
-- --

Long And Short Covering Edges In Combinational Logic Circuits
Wing Ning Li+, Sudhakar M. Reddy++, Sartaj Sahni+++

ABSTRACT

This paper extends the polynomial time algorithm we obtained in [7] to find a minimal cardinal-

ity path set that long covers each lead or gate input of a digital logic circuit. The extension of

this paper allows one to find, in polynomial time, a minimal cardinality path set that both long

and short covers these leads or gate inputs.

KEYWORDS and PHRASES

Testing, combinational circuits.

+Department of Computer Science, University of Arkansas, Fayetteville, Arkansas 72703. Research supported by the
National Science Foundation under grants DRC84-20935 and MIP86-17374.
++Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242. Research supported by
Texas Instruments, Inc. and by SDIO/IST contract No. N00014-87K-0419 managed by U.S. Office of Naval Research.
+++Department of Computer Science, University of Minnesota, Minneapolis, MN 55455. Research supported by the
National Science Foundation under grants DRC84-20935 and MIP86-17374.

1

-- --

2

1 INTRODUCTION

In the design of ultra-fast digital logic circuits it is important to ascertain the maximum and

minimum delays suffered by signals through the circuits. The need to ascertain maximum circuit

delays is quite obvious. The need to ascertain minimum circuit delays arises due to requiremnts

on data hold times at the inputs to flip-flops, the data skew and other timing constraints in high

speed pipelines [19], insuring correct data at the inputs of edge triggered flip-flops, and in the

design of reliable asynchronous sequential logic circuits [17].

In order to verify that the delays along all circuit paths are within specified upper and lower

bounds one can attempt to test all circuit paths. Unfortunately such an approach would be

impractical due to the large number of paths in a circuit. A more practical approach is to test

enough paths such that each circuit lead is included in at least one path. The set of paths that are

to be tested should be such that a "robust" path delay fault detecting test exists for each path in

the test [20]. Methods to design combinational logic circuits such that every path in the circuit

has a robust path delay fault detecting test have been proposed [18,21]. In such testable circuits

one can select a set of circuit paths such that each circuit lead is included in at least one path.

The model we use is directly applicable to these circuits. In other circuits, it is possible for

several paths to be not testable. In this case it will be necessary to iterate on our algorithm until a

set of testable paths has been obtained.

Verification of signal propagation in logic circuits is essential to ensure correct operation.

Such verification is necessary to determine reliable speed of operation and usable clock frequen-

cies. To perform such verification one normally choses a collection of paths to "test" [1-2,4-

-- --

3

5,7,9,12-15]. Of the several methods proposed [9,12] to select paths to be tested, one is to select

a set, MaxSP, of paths such that for each lead l in the given circuit, there is at least one input to

output path in MaxSP which exhibits maximum modeled delay among all circuit paths that con-

tain l. We say that MaxSP long covers the leads of the circuit. Li, Reddy, and Sahni [7] have

developed a polynomial time algorithm to find a minimum cardinality MaxSP.

A set of paths MinSP such that for each lead l there is at least one input to output path in

MinSP which exhibits minimum modeled delay among all circuit paths that contain l is also use-

ful in verifying correct circuit operation. MinSP short covers the leads of the circuit. The algo-

rithm of [7] is easily modified to find a minimum cardinality MinSP.

When testing under minimum and maximum propagation delays, one really needs a set,

MinMaxSP, of input to output paths such that for each lead l there is at least one path in Min-

MaxSP which exhibits minimum modeled delay and at least one (not necessarily different) which

exhibits maximum modeled delay. The need to test the shortest propagation delays through cir-

cuit paths occurs in the design of asynchronous sequential logic circuits[11], synchronous

sequential logic circuits with data driven clocks, and in the design of sequential circuits using a

single (instead of multiple or two-phase non-overlapping) clock signal. MinMaxSP both short

and long covers the leads in the circuit. It is easy to see that if X is a MinSP set and Y a MaxSP set,

then X∪Y is a MinMaxSP set. However, one can easily construct circuits with the property that

�
Z

�
 = (

�
X

�
+

�
Y

�
)/2 where X, Y, and Z are, respectively, minimal cardinality MinSP, MaxSP and

MinMaxSP sets. This, for example, is the case when all input to output paths have the same

length and the circuit contains two disjoint path sets A and B which are of minimum cardinality

-- --

4

and which include all circuit leads. In this case A and B are, respectively, minimum cardinality

MinSP and MaxSP sets. Also, either A or B could be used as a minimum cardinality MinMaxSP

set.

In this paper we show how to find, in polynomial time, a minimum cardinality set Min-

MaxSP for a given combinational logic circuit. Combinational circuit verification is used to ver-

ify the sequential circuit delays. Since our algorithm is very closely related to that of [7], we

briefly review this algorithm in Section 2. The algorithm to find a minimum cardinality Min-

MaxSP is developed in Section 3, and experimental results are provided in Section 4.

2 TERMINOLOGY AND REVIEW OF [7]

Li, Reddy, and Sahni [7] have shown how a combinational logic circuit with possibly different

gate propagation delays for rising and falling transitions can be modeled by a network N which is

a directed acyclic graph in which each edge has a single delay associated with it (Figure 1).

Every vertex in N with indegree 0 is a source vertex. A sink vertex is one which has outdegree 0.

Vertices 1 and 2 are the source vertices of Figure 1 while 7 and 8 are its sink vertices. The

weight of a source to sink path L is the sum of the weights of the edges in L. The path L long cov-

ers the edge <i, j > iff:

i) <i, j > is an edge of L

ii) the weight of L is maximum amongst all paths L that contain edge <i, j >.

A set, X, of source to sink paths is a long cover of the network iff every edge of N is long

covered by at least one path in X. The path set X= {13468, 1357, 2457, 2468} is a minimum car-

-- --

5

2

1

4 6 8

3 5 7

3 1 2

1 1 1

1 1

Figure 1: An example network

dinality long cover of the network of Figure 1.

The network model, N, of a circuit, C, obtained in [7] has the property that from a minimum

cardinality long cover of N one easily obtains a minimum cardinality MaxSP for C. The network

model N is transformed into a directed acyclic graph (dag) GL. A source to sink path in GL covers

an edge <i, j > iff <i, j > is on the path. A set of source to sink paths is a dag cover iff each edge

<i, j > of GL is on at least one path in the set. The GL obtained from N has the property that from

any minimum cardinality dag cover of GL one can easily obtain a minimum cardinality long

cover of N and in turn a minimum cardinality MaxSP of the modeled circuit C.

To obtain GL from N, the edges of N are first classified into one of the categories Lyy, Lny,

Lyn, and Lnn. Let source (i) denote the set of paths in N that begin at a source vertex of N and end

at vertex i. Let sink (i) denote the set of paths in N that begin at i and end at a sink vertex of N.

Let longest (X) be the set of longest paths in X. The classification for an edge <i, j > is defined as:

1) type Lyy —— <i, j > is on a path in longest (sink (i)) and longest (source (j))

2) type Lny —— <i, j > is not on any path in longest (sink (i)) but is on a path in

-- --

6

longest (source (j))

3) type Lyn —— <i, j > is on a path in longest (sink (i)) but not on any path in

longest (source (j))

4) type Lnn —— <i, j > is not on any path in longest (sink (i)) or longest (source (j)).

GL is now obtained from N by replacing each edge <i, j > of type Lnn, Lyn, or Lny by a new

edge as given in the table of Figure 2. This replacement introduces new vertices as indicated.

edge type new edge new vertex

Lnn <lij,rij> lij ,rij

Lyn <i,rij> rij

Lny <lij, j> lij

Figure 2: Replacement for edge <i, j >

A minimum cardinality dag cover for GL is obtained by modeling GL as a flow network and

obtaining a minimum flow.

3 OBTAINING A MINIMUM CARDINALITY MinMaxSP

3.1 MINIMUM CARDINALITY MinSP

First, consider the problem of obtaining a minimum cardinality path set to short cover the circuit

leads. As in [7], the circuit is modeled by a network N. This modeling is identical to that for long

covering. A source to sink path L in N short covers the edge <i, j > iff:

i) <i, j > is an edge of L

-- --

7

ii) the weight of L is minimum amongst all source to sink paths that contain edge <i, j >.

A short cover of a network N is a set of source to sink paths such that each edge of N is

short covered by at least one path in the path set. The path set {13457,13468,1357,2457} is a

minimum cardinality short cover of the network of Figure 1. From a minimum cardinality short

cover of N, one can obtain a minimum cardinality short cover of the modeled circuit C in the

same way as one obtains a long cover of C from a long cover of N [7].

To obtain a minimum cardinality short cover of N, one constructs a dag GS in a manner

similar to the construction of GL. Let shortest (X) denote the set of shortest paths in X. The edges

in N are classified as below:

5) type Syy —— <i, j > is on a path in shortest (sink (i)) and shortest (source (j))

6) type Sny —— <i, j > is not on any path in shortest (sink (i)) but is on a path in

shortest (source (j))

7) type Syn —— <i, j > is on a path in shortest (sink (i)) but not on any path in

shortest (source (j))

8) type Snn —— <i, j > is not on any path in shortest (sink (i)) or shortest (source (j)).

GS is obtained from N by replacing each edge <i, j > of type Snn, Syn, or Sny by a new edge

as given in the table of Figure 3. The proof of [7] is easily modified to show that there is a one-

to-one correspondence between dag covers for GS and short covers for N. Further, from a

minimum cardinality dag cover for GS a corresponding minimum cardinality short cover for N is

obtained in the same manner as for long covers. A minimum cardinality dag cover for GS is

-- --

8

obtained using a network flow model identical to that for GL.

edge type new edge new vertex

Snn <lij,rij> lij ,rij

Syn <i,rij> rij

Sny <lij, j> lij

Figure 3: Replacement for edge <i, j >

Our algorithm to find a minimum cardinality MinMaxSP begins with the dags GL and GS

and constructs a new dag GLS with the property that a minimum cardinality dag cover for GLS

corresponds to a minimum cardinality cover for N that both long and short covers the edges of N.

This in turn corresponds to a minimum cardinality MinMaxSP of the modeled circuit. Since a

minimum cardinality long and short cover of N may contain a path that long covers some edges

and short covers others, we need to understand the conditions under which this may occur. For

this, we study some properties of the paths and edges in N.

3.2 PATH AND EDGE PROPERTIES

From our earlier discussion, we know that each edge has an Luv and Swx, u,v,w,x ε {y,n}

classification. In addition to these, we provide an edge <i, j > with a third classification:

G 1: longest (source (i)) = shortest (source (i))

and longest (sink (j)) = shortest (sink (j)).

G 2: longest (source (i)) = shortest (source (i))

-- --

9

and longest (sink (j)) ≠ shortest (sink (j)).

G 3: longest (source (i)) ≠ shortest (source (i))

and longest (sink (j)) = shortest (sink (j)).

G 4: longest (source (i)) ≠ shortest (source (i))

and longest (sink (j)) ≠ shortest (sink (j)).

Notice that longest (source (i)) = shortest (source (i)) iff all paths from a source vertex to vertex

i have the same length; longest (source (i)) ≠ shortest (source (i)) iff at least two source to i paths

have different lengths; longest (sink (j)) = shortest (sink (j)) iff all paths from j to a sink vertex are of

the same length; and longest (sink (j)) ≠ shortest (sink (j)) iff at least two paths from j to a sink have

different lengths.

Lemma 1: Let P be a path in N. If P contains an edge <i, j > of type G 2, then all edges preceding

<i, j > are of type G 2.

Proof: If <k,l > precedes <i, j > and longest (source (k)) ≠ shortest (source (k)), then there are at least

two paths of different length from source vertices to k and hence to i (as there is a path from k to i

in P). This contradicts the requirement on vertex i that shortest (source (i)) = longest (source (i)). So,

longest (source (k)) = shortest (source (k)). Since <i, j > is of type G2,

longest (sink (j)) ≠ shortest (sink (j)) and since there is a path from to l to j, longest (sink (l)) ≠

shortest (sink (l)). So, <k,l > is a G2 edge.

Lemma 2: Let P be a path in N. If P contains an edge <i, j > of type G 3, then all edges following

-- --

10

<i, j > are of type G 3.

Proof: Similar to that of Lemma 1.

Lemma 3: No path P in N can contain both a G1 and a G4 edge.

Proof: Suppose there is a path P that contains a G1 edge <i, j > that precedes a G4 edge <k,l >.

Since longest (sink (l)) ≠ shortest (sink (l)), there are at least two paths of different lengths from l to

sinks. Hence, there are at least two paths of different lengths from j to sinks. So, longest (sink (j))

≠ shortest (sink (j)). But, since <i, j > is a G1 edge, longest (sink (j)) = shortest (sink (j)). A contradic-

tion. If <i, j > follows <k,l > a contradiction is similarly obtained. Hence, there is no path that

contains both a G1 and a G4 edge.

Lemma 4: Every source to sink path in N that includes an edge <i, j > of type G 1 both long and

short covers <i, j >.

Proof: Since longest (source (i)) = shortest (source (i)) and longest (sink (j)) = shortest (sink (j)), all

source to sink paths that include <i, j > are of the same length. Hence <i, j > is both long and short

covered by each such path.

Lemma 5: Let <i, j > be of type G 2 and let P be a path that includes <i, j >.

a) If P long covers <i, j >, then neither <i, j > nor any of the edges that precede it on the path P

are short covered by P.

b) If P short covers <i, j >, then neither <i, j > nor any of the edges that precede it on the path P

are long covered by P.

-- --

11

Proof: a) Since P long covers <i, j >, the segment Y of P that follows the edge <i, j > must be in

longest (sink (j)). Since <i, j > is of type G2, longest (sink (j)) ≠ shortest (sink (j)). So, Y is not in

shortest (sink (j)). Hence, P cannot short cover <i, j > or any of the edges that precede it on path P.

The proof for b) is similar.

Corollary 1: No path can short cover one G 2 edge and long cover another (possibly the same)

G 2 edge.

Proof: Suppose that some path P short covers some G2 edge <i, j >. Then from Lemma 5 b), it

follows that P cannot long cover <i, j > or any of the edges that precede it on P. If P long covers

some G2 edge <k,l > that follows <i, j >, then from Lemma 5 a) it follows that P cannot short

cover <i, j > (as <i, j > precedes <k,l >). This contradicts the assumption that P short covers <i, j >.

So, P cannot long cover any G 2 edge. The proof for the case when P long covers some G2 edge

is similar.

Lemma 6: Let <i, j > be of type G 3 and let P be a path that includes <i, j >.

a) If P long covers <i, j >, then neither <i, j > nor any of the edges that follow it on the path P

are short covered by P.

b) If P short covers <i, j >, then neither <i, j > nor any of the edges that follow it on the path P

are long covered by P.

Proof: a) Since <i, j > is of type G3, longest (source (i)) ≠ shortest (source (i)). Consequently, the

segment Y of P that precedes the edge <i, j > is not in shortest (i). Hence, P cannot short cover

<i, j > or any of the edges that follow it. The proof for b) is similar.

-- --

12

Corollary 2: No path can short cover one G 3 edge and long cover another (possibly the same)

G 3 edge.

Proof: Suppose that some path P short covers the G3 edge <i, j >. From Lemma 6 b), it follows

that P cannot long cover <i, j > or any of the edges that follow it. If P long covers some G3 edge

<k,l > that precedes <i, j >, then form Lemma 6 a) it follows that P cannot short cover any of the

edges that follow <k,l >. In particular, P cannot short cover the edge <i, j >. This contradicts the

assumption on P. Hence, P cannot long cover any G 3 edge. In a similar manner, we can show

that a path that long covers a G3 edge cannot short cover a G3 edge.

Lemma 7: Let <i, j > be of type G 4 and let P be a path that includes <i, j >.

a) If P long covers <i, j >, then it short covers no edge in P.

b) If P short covers <i, j >, then it long covers no edge in P.

Proof: a) Since <i, j > is a G4 edge, longest (source (i)) ≠ shortest (source (i)) and longest (sink (j)) ≠

shortest (sink (j)). Since P long covers <i, j >, the segment Y of P that follows <i, j > is in

longest (sink (j)) and the segment Z of P that precedes <i, j > is in longest (source (i)). Consequently,

Y is not in shortest (sink (j)) and Z is not in shortest (source (i)). Hence, P cannot short cover any

edge. The proof for b) is similar.

Lemma 8: A source to sink path P long covers a G 2 edge <i, j > and short covers a G 3 edge

<k,l > iff:

i) <k,l > is a successor of <i, j > in P

ii) The path segment of P from the source vertex to k is in shortest (source (k))

-- --

13

iii) The path segment of P from j to the sink vertex is in longest (sink (j)).

Proof: First consider the "only if" part. Assume that P long covers the G 2 edge <i, j > and short

covers the G 3 edge <k,l >. From Lemma 5, it follows that <k,l > must be a successor of <i, j >.

For ii) and iii), we note that P has the form P1<i, j >P2<k,l >P3. Since P short covers <k,l >,

P1<i, j >P2 ε shortest (source (k)). Also, since P long covers <i, j >, P2<k,l >P3 ε longest (sink (j)).

Next, consider the "if" part. We may assume that both <i, j > and <k,l > are on P. We need

to show that conditions i) - iii) imply that <i, j > is long covered and <k,l > is short covered. Since

<k,l > is to the right of <i, j >, P is of the form P1<i, j >P2<k,l >P3. Let PL<i, j >PR be some path in

N that long covers <i, j >. We need to show that P has the same length as this path. Since,

P2<k,l >P3 ε longest (sink (j)), and PL<i, j >PR long covers <i, j >, P2<k,l >P3 and PL have the same

length. Also, since <i, j > is of type G 2, P1 and PL have the same length. So, P long covers <i, j >.

Let PL<k,l >PR be some path in N that short covers <k,l >. P short covers <k,l > iff its length

is the same as that of PL<k,l >PR. The lengths of PL and P1<i, j >P2 are the same as both are in

shortest (source (k)). Since <k,l > is of type G 3, longest (sink (l)) = shortest (sink (l)). So P3 and PR

have the same length. Hence, P and PL<k,l >PR are of the same length.

Lemma 9: If a source to sink path P long covers a G 2 edge <i, j > and short covers a G 3 edge

<k,l >, then all paths between j and k have the same length.

Proof: From Lemma 8 i) it follows that <k,l > is a successor of <i, j > on P. So, there is at least

one path from j to k in the network. Let P be of the form XYZ where X is the segment of P from

source to vertex j (i.e., the last edge in X is <i, j >), Y is the segment from vertex j to veretex k, and

Z is the segment that begins with edge <k,l > and ends at the sink vertex. From Lemma 8 ii) and

-- --

14

iii), it follows that XY is in shortest (source (k)) and YZ is in longest (sink (j)). Now, suppose that the

newtork has a path W from j to k whose length is different from that of the segment Y. If its length

is less than the length of Y, then XW is a shorter source to k path than XY and so XY cannot be in

shortest (source (k)). A contradiction. On the other hand, if the length of W is more than that of Y,

then WZ is a longer j to sink path than YZ and so YZ cannot be in longest (sink (j)). A contradiction.

So, there is no j to k path W whose length is different from that of Y. Hence, all j to k paths in the

network are of the same length.

Lemma 10: A source to sink path P short covers a G 2 edge <i, j > and long covers a G 3 edge

<k,l > iff:

i) <k,l > is a successor of <i, j > in P

ii) The path segment of P from the source vertex to k is in longest (source (k))

iii) The path segment of P from j to the sink vertex is in shortest (sink (j)).

Proof: Similar to that of Lemma 8.

Lemma 11: Let P be a path that short covers a non G 1 edge <i, j > and long covers a non G 1

edge <k,l >. P has the form PLPMPR where PL consists solely of G 2 edges, PR consists solely of G 3

edges and PM is either empty or consists solely of G 1 edges or solely of G 4 edges. Neither PL nor

PR is empty.

Proof: If <i, j > is a G4 edge, then from Lemma 7 it follows that P cannot long cover any edge.

However, by assumption, P long covers <k,l >. So, <i, j > is not a G4 edge. Similarly, <k,l > is

not a G4 edge. If <i, j > is a G2 edge, then from Corollary 1 <k,l > cannot be a G2 edge and so

-- --

15

must be a G3 edge. If <i, j > is a G3 edge, then from Corollary 2 <k,l > cannot be a G3 edge and

so must be a G2 edge. Hence, there are two cases to consider:

a) <i, j > is a G2 edge and <k,l > is a G3 edge

b) <i, j > is a G3 edge and <k,l > is a G2 edge.

Let us consider case a) first. Let <i´, j´> be the last G2 edge on P and let <k´,l´> be the first

G3 edge on P. From Lemma 1, it follows that all edges that precede <i´, j´> in P are G2 edges

and from Lemma 2, it follows that all edges that follow <k´,l´> in P are G3 edges. So, <i´, j´>

precedes <k´,l´>. Let PL be the segment of P from the source vertex up to and including <i´, j´>

and let PR be the be the segment of P from (and including) <k´,l´> to the end of P. Let PM be the

segment between PL and PR. We have already shown that PL consists solely of G2 edges, PR con-

sists solely of G 3 edges, PL includes at least the edge <i, j > and so is not empty, and PR includes

at least the edge <k,l > and so is not empty. It remains to show that PM consists solely of G1

edges or solely of G4 edges. From our selection of <i´, j´> and <k´,l´> it follows that PM cannot

contain any G2 or G3 edges. Also, from Lemma 3, PM cannot contain both a G1 and a G4 edge.

So, if PM is not empty, then it consists solely of G1 or solely of G4 edges.

Now, we prove the Lemma for case b). Let <i´, j´> be the first G3 edge on P and let <k´,l´>

be the last G2 edge on P. From Lemma 1, it follows that all edges that precede <k´,l´> in P are

G2 edges and from Lemma 2, it follows that all edges that follow <i´, j´> in P are G3 edges. So,

<k´,l´> precedes <i´, j´>. Let PL be the segment of P from the source vertex up to and including

<k´,l´> and let PR be the be the segment of P from (and including) <i´, j´> to the end of P. Let PM

be the segment between PL and PR. PL consists solely of G2 edges, PR consists solely of G 3

-- --

16

edges, and neither PL nor PR is empty. From our selection of <i´, j´> and <k´,l´> it follows that

PM cannot contain any G2 or G3 edges. Also, from Lemma 3, PM cannot contain both a G1 and a

G4 edge. So, if PM is not empty, then it consists solely of G1 or solely of G4 edges.

Lemma 12: Let P be as in Lemma 11.

a) If <i, j > is in PL, then the last short covered edge in P is of type Syn or Snn and the first long

covered edge is of type Lny or Lnn.

b) If <k,l > is in PL, then the last long covered edge in P is of type Lyn or Lnn and the first short

covered edge is of type Sny or Snn.

Proof: We prove only a). The proof for b) is similar. By assumption, <i, j > is a short covered

edge and it is in PL. So, we are in case a) of the proof of Lemma 11. Hence, <i, j > is a G 2 edge

and <k,l > is a G 3 edge which must be part of PR. Let <a,b > be the last short covered edge of P.

From Corollary 2, it follows that this edge cannot be a G3 edge. Hence, it must be part of PL or

PM . In either case, it precedes PR. Let <b,c > immediately follow <a,b > in P (<b,c > exists as PR

is not empty). We need to show that <a,b > is not on any path in shortest (source (b)). Suppose

<a,b > is on a shortest path Q from some source vertex to b. Q has the form X <a,b > and P has the

form P´<a,b ><b,c >P´´. Since <a,b > is short covered by P, X and P´ have the same length. Since

P short covers <a,b >, <b,c >P´´ is a shortest path from b to a sink. Hence, X <a,b ><b,c >P´´ short

covers <b,c >. So, P=P´<a,b ><b,c >P´´ short covers <b,c>. This contradicts the assumption that

<a,b > is the last short covered edge. Consequently, <a,b > is not on any path in

shortest (source (b)). Hence <a,b > is of type Syn or Snn.

-- --

17

Since <i, j > is short covered and of type G 2, Corrolary 1 implies that the long covered

edges cannot be of type G2. From Lemma 11, it follows that the long covered edges must be in

PM and/or PR and so must follow PL. Let <f ,g > be the first long covered edge. We need to show

that <f ,g > is not on any path in longest (sink (f)). Let <e, f > be the edge that immediately pre-

cedes it on P. Such an edge must exist as by Lemma 11 PL is not empty. If <f ,g >Y is in

longest (sink (f)), then the length of Y must equal that of P´´ where P=P´<e, f ><f ,g >P´´ as <f ,g >

is long covered by P. Hence, <f ,g >P´´ ε longest (sink (f)). Since <f ,g > is long covered by P, P´ is

a longest path from a source to e. Now, since P´ ε longest (source (e)) and <f ,g >P´´ ε

longest (sink (f)), P must long cover <e, f >. This contradicts the assumption on <f ,g >. So, <f ,g >

is on no path in longest (sink (f)) and therefore must be of type Lny or Lnn.

3.3 CONSTRUCTION OF GLS

The network GLS is to have the property that a minimum cardinality cover (by paths) of its edges

corresponds to a minimum cardinality MinMaxSP of the original network. Let H be the graph GL

∪ GS. That is, the vertices in H are the vertices in GL and GS and the edges in H are those in GL as

well as those in GS. Since the vertices in GL and GS have the same labels, it is necessary to rela-

bel these in H. The relabeling scheme we use prefixes each vertex label in GL with an l and each

vertex label in GS with an s. Figures 4 and 5, respectively, give the GL and GS networks that

correspond to the network of Figure 1. The vertices have been relabeled as stated. The two

figures together define H. A source to sink path in H corresponds to a source to sink path in the

network N of Figure 1. If the H path is in the GL (GS) part of H, then the corresponding path in N

-- --

18

is obtained by first mapping the H edges back to the N edges and then extending the resulting

path of N to a sink and source using a longest (shortest) such extension; the path of N so obtained

long (short) covers the edges on the path. So, at present we only have the capability to generate

paths that either long cover or short cover edges. To allow for a path to simultaneously long

cover and short cover edges we need to modify H so that paths from the GL component can cross

into the GS component and vice versa.

l2

l1

l4 l6 l8

l3

lr34

ll45

l5 l7

ll35 lr35

Lyy Lyy Lyy

Lyy

Lyn

Lny

Lyy

Lnn

Figure 4: GL obtained from network in Figure 1.

From Lemma 4, we see that G1 edges are long and short covered by all paths. So, we can

modify H so as not to require two separate paths (one that long covers the G1 edge and another

that short covers it). This is accomplished using the transformation of Figure 6. In this figure

-- --

19

s2

s1

sr24

sl46 s6 s8

s4

sl34 sr45

s3 s5 s7

Syn

Sny Syy

Sny Syn

Syy Syy Syy

Figure 5: GS obtained from network in Figure 1.

<a,b > and <c,d > are, respectively, the images of the same G1 edge <i, j > in GL and GS. y and z

are two new vertices. When covering the edges of the resulting network H´ we relax the cover-

ing requirement so that edges of the type e 1 through e 4 (Figure 6) need not be on any path in the

cover. However, all edges of type e 5 must be on at least one path in the cover. We refer to this

relaxed notion of cover as partial cover and define it more precisely later. e 5 is now the image of

the G1 edge <i, j >. Since the resulting network has only one image for each G1 edge and since

edges of type e 1 through e 4 are not required to be on a path of a partial cover, the transformation

of Figure 6 makes it possible to cover the image of each G1 edge by a single path in the (partial)

cover. Without this transformation, each G1 edge would have two images and each image would

-- --

20

have to be on at least one path in the cover.

a b

c d

a

c

y z

b

d

e5

e1

e2

e3

e4

Figure 6: Step 2 transformation for G 1 edges

From Lemma 7, paths that long (short) cover a G4 edge cannot short (long) cover any edge.

So, for G4 edges no path cross overs between the GL and GS copmponents of H are to be pro-

vided. We do, however, need to provide for paths of the type described by Lemmas 8 through 12.

For this we need to provide path connections from G2 edges of type Syn and Snn to G3 edges of

type Lny and Lnn as well as from G2 edges of type Lyn and Lnn to G3 edges of type Sny and Snn.

When this is done, we get the network GLS. The construction of GLS is described below.

Step1: [Construct H, the union of GL and GS]

Begin with a copy of GL and one of GS. Prefix each vertex in GL with an l and each one

in GS with an s. This is just to make the two vertex sets different. Following this, we

have the network H described above.

Step2: [Account for G1 edges as in Lemma 4]

For each G 1 edge <i, j > in N, let <a,b > and <c,d >, respectively, be its image in GL and

-- --

21

GS.

i) Delete <a,b > and <c,d > from the graph.

ii) Add edges <a,y >, <c,y >, <y,z >, <z,b >, and <z,d > (Figure 6). We now have the

network H´ described above.

Step3: [Lemmas 8 through 11 and 12 a)]

For each G 2 edge <i, j > of type Syn or Snn connect (by means of directed edges) the

image of vertex j in GS to the images in GL of all vertices k in N such that

i) <k,l > is a G 3 edge of type Lny or Lnn;

ii) there is a path from j to k in N;

iii) <i, j > is on at least one path in longest (source (k));

iv) <k,l > is on at least one path in shortest (sink (j)); and

v) all paths from j to k have the same length.

Step4: [Lemmas 8 through 11 and 12 b)]

For each G 2 edge <i, j > of type Lyn or Lnn connect (by means of directed edges) the

image of vertex j in GL to the image in GS of all vertices k in N such that:

i) <k,l > is a G 3 edge of type Sny or Snn;

ii) there is a path from j to k in N;

iii) <i, j > is on at least one path in shortest (source (k));

iv) <k,l > is on at least one path in longest (sink (j)); and

-- --

22

v) all paths from j to k have the same length.

Figure 7 shows the GLS obtained for the network of Figure 1 using the above construction.

Lemma 13: Let P be a path in GLS. P is of one of the following types:

a) All edges in P are in GL

b) All edges in P are in GS

c) P is of the form PLPMPR where all edges in PL are in GL; those in PM are edges introduced in

step2; and those in PR are in GL. Note that PL or PR or both may be empty.

d) P is as in c) except that all PR edges are in GS .

e) P is as in c) except that all PL edges are in GS.

f) P is as in c) except that all PL and PR edges are in GS.

g) All edges in PL are in GS; PM is an edge introduced in Step 3; PR contains only edges in GL.

h) All edges in PL are in GL; PM is an edge introduced in Step 4; all edges in PR are in GS.

Proof: Follows from the construction of GL, GS , and GLS and the properties of G 1, G 2, G 3, G 4

edges.

Lemma 14: Let P be a path in GLS. Let Q be its extension to a source to sink path of N. This

extension is obtained in the following way:

(1) If the first (last) edge in P is in GL, then extend leftwards (rightwards) to a source (sink) of N

using a longest such extension.

(2) If the first (last) edge in P is in GS , then the extension to a source (sink) is by a shortest such

-- --

23

extension.

(3) If Q contains Step 2 edges, these are mapped back to the G 1 edges of N that they are the

image of.

(4) If Q contains a Step 3 or Step 4 edge, it is replaced by a j to k path in N.

Let <i, j > be an edge on Q. If <i, j > is in GL, then Q long covers <i, j >. If <i, j > in GS, Q short

covers <i, j >. If <i, j > is a G 1 edge, then Q both long and short covers <i, j >.

Proof: We consider the eight cases of Lemma 13. For P of type a), b), c) and f) the Lemma fol-

lows from the construction of GL and GS . For d), PL consists of zero or more GL edges followed

by one or more Step 2 edges (actually at least 3 will be there), followed by zero or more GS

edges. Each set of 3 Step 2 edges represents a G 1 edge. The Lemma follows from the definition

of a G 1 edge which requires that shortest (source (i)) = longest (source (i)) and shortest (sink (j)) =

longest (sink (j)). The proof for e) is similar. Now consider g). P is comprised of one or more GS

edges followed by a Step 3 edge followed by one or more GL edges. Let <i, j > be the last GS edge

and let <k,l > be the first GL edge. By construction, <i, j > is a G 2 edge. Since <i, j > is on at least

one path in longest (source (k)); shortest (source (i)) = longest (source (i)) and all paths between j and

k have the same length, it follows that the left segment of Q up to vertex k is in a path in

longest (source (k)). Also, since <k,l > is on at least one path in shortest (sink (j)); shortest (sink (l)) =

longest (sink (l)); and all paths between j and k have the same length, it follows that the segment

of Q from j to the sink is in shortest (sink (j)). The conditions of Lemma 10 are satisfied and so

<i, j > is short covered and <k,l > long covered. From the construction of GS and the just proved

-- --

24

l2 l4 l6 l8

l1 l3

lR34

sL24 s6 s8

lL45

l5 l7

sR24s2

s4

sL34 sR45

lR35 lL35

y z

s3s1 s5 s7

..

..
...

...
...

...
...

.

................
...

Dotted lines are edges in GL.

Dashed lines are edges in GS.

solid lines are edges created by the construction.

Figure 7: GLS obtained from GL and GS of Figures 4 and 5.

-- --

25

fact that the segment of Q from j to the sink is in shortest (sink (j)), it follows that all GS edges in Q

are short covered. Similarly, all GL edges are long covered. The lemma is proved similarly for

the case when P is of type h).

Definition: Y is a partial cover of GLS iff every edge of GLS except possibly edges of type e 1

through e 4 (cf, Figure 6) introduced in Step 2 of the construction and edges introduced in Steps 3

and 4 of the construction are on at least one path in Y.

Any set of paths that includes all dotted and dashed edges as well as the e 5 type edge <y,z > of

Figure 7 defines a partial cover of the GLS of Figure 7.

Lemma 15: Let Y be a partial cover of GLS. Y is readily transformed into a MinMaxSP Z of the

network N such that � Y � = � Z �.

Proof: The paths in Y are extended as described in Lemma 14. Each path P ε Y results in exactly

one path Q ε Z. So, � Y � = � Z �. Further, since Y is a partial cover of GLS, all edges except possibly

edges of type e 1 through e 4 introduced into GLS in Step 2 of the construction and the edges intro-

duced in Steps 3 and 4 are included on paths in Y. From Lemma 14, it follows that the set of

extended paths of N obtained from Y in the manner described in Lemma 14 long and short cover

all edges of N. So, Z is a MinMaxSP of N.

Theorem 1: Let X be a minimum cardinality MinMaxSP of N and Y a minimum cover of GLS.

� X � = � Y �.

Proof: Each path in X corresponds to exactly one path in GLS. This path is obtained by simply

using the mappings from N to GL and GS and the transformations of Steps 1 through 4 that obtain

-- --

26

GLS. Further, the set of paths obtained in this way form a partial cover of GLS. The size of this

partial cover is � X � nad this must be ≥� Y � as Y is a minimum cover of GLS. From Lemma 15 and the

minimality of X, it follows that the size of the partial cover must exactly equal � Y �.

3.4 SUMMARY

Our algorithm to obtain a MinMaxSP of a circuit, C, with rising and falling delays consists of the

following steps:

S1: From C construct an equivalent network N as in [7].

S2 From N construct a dag GLS as described in Section 3.3.

S3 Transform the dag GLS into a network flow problem, F, as in [7]. However, Step 2 edges

e 1−e 4, Step 3 and Step 4 edges of the GLS construction have a lower capacity Lij of 0 rather

than 1.

S4 Find a minimum flow in F.

S5 From the minimum flow construct the partial cover of GLS.

S6 From the partial cover obtain the MinMaxSP of N.

S7 From this obtain the MinMaxSP of C.

As in the case of [7] the overall complexity of the algorithm is dominated by S4. This step

requires O (m (m +n)) time where n and m are, respectively, the number of vertices and edges in

the circuit C.

The flow network corresponding to the GLS of Figure 7 is shown in Figure 8. A partial

-- --

27

l2 l4 l6 l8

l1 l3

lR34

sL24 s6 s8

lL45

l5 l7
sR24s2

s4

sL34 sR45

lR35 lL35

y z

s3s1 s5 s7

s

t

All solid lines have lower capacity 1.

All dashed lines have lower capacity 0.

Figure 8: Flow network for GLS in Figure 7.

cover as well as its extension to a MinMaxSP set for the network of Figure 1 are given in Figure

9.

-- --

28

partial cover extension long covers short covers

(s,l2,l4,l6,l8,t) (2,4,6,8) <2,4>,<4,6>,<6,8> none

(s,l1,l3,lR34 ,sL24 ,s6,s8,t) (1,3,4,6,8) <1,3>,<3,4> <4,6>,<6,8>

(s,s2,sR24 ,lL45 ,l5,l7,t) (2,4,5,7) <4,5>,<5,7> <2,4>

(s,sL34 ,s4,sR45 ,t) (1,3,4,5,7) none <3,4>,<4,5>

(s,s1,s3,y,z,s5,s7,t) (1,3,5,7) <3,5> <1,3>,<3,5>,<5,7>

Figure 9: A partial cover of the flow network of Figure 8 and its extension with long and short

covered edges.

4 EXPERIMENTAL RESULTS

We programmed our algorithm in C and experimented with the ten ISCAS circuits used in the

experiments reported in [7]. Figure 10 gives the number of paths in the union of a minmum car-

dinality MinSP and a minimum cardinality MaxSP as well as in a minimum cardinality Min-

MaxSP for each of the ten circuits. The last column gives the difference between the sizes of

these two sets. Figure 11 gives the run time, in seconds, on an Apollo DN3000 workstation. The

time to compute the union of a minimum cardinality MinSP and a minimum cardinality MaxSP

was obtained by running the algorithm of [7] to find a minimum cardinality MaxSP and then run-

ning its modification (Section 3.1) to find a minimum cardinality MinSP. The sum of these two

times is the time to compute MinSP ∪ MaxSP. The run time of the algorithm obtained in Section

3.4 to find a minimum cardinality MinMaxSP is given in the last column.

5 REFERENCES

1 V.D. Agrawal, "Synchronous Path Analysis in MOS Circuit Simulator," Proc. ACM IEEE

-- --

29

circuit � MinSP∪MaxSP � � MinMaxSP � diff

1 c432 839 807 32

2 c499 1648 1520 128

3 c880 1466 1232 234

4 c1350 1768 1640 128

5 c1908 2558 2414 144

6 c2670 3739 3594 145

7 c3540 5117 5071 46

8 c5315 8702 7463 1239

9 c6288 8528 8490 38

10 c7552 10841 10651 190

Figure 10: Number of paths generated for two algorithms

circuit t (MinSP∪MaxSP) t (MinMaxSP)

1 c432 23.23 36.50

2 c499 115.53 193.53

3 c880 79.48 152.60

4 c1350 111.17 212.87

5 c1908 268.40 391.75

6 c2670 530.60 887.52

7 c3540 992.62 1330.60

8 c5315 2587.55 4332.58

9 c6288 2032.48 2860.60

10 c7552 4672.57 6012.12

Figure 11: The run time for the two algorithms (in seconds)

19th Design Automation Conf., June 1982, pp. 629-635.

2 H.K. Al-Hussein, "Path-Delay Computation Algorithms for VLSI Systems," VLSI Design,

-- --

30

February 1985, pp. 86-91.

3 F. Brglez and H. Fujiwara, "Neutral Netlist of Ten Combinational Benchmark Circuits and

a Target Translator in FORTRAN,"

Proc. IEEE Int. Symp. Circuits & Systems, June 1985

4 R.B. Hitchcock, Sr., "Timing Verification and the Timing Analysis Program," Proc. ACM

IEEE 19th Design Automation Conf., June 1982, pp. 594-604.

5 R.B. Hitchcock, G.L. Smith and D.D. Cheng, "Timing Analysis of Computer Hardware,"

IBM J. Research & Development, vol. 26, No. 1, Jan. 1982, pp. 100-108.

6 E. Lawler, Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and

Winston. 1976

7 W.N. Li, S.M. Reddy, and S. Sahni, "On Path Selection In Combinational Logic Circuits,"

IEEE Transaction on CAD, 8, 1, 1989, pp 56-63.

8 C.J. Lin and S.M. Reddy, "On Delay Fault Testing in Logic Circuits," IEEE Trans. CAD,

Sept. 1987, pp. 694-703

9 H.T. Liu and C.R. Kime, "A Delay Test Generation System for Combinational logic," Tech

Report, Dept. of Elec. & Comp. Eng, University of Wisconsin-Madison, August 1987.

10 Y.K. Malaiya and R. Narayanaswamy, "Testing for Timing Faults in Synchronous Sequen-

tial Integrated Circuits," Proc. 1983 Int’l. Test Conf., Oct. 1983, pp. 560-571.

11 E.J. McCluskey, Logic Design Principles, Prentine-Hall, 1986.

12 S. Patil, "An Automatic Test Pattern Generator for Delay Faults in Logic Circuits," M.S.

-- --

31

Thesis, Department of Electrical and Computer Engineering, University of Iowa, May

1987.

13 S.M. Reddy, C.J. Liu, and S. Patil, "An Automatic Test Pattern Generator for the Detection

of Path Delay Faults," Proc. Int. Conf. on Computer Aided Design, November 1987, .pp

284-287

14 J. Savir and W.H. Mcanney, "Random Pattern Testability of Delay Faults," Proc. 1986

Int’l. Test Cnf., Sept. 1986, pp. 263-273.

15 G.L Smith, "Model for Delay Faults Based Upon Paths,"

Proc. 1985 Int’l. Test Cnf., Nov. 1985, pp. 342-349.

16 K.D. Wagner, "Delay Testing of Digital Circuits Using Pseudorandom Input Sequences,"

Center for Reliable Computing Report 85-12, revised March 1986, Stanford University.

[17] A.D. Friedman and P.R. Menon, Theory and Design of Switching Circuits, Computer Sci-

ence Press, 1975.

[18] S.Kundu and S.M.Reddy, "On the Design of Robust Testable CMOS Combinational Logic

Circuits," Proc. Int. Sym. on Fault-tolerant Computing, June 1988, pp. 220-225.

[19] S.R. Kunkel and J.E. Smith, "Optimal Pipelining in Supercomputers," 13th Annual Interna-

tional Symposium on Computer Architecture Proceedings, June 1986, pp. 404-412.

[20] C.J.Lin and S.M.Reddy, "On Delay fault Testing in Logic Circuits," IEEE Transactions on

CAD, September 1987, pp. 694-703.

[21] K.Roy, J.A. Abraham, K. De, and S. Lusky, "Synthesis of Delay Fault Testable

-- --

32

Combinational Circuits," Proc. of ICCAD, November 1989, pp. 418-421.

-- --

