left reflex edges.

= number of left support edges plus number of right reflex edges.

(b) kV = number of top support edges plus number of bottom reflex edges.

= number of bottom support edges plus number of top reflex edges.

(c) For each of the four sides left, right, top, and bottom, the number of reflex edges is one
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_______________________________________________________________________________
Procedure MaxInd1(G,M,S);
{G = ( H∪V, E) is a bipartite graph that is convex on V. M is a matching produced by procedure
MaxMatch. This procedure constructs an MIS S of G. It is assumed that the vertices in V are
ordered as required by the convexity property and that FIRST(hi) ≤ FIRST(hi+1), 1 ≤ i < nH }
begin

Initialize a stack so that it contains the single interval [l, r] = [-∞, -∞];
S := V; {all vertices of V initially in S}
for each free vertex hi in order do
begin

Add hi to S;
if NEB(hi) ≠ ∅ then
begin

low := FIRST(hi); high := LAST(hi);
[l, r] := interval at top of stack;
repeat

if l ≤ high ≤ r then
begin

delete [l, r] from top of stack;
high := l − 1; {bypass already processed interval}
low := min {l, low};
set [l, r] to new top of stack interval;

end
else
begin

delete vhigh from V;
if vhigh is a matched vertex in M then
begin

Let hq be the vertex it is matched to;
add hq to S;
low := min {low, FIRST(hq)};
{Note: high is not to be updated as LAST(hq) ≤ LAST(hi)}

end; {if matched}
high := high - 1;

end; {disjoint from the interval at top of stack}
until (high < low);
Add [low, LAST(hi)] to top of stack;

end; {of if NEB(hi) ≠ ∅}
end; {of for each free vertex hi}}

end;{of MaxInd1}
_______________________________________________________________________________

Figure 8 Maximum independent set algorithm of [12]

less than the number of support edges.

(d) kH = number of vertical support edges minus one.

(e) kV = number of horizontal support edges minus one.

Proof: (a) A walk around the polygon changes from right to left only at a right support edge and
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at a left reflex edge. Since the number of right to left changes equals the number of left to right

changes, the total horizontal direction changes on a complete walk around the polygon is 2 *

(number of right support edges plus number of left reflex edges). So kH = number of right support

edges plus number of left reflex edges. The equality kH = number of left support edges plus

number of right reflex edges is obtained in a similar way. (b) can be proved analogously.

We shall prove (c) by induction on the number n of vertices in P. Let lse and lre denote the

number of left support edges and left reflex edges. rse, bse, tse, rre, bre, and tre are defined analo-

gously. We explicitly show lse - lre = 1. The proof for the other three sides is similar.

For the induction base, we have n = 4. When n = 4, P has one left support edge and no left

reflex edge. So, lse - lre = 1. Assume lse - lre = 1 for all hole-free rectilinear polygons with n ≤ m

vertices where m is an arbitrary natural number ≥ 4. Let P be any rectilinear hole-free polygon

with n = m + 1 vertices. P has at least one left support edge. Pick any one of P’s left support

edges and move this rightwards until this edge aligns with the first left or right edge encountered.

Figure 9 gives the cases that can arise. For each case the primed quantities represent values for

the polygon that remains following the elimination of the portion of the polygon crossed during

the movement of the left support edge. In cases (j) through (t) cmp´ gives the number of resulting

hole-free polygons. This number is 1 for cases (a) through (i). In case (a) the number of vertices

decreases by 4 as vertices a, b, c, and d are no longer polygon vertices following the movement of

the support edge ab to the position cd. So, n´ = n − 4, lse´ = lse, lre´ = lre. From the induction

hypothesis, lse´ - lre´ = 1. So, lse - lre = 1. As another example, consider case (j). The resulting

h  + 1 polygons have a total of n−4 vertices. Applying the induction hypothesis to each and sum-

ming, we get lse´ − lre´ = h  + 1. So, lse  − lre = lse´ − h  − lre´ = 1. Using the induction hypothesis,

we can show that for each of the remaing cases of Figure 9, lse - lre = 1.

For (d) we see from (a) and (c) that

kH = (rse + lre + lse + rre) / 2

= (2rse + 2lse - 2) / 2

= (rse + lse) - 1
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Figure 9: lse - lre = 1 (continued).

= number of vertical support edges minus one.

(e) is obtained in a similar way.



-- --

17

1

2
...
h

a

b

c

d

1

2
...
h

n´ = n - 4
lse´ = lse + h
lre´ = lre
cmp´ = h + 1

(j)

1

2
...
h

a

b

c

d

1

2
...
h

n´ = n - 4
lse´ = lse + h - 1
lre´ = lre - 1
cmp´ = h + 1

(k)

1

2
...
h

a

b

c

d

1

2
...
h

n´ = n - 4
lse´ = lse + h
lre´ = lre
cmp´ = h + 1

(l)

1

2
...
h

a

b

c

d

1

2
...
h

n´ = n - 2
lse´ = lse + h
lre´ = lre
cmp´ = h + 1

(m)

1

2
...
h

a

b

c

d

1

2
...
h

n´ = n - 4
lse´ = lse + h
lre´ = lre
cmp´ = h + 1

(n)

a

b

c

d

∅

lse = 1
lre = 0
cmp´ = 0

(o)

1

2
...
h

a

b

c

d

1

2
...
h

n´ = n
lse´ = lse + h
lre´ = lre
cmp´ = h + 1

(p)

1

2
...
h

a

b

c

d

1

2
...
h

n´ = n - 4
lse´ = lse + h
lre´ = lre
cmp´ = h + 1

(q)

1

2
...
h

a

b

c

d

1

2
...
h

n´ = n - 4
lse´ = lse + h - 2
lre´ = lre - 2
cmp´ = h + 1

(r)

1

2
...
h

a

b

c

d

1

2
...
h

n´ = n - 4
lse´ = lse + h - 1
lre´ = lre - 1
cmp´ = h + 1

(s)

1

2
...
h

a

b

c

d

1

2
...
h

n´ = n - 2
lse´ = lse + h - 1
lre´ = lre - 1
cmp´ = h + 1

(t)

Figure 9: lse - lre = cmp.

3.2 k = 1

In this section we develop an O(n) algorithm to find the MNC of a rectilinear hole-free

polygon with inversion number k = 1. We explicitly consider only the case k = kH = 1. The case k

= kV = 1 is handled in an analogous manner.
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Since every rectilinear polygon has at least one left support edge and one right support

edge, it follows from Theorem 4(a) that when kH = 1 the number of vertical reflex edges is zero.

As a result the polygon cannot have two vertical chords with the same x-coordinate. Conse-

quently there is a unique left to right ordering of the vertical chords. Let the vertical chords, in

this ordering, be v 1 , v 2, ..., vnV
. This ordering may be obtained in O(n) time by starting at the two

vertices of the single left support edge (Thoerem 4) of the polygon and moving rightwards. Dur-

ing this walk we match top vertices with bottom ones to see if a vertical chord can be drawn here.

Since the polygon contains no holes and no vertical reflex edges, NEB(hi) for every horizontal

chord hi is an interval of the vertical chords. The horizontal chords may be constructed and their

FIRST and LAST values computed by making a left to right pass over the top and bottom boun-

daries of the polygon. During this pass the horizontal chords may also be ordered by their

FIRST-value. The total time needed for this is O(n).

Procedure MaxMatch examines the vertical chords left to right. Suppose that the neighbor-

hood, NEB, of a vertical chord is maintained as a doubly linked list sorted on the y coordinate.

Since NEB(vi) cannot contain two horizontal chords with the same y coordinate, this ordering is

well defined. The doubly linked list can be initialized in O(1) time. As we go from one vi to the

next additions and deletions of horizontal chords is localized in the doubly linked list and can be

done in time proportional to the number of affected chords. hj is the horizontal chord in the dou-

bly linked list that has the least right end point. Since the polygon has no right reflex edge, this

must either be the horizontal chord with lowest or highest y coordinate. I.e., it is one of the

chords at the two ends of the doubly linked list that represents NEB. So, hj can be found in O(1)

time and deleted from the list. Figure 10 illustrates this technique. The MIS is now found using

procedure MaxInd1. From the above discussion it follows that the MNC of a hole-free rectilinear

polygon with k = 1 can be found in O(n) time.

3.3 k = 2

We explicitly consider only the case k = kH = 2. The case k = kV = 2 is similar. From

Theorem 4(d) it follows that a polygon with kH = 2 satisfies one of the following:
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v 1

.......
v 2

...............

v 3

.......................

v 4

.......................

v 5

.......................

v 6

...................

h1. . . . . . . . . . . . . . .

h2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h3. . . . . . .

h4. . . . . . . . . . . . . . . . . . . . .

h5. . . . . . .

h6. . . . . . .

(a) NEB(v 1 ) = ∅; Unmatched;
M := ∅; F := {v 1}.

v 2

...............

v 3

.......................

v 4

.......................

v 5

.......................

v 6

...................

h1. . . . . . . . . . . . . . .

h2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h3. . . . . . .

h4. . . . . . . . . . . . . . . . . . . . .

h5. . . . . . .

h6. . . . . . .

(b) NEB(v 2 ) = {h1 , h2};
NEB(h1 ) ⊆ NEB(h2 );
So, M := M + {(v 2 , h1 )}.

v 3

.......................

v 4

.......................

v 5

.......................

v 6

...................h2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h3. . . . . . .

h4. . . . . . . . . . . . . . . . . . . . .

h5. . . . . . .

h6. . . . . . .

(c) NEB(v 3 ) = {h2 , h3 , h4};
NEB(h3 ) ⊆ NEB(h2 );
NEB(h3 ) ⊆ NEB(h4 );
So, M := M + {(v 3 , h3 )}.

v 4

.......................

v 5

.......................

v 6

...................h2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h4. . . . . . . . . . . . . . . . . . . . .

h5. . . . . . .

h6. . . . . . .

(d) NEB(v 4 ) = {h2 , h4 , h5};
NEB(h5 ) ⊆ NEB(h2 );
NEB(h5 ) ⊆ NEB(h4 );
So, M := M + {(v 4 , h5 )}.

v 5

.......................

v 6

...................h2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h4. . . . . . . . . . . . . . . . . . . . .

h6. . . . . . .

(e) NEB(v 5 ) = {h2 , h4 , h6};
NEB(h4 ) ⊆ NEB(h2 );
NEB(h4 ) ⊆ NEB(h6 );
So, M := M + {(v 5 , h4 )}.

v 6

...................h2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h6. . . . . . .

(f) NEB(v 6 ) = {h2 , h6};
NEB(h2 ) ⊆ NEB(h6 );
So, M := M + {(v 6 , h2 )}.
And, F := F + {h6}.

Figure 10: An maximum matching example of a polygon with k = kH = 1.

(a) lse = 2, rse = 1.

(b) lse = 1, rse = 2.
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Since (b) is symmertric to (a), we consider only (a) further. From Theorem 4(a) it follows

that lre = 1. If the single left reflex edge is extended in one direction until it meets a horizontal

edge (see Figure 11) then the polygon is divided into two parts P1 (left of the reflex extension)

and P2. Both P1 and P2 have k = kH = 1. This partitioning into P1 and P2 may be done by begin-

ning at the bottom of the left reflex edge and moving around the polygon until the walk first

reaches the x-coordinate of this left reflex edge. Once P1 and P2 have been identified, their verti-

cal chords can be numbered left to right as for the case k = 1 (Section 3.2). In each case, numbers

are assigned beginning with the number 1. Horizontal chords that span both P1 and P2 will have

two FIRST and LAST values associated with them; one being the first and last vertical chord of

P1 they intersect and the other being the first and last vertical chord of P2 that is intersected.

Since there are no right reflex edges, the FIRST and LAST values associated with the horizontal

chords may be found in linear time as follows:

(1) Start at the left support edge of P1 and proceed as for the case k = 1 (Section 3.2). Stop this

algorithm when the right boundary of P1 is reached. The horizontal segments that continue

into P2 are saved.

(2) Start at the left support edge of P2 and proceed as for the case k = 1. When the left reflex

edge is reached add in the saved horizontal segments of P1 and continue.

A maximum matching of horizontal and vertical chords is obtained as follows:

(1) Begin at the leftmost vertical chord of P1 and proceed left to right as for the case k = 1 (Sec-

tion 3.2). A doubly linked list of intersecting horizontal chords ordered by y-coordinate is

maintained as in the case k = 1. When each vertical chord is examined in this order, it is a

matchable chord. This follows from the observation that since P has no right reflex edge,

the neighborhood of the intersecting horizontal chord with smallest right end point is con-

tained in the neighborhood of every other intersecting horizontal chord. Further, the

absence of a right reflex edge implies that the intersecting horizontal chord with the smal-

lest right end point is either at the front or the end of the doubly linked list (i.e., it is either

the one with the highest or the lowest y-coordinate). This matching of vertical chords of P1
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to horizontal chords terminates when the right boundary of P1 is reached. The doubly

linked list of horizontal segments is saved.

(2) Begin with the leftmost vertical chord of P2 and proceed left to right matching horizontal

and vertical chords as in (1). Stop when the left to right sweep reaches the left reflex edge.

To the doubly linked list of horizontal segments append the doubly linked list saved in (1)

and continue the left to right matching sweep.

The above two step process results in a maximum matching as when a vertical chord is

matched it is a matchable chord (Theorem 2).

..

..

..

..

..

..

.

P1

P2

Figure 11: A polygon with k = kH = 2.

To compute the MIS we use the strategy used in the case k = 1. I.e., we begin with all ver-

tices of V (both in P1 and P2) in the independent set and then process the free horizontal chords.

The stack scheme of MaxInd1 is replaced by union-find structures [14] for each of P1 and P2 .

For each of P1 and P2 we maintain a set of equivalence classes of vertical chords in P1 and P2 ,

respectively. Each equivalence class represents an interval of processed vertical chords. A free

horizontal chord that is in both P1 and P2 needs to be processed in both polygons. The complex-

ity of the resulting scheme is O(n, α(n,n)) where α is the inverse of the Ackermann’s function
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[14].

3.4 k = 3

From Theorem 4 we see that one of the following must be true:

(a) lse = 3, rse = 1.

(b) lse = rse = 2.

(c) lse = 1, rse = 3.

Since (a) and (c) are symmetric we need only consider (a) and (b). Figure 12(a) gives an

example for lse = 3 and rse = 1 while Figures 12 (b), (c), (d), and (e) are examples for the case lse

= rse = 2. When lse = 3 and rse = 1 the polygon has no right reflex edge and has two left reflex

edges (Theorem 4(a)). By extending the two left reflex edges at one end each we can decompose

the polygon into three polygons with k = 1. Since there is no right reflex edge we can find the

maximum matching by extending the strategy of Section 3.3 to the case when P is partitioned

into three polygons with k = 1 each. We first match the chords in P1 and then continue to P2 .

The matching in P2 commences at its leftmost vertical chord. When the processing reaches the

right boundary of P1, the doubly linked list saved from P1 is appended and we continue till the

right boundary of P2 is reached. Now we start matching in P3. The processing begins at the left-

most vertical chord in P3. When the right boundary of P2 is reached, the doubly linked list saved

at the end of the processing of P2 is appended and we continue up to the rightmost vertical chord

in P3. The correctness of this scheme is established in the same way as we established the

correctness of the k = 2 scheme.

When lse = rse = 2 the polygon has one right reflex edge and one left reflex edge. The parti-

tioning into P1, P2 , and P3 is done as follows:

(1) Determine the number of vertical support edges encountered in a walk that begins at the top

of the right reflex edge and ends at the top of the left reflex edge. The walk follows the

polygon edges but does not go over the reflex edges. This latter restriction uniquely

specifies the walk.
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(b) lse = 2, rse = 2.
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P2

P3
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..............
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.

P1

P2

P3

(d) lse = 2, rse = 2.

..

..

..

..

..

...........

P1
P2

P3

(e) lse = 2, rse = 2.

Figure 12: Example polygons with k = kH = 3.

(2) The number of vertical support edges encountered in the above walk is either 0, 2, or 4. If

the number is 0, then extend both reflex edges downward (Figure 12(d)). If the number is 2,

then extend the right reflex edge upward and the left reflex edge downward in case the bot-

tom of the right reflex edge is at a higher y-coordinate than the top of the left reflex edge

(Figure 12(b)); otherwise extend the right reflex edge downward and the left reflex edge

upward (Figure 12(c)). If the number is 4, then extend both reflex edges upward (Figure

12(e)).

A maximum matching of vertical chords to horizontal chords is obtained as follows:
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(1) [Number of vertical support edges in walk is 0 (Figure 12(d))].

(a) Match chords in P1 using the strategy of Section 3.2. However, P1 is processed right

to left. Stop when the left boundary of P1 is reached. Horizontal chords of P1 that

extend into P3 are now processed. If the chord was matched to a vertical chord of P1 ,

it is marked as matched. If it was not matched, its right end point is changed to be

the left boundary of P1.

(b) Match chords in P2 left to right using the strategy of Section 3.2. Stop when the right

boundary of P2 is reached and save the doubly linked list of horizontal chords.

(c) Match chords in P3 left to right. Already matched horizontal chords are ignored from

the processing. When the right boundary of P2 is reached, the doubly linked list

saved when the processing of P2 finished is appended to the current doubly linked

list.

The correctness of the above matching strategy follows from the following observations:

(a) When a vertical chord is examined, it is a matchable chord.

(b) If this vertical chord is in P1, then it may be matched to the horizontal intersecting chord

with maximum left end point. This is either the bottom most or topmost intersecting chord.

(c) If it is a vertical chord of P2, it can be matched to the horizontal intersecting chord with the

smallest right end point.

(d) If it is a P3 vertical chord, it is to be matched to the horizontal intersecting chord that is as

yet unmatched and has smallest right end point. Since all vertical chords of P1 that could

be matched to a horizontal chord have already been matched, the right end points of

unmatched horizontal chords that extend into P1 may be considered to be the left boundary

of P1. This does not affect the set of free vertical chords each such horizontal chord inter-

sects.

(2) [Number of vertical support edges in walk is 2 and the bottom of the right reflex edge is

above the top of the left reflex edge, (Figure 12(b))].
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(a) Match chords in P1, left to right, using the strategy of Section 3.2. Stop when the

right boundary of P1 is reached and save the doubly linked list of free horizontal

chords that extend into P3 .

(b) Match the chords in P2, right to left, using the strategy of Section 3.2. Stop when the

left boundary of P2 is reached. Mark the matched horizontal chords of P2 that extend

into P3 as matched. Change the right end points of the unmatched horizontal chords

of P2 that extend into P3 to be the left boundary of P2.

(c) Match the chords in P3 left to right. When the right boundary of P1 is reached,

append the saved doubly linked list.

The fact that this strategy results in a maximum matching may be established in a manner

analagous to that used for case (1). The strategies for the remaining two cases (Figures 12(c) and

(e)) are similar.

The MIS is now found in O(n, α(n,n)) time using MaxInd1 and union-find structures for

each of P1, P2, P3.

3.5 k > 3

We explicitly consider only the case k = kH. The strategy is to decompose the polygon into

2k subpolygons with kH = 1 and then use the matching strategy of Section 3.2 to each of these in a

suitable order. The decomposition is easily done by extending the vertical reflex edges in both

directions (Figure 13(a)). This takes O(nlogk) time if a range search tree [15] is used to store the

end points of the at most k - 1 vertical reflex edges. The resulting polygons have no left or right

reflex edges. From Theorem 4(c) it follows that each polygon has lse = rse = 1. From Theorem

4(d) it follows that kH = 1 for each polygon.

In order to apply the strategy of Section 3.2 (or its modification to a right to left sweep) to a

subpolygon, the following must be true at the time the matching in the subpolygon begins:

(1) The subpolygon should contain no vertical reflex edge.

(2) Either all subpolygons that abut it on the left or all that abut it on the right must have been
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(a) Original polygon
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(b) Constraint graph
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e 1

(c) Updated polygon

e 1
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P5

(d) Updated constraint graph

Figure 13: Example polygon with k = kH > 3.

processed. In case the former is true, the subpolygon is processed left to right; otherwise it

is processed right to left.

(3) The subpolygon should not contain two unmatched horizontal chords such that one passes
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on one side of a vertical reflex edge and the other passes on the other side of this reflex

edge. For this test, the current end points of chords are used. Recall from Section 3.4 that

when a subpolygon is processed right to left the right end points of some chords are

updated. Similarly, we assume, that when a subpolygon is processed left to right, the left

end points are updated to become the right boundary of the subpolygon.

Note that since the subpolygons are constructed by extending all vertical reflex edges, all of

them satisfy condition (1). So we need only be concerned with conditions (2) and (3). For condi-

tion (2), we can maintain, with each subpolygon, a count of the number of unprocessed subpo-

lygons that abut it on the left and the number that abut it on the right. Also, with each subpo-

lygon we maintain a list of the subpolygons it abuts on the left as well as on the right. When a

subpolygon is processed, this list is traversed and the left abut and right abut counts of the subpo-

lygons on this list are decremented. For condition (3), we maintain a constraint  graph CG. This is

a bipartite graph with one vertex for each subpolygon and one for each vertical reflex edge.

There is an edge between a subpolygon vertex and a reflex edge vertex iff both ends of the reflex

edge can be joined to the interior of the subpolygon by a horizontal line that is wholly within the

polygon. Figure 13(b) gives the constraint graph for Figure 13(a).

Subpolygon vertices with degree zero in the constraint graph and which satisfy condition

(2) above can be processed first in any order. So these are added to the front of the order being

constructed. These subpolygons may be deleted from the original polygon to get the polygon of

Figure 13(c). Since the deletion of each subpolygon reduces the number of vertical reflex edges

by 1, the new polygon has fewer reflex edges than the original one. A new constraint graph for

this polygon is constructed (Figure 13(d)) and the subpolygons with degree zero that also satisfy

condition (2) above are added to the order being constructed. So, so long as the constraint graph

has a subpolygon vertex of degree zero that also satisfies condition (2), we can repeat this pro-

cess to obtain the desired order. For the example of Figure 13(a) we obtain the order P3 , P6 , P7 ,

P8, P1, P2, P4, and P5. The following theorem shows that every constraint graph has at least one

subpolygon vertex whose degree is zero and for which its current left abut or right abut count is
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also zero.

Theorem 5: The constraint graph of every rectilinear hole-free polygon (whether original or

updated) has at least one subpolygon vertex with degree zero and such that the corresponding

subpolygon has a left or right about count of zero.

Proof: Without loss of generality, assume that lse ≥ rse. Since rse = rre + 1 (Theorem 4(c)), it

follows that lse > rre. The number of subpolygons one of whose sides is a left support edge of the

polygon is lse. Each right reflex edge can be connected to at most one of these in the constraint

graph. Since lse > rre, at least one of these left support edge subpolygon vertices is not connected

to a right reflex edge vertex in the constraint graph. Further, no left support edge subpolygon ver-

tex can be connected to a left reflex edge vertex. Hence there is at least one left support edge

subpolygon vertex with degree zero. Every subpolygon, constructed as described above, that has

a left support edge has a left abut count of zero.

Using the above strategy and appropriate data structures a maximum matching can be

found in O(kn) time. The MIS can be found in O(knα(n, n)) time using MaxInd1 and union-find

structures.

4 O(nlogk) Algorithm

This algorithm is an adaptation of the O(nloglogn) MNC algorithm of [8]. This latter algo-

rithm has the following steps:

Step 1: Decompose the rectilinear polygon P into vertically convex subpolygons. This decom-

position is done in such a way that a maximum matching of chords can be found by pro-

cessing the subpolygons in the order in which they are created.

Step 2: Process the subpolygons in the order created to obtain a maximum matching. Free

chords from each subpolygon are added to a queue in the order in which they are deter-

mined to be free by the maximum matching algorithm.

Step 3: Obtain an MIS of chords by processing the maximum matching and free chord queue

obtained in Step 2.
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Step 4: Draw the independent chords in the independent set of Step 3 to get a set of subpo-

lygons. Draw all vertical chords in the resulting subpolygons to get rectangles.

Step 3 can be done in O(n) time [8] and Step 4 takes O(nlogk) time. We show how steps 1

and 2 can be done in O(nlogk) time. We consider the case k = kV. The case k = kH is similar. The

basic strategy is to start at any horizontal support edge and advance into the polygon (i.e., if we

start at a bottom support edge, then we move upwards and if we start at a top support edge, we

move downwards) until we reach either a vertical or horizontal reflex edge. This is done by mov-

ing along the contour of the polygon beginning at the horizontal support edge. The moving is

done in both directions keeping the y-coordinate of the position in both directions the same (this

is the same as using a horizontal scan line with endpoints on the polygon contour identified by

the above walk). To determine if a horizontal reflex edge is reached, we maintain a range search

tree of horizontal reflex edges. Since the number of such edges is k - 1, the time to determine if

such an edge is reached in O(logk). For vertical reflex edges, we simply see if the current contour

edge is a vertical reflex edge (this test cannot be extended to horizontal reflex edges as the next

such edge to be encountered may not lie on the portion of the contour being traversed currently).

When a vertical reflex edge is reached, it may be extended downwards if we start at a bottom

support edge or upwards if we start at a top support edge to obtain a vertical convex subpolygon.

The situation is more complex when a horizontal reflex edge is reached. We go through a

detailed example to illustrate the various cases that arise. A high level description of the decom-

position algorithm is given in Figure 14. In this algorithm next
____

denotes the opposite of next. So, if

next = top, next
____

= bottom and if next = left, next
____

= right. SP is a list of the subpolygons created.

The subpolygons appear in this list in the order created.

Consider the polygon of Figure 15(a). Suppose we begin at the horizontal support edge

s1s2. Since this is a bottom support edge, we set next = top and move a horizontal scan line

upwards from s1s2. Vertices a, b, and c, the bottom ends of vertical reflex edges, are encountered

in order and subpolygons P1, P2, and P3 are added to SP in this order. Next, the scan line reaches

a horizontal reflex edge. We stop processing and resume at another horizontal support edge. Fig-
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_______________________________________________________________________________
Procedure Decompose(P,SP);
{Decompose the original polygon P with k = kV into SP, a list of vertical convex subpolygons.}
begin

SP := ∅;
repeat

Pick a horizontal support edge hse;
Scanline := hse;
if hse is a bottom edge then next := top else next := bottom;
repeat

Move Scanline along the boundary to the next side until a horizontal edge is
encountered;
if Scanline encloses a horizontal support edge then
begin

Save the last support edge and the remaining polygon P;
Stop;

end
else if Scanline encloses a next reflex edge then

if only one region X on the next side is unvisited then
shift Scanline to the entrance of X and continue

else
Mark all of the next reflex edges visited on this side and exit to outer
loop;

else if Scanline encloses a next
____

reflex edge then
if only one region Y on the next

____
side is unvisited then

turn around to the entrance of Y and reverse next
else

Mark the current region as visited and exit to the outer loop;
else
begin

if a left reflex edge is encountered then
Make a vertical cut on the left side to get P left and add to the end of SP;

if a right reflex edge is encountered then
Make a vertical cut on the right side to get Pright and add to the end of
SP;

end;
until false;

until false;
end;{of Decompose}
_______________________________________________________________________________

Figure 14

ure 15(b) shows the current situation. Subpolygons P1 , P2 , and P3 have been eliminated and the

hatched area indicates a region of the polygon that has been scaned. Suppose we pick the bottom

support edge s3s4. next is set to top and we advance upwards. The vertical reflex edges with ver-

tices d, e, and f at the bottom ends are found. As a result, subpolygons P4 , P5, and P6 are added to

the queue SP. Processing stops when the next horizontal reflex edge is reached. It resumes at a
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Figure 15: An exhibition of algorithm Decompose (continued).

new horizontal support edege.

Going on to Figure 15(c), the horizontal support edge s5s6 is picked and subpolygon P7 is

appended to SP. Next, we pick the top support edge s7s8 and set next = bottom (Figure 15(d)). No

subpolygon is generated in this area. Then, another top support edge s9s10 is considered and we
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move down until a horizontal reflex edge is encountered (Figure 15(e)). Then, we turn the direc-

tion 3 times, down to up, up to down, and down to up, respectively (Figure 15(f)). No subpo-

lygon is added to SP as no vertical reflex edge is encountered. Finally, the top support edge

s11s12 is handled (Figure 15(g)). The subpolygons P8 and P9 are added to SP before a horizontal
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reflex is found.

The subpolygons P10 and P11 are appended to SP when we turn around from going down to

up and complete the whole procedure Decompose (Figure 15(h)). The remaining vertical convex

polygon P12 is added to SP (Figure 15 (i)).
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Step 2 can actually be done concurrently with Step 1. The strategy of Section 3.2 can be

used to obtain a maximum matching and the queue of free chords in O(n) time. Step 3 is now

implemented as in [8] and Step 4 is the same as that used for the algorithm of Section 3.

5 Experimental Results

We programmed three algorithms for the MNC problem. These are:

1. O(nlogk) ... The algorithm of Section 4.

2. ∼ O(kn) ... This uses the algorithms described in Sections 3.2, 3.3, and 3.4 for k = 1, 2, and 3,

respectively. For k > 3, it uses the decomposition scheme of Section 4 and the independent

set strategy of Section 3.5. We did not use the decomposition scheme of Section 3.5 as

preliminary tests indicated it was slower than that of Section 4.

3. O(n1.5 logn) ... This is the algorithm of [1].

All algorithms were programmed in Pascal and run on an Apollo DN3500 workstation.

Tables 1-5 give the average run times, in seconds, of the three programs for the case of randomly

generated rectilinear polygons with k = 1, 2, 3, 5, and 10, respectively. (Rectilinear polygons

were generated randomly and then classified according to their k value.) The column labeled size

gives the number of vertices in the polygon. For each value of size, 50 random polygons were

generated. The columns labeled improve (%) give the amount by which the run time of the

O(n1.5 logn) algorithm exceeds this algorithm’s run time. As can be seen, for any fixed k, the

O(nlogk) and ∼ O(kn) programs outperform the O(n1.5 logn) program for suitably large polygons.

The percentage improvement in run time increases as the polygon size increases. For k = 1, and

2, the ∼ O(kn) program is faster than the O(nlogk) program. For k = 3, these two programs are

quite competitive and for k > 3 the O(nlogk) program is superior.

Table 6 gives the measured run time for the UNISYS polygon set. The O(nlogk) and ∼

O(kn) programs outperformed the O(n1.5 logn) one for polygons with no more than 40 vertices.

The O(n1.5 logn) program was slightly faster for the larger polygons in this test set.
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O (nlogk) ∼O (nk) O (n1.5 logn)
size

Tavg Improve(%) Tavg Improve(%) Tavg

≈ 20 2.52 70.63 2.28 88.60 4.30
≈ 30 3.40 88.24 2.95 116.95 6.40
≈ 40 4.31 122.74 3.82 151.31 9.60
≈ 50 5.59 119.32 4.92 149.19 12.26
≈ 60 6.28 130.25 5.56 160.07 14.46
≈ 70 7.48 152.54 6.59 186.65 18.89
≈ 80 8.74 180.66 7.65 220.65 24.53
≈ 90 9.89 174.32 8.70 211.84 27.13
≈100 10.28 163.04 9.10 197.14 27.04
≈200 21.40 217.10 18.11 274.71 67.86
≈300 31.99 252.80 27.42 311.60 112.86

Table 1 k = 1

O (nlogk) ∼O (nk) O (n1.5 logn)
size

Tavg Improve(%) Tavg Improve(%) Tavg

≈ 20 2.63 30.04 2.76 23.91 3.42
≈ 30 3.40 65.00 3.35 67.46 5.61
≈ 40 4.69 93.39 4.52 100.66 9.07
≈ 50 5.88 139.80 5.63 150.44 14.10
≈ 60 6.86 138.92 6.65 146.47 16.39
≈ 70 8.01 156.80 7.52 173.54 20.57
≈ 80 8.95 159.22 8.45 174.56 23.20
≈ 90 10.12 119.66 9.79 127.07 22.23
≈100 11.04 145.65 10.79 151.34 27.12
≈200 23.22 166.84 22.66 173.43 61.96
≈300 33.14 217.65 31.47 234.51 105.27

Table 2 k = 2

6 Conclusions

We have developed two algorithms to obtain the MNC of rectilinear polygons with small k.

Both are significantly faster than the O(n1.5 logn) algorithm of [1] on polygons whose size is large

relative to k. For k = 1 and 2 the ∼ O(kn) algorithm is recommended while for k > 2 the O(nlogk)

algorithm is recommended.
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