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Abstract— We present a computational geometry method for to be repeated quite frequently. Consequently, it has becom
the problem of triangulation in the plane using measuremens important to trade-off the number and type of computations
of dlstanpe-dlfferences. .Compared. to existing solgtlonsot this needed for localization to save power by gracefully degradi
well-studied problem, this method is: (a) computationallymore . . . . .
efficient and adaptive in that its precision can be controlld as the quallty _Of SOIUt'O.n' In add't'on’_ th_e Co_mpUtat'onalcpmn
a function of the number of computational operations, makirg  Of arithmetic operations may be limited in some sensor nodes
it suitable to low power devices, and (b) robust with respecto  but its impact on the precision of localization is not well
measurement and computational errors, and is not susceptle understood. These factors motivate a closer examination of
to numerical instabilities typical of existing linear algebraic or o computational aspects of DTOA triangulation methods;
quadratic methods. This method employs a binary search on a however, our results could be of more general interest als wel
distance-difference curve in the plane using a second distae- ' ) k Rl
difference as the objective function. We establish the uniwdality There are two basic formulations of the DTOA localization
of the directional derivative of the objective function within each problem: (a) distance-differences to an object, such asnoof
of a small number of suitably decomposed regions of the plane g plume, are measured from known locations, and the problem
to support the binary search. The computational complexityof s 1 estimate the location of the object; and (b) a device,
this method is O(log(1/v)), where the computed solution is . . .
guaranteed to be within a distance ofy to the actual solution. We such as a_ sensor node,_ receves d|stance-d|fference§ from
present simulation results to compare this method with exigng P€acons with known locations, and the problem is to estimate
DTOA triangulation methods. the location of the sensor node, that is self-localizatibime
classical source localization problem using DTOA measure-
ments has been solved using two general approaches: @y line
algebraic solution which typically involves matrix invers
and solving a quadratic equation [2], [6], and (i) intetsaT

. INTRODUCTION of hyperbolic curves [7]. A recent overview of network-bdse

The problem of computing the location of an object fronfocalization methods may be found in [3]-[5], [8]. In gerera
measurements of distance-differences from three known the quality of the location estimate is a complex function of
cations is well-studied (for at least three decades) uritker the precision with which the underlying numerical openasio
titte of Difference of Time-of-Arrival (DTOA) localizatin. are implemented, and consequently, there is no apparent and
This problem arises in a number of established areas suctseple way of relating the computations to the “quality”
tracking in aerospace systems [1], [2]. Recently, it hasivedd of location estimate. In particular, it is unclear if devi
renewed attention due to the increasing proliferation aewi more computational operations would increase the accuracy
less sensor networks [3], [4] and embedded networked sgstenh these methods, or conversely if it is possible to reduce
[5]. In several of these applications, the wireless nodediar- the computations without drastically affecting the qualiif
ited in power and yet the localization computations may halecation estimate. In addition, sensor errors can havetidras
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effects on DTOA localization methods. For example, as withonotonically and linearly from-d(S;, S;) to d(S;, S;), and
be shown in Section VI under simple random noise conditionsguals0 at the bisector point. From this observation and
the quadratic equation of [2], [6] may have imaginary roothe triangle inequality, it follows thafA,;(P)| < d(S;, S;).
thereby rendering the method incomplete. Also, numericalrthermore, the locud,12(d), of points defined by
:gjvtablhtl.e_s may arise in the cqmputa_uo_ns |mplementethW| Li;(8) = {P|Ay(P) = 6}
precision operations wherein matrix inversions neefded

linear algebraic methods may become ill-conditioned tesml is a hyperbola.
in large estimation errors. The DTOA space of allk —1)-tuples [A12(P), A13(P),...,

The underlying geometric nature of this problem has beék ()] forms a (k — 1)-dimensional vector space denoted
well-known [1] although we are unaware of methods th& 6*~'. Each pointP = (z,y) in R* has a unique dual point
exploit it to fine tune computations as done in several com” = (P}, b, -, Dk_1) in 6", wherep), = Ay 11)(P), j =
putational geometry methods [9], [10]. We present a compl-2, ---, (k—1). However, each point’ = (p',p5, ..., pj_,) in
tational geometric method for DTOA localization based on & ' may have zero or more dual pointsi?. In fact, the dual
binary search on an algebraic curve defined by a distangints of P’ are those points ik?* that are common to (i.e.,
difference function. We exploit the monotonicity of the dithe common intersections) the— 1 hyperbolasL, ;1(P),
rectional derivative of the other distance-difference broi 1 < j <k.
support the binary search. The computational complexity of In this paper, we consider tH&TOA localizatiorproblem of
this method isO(log(1/~)), where the computed solution isestimating the location of a sourc¢efrom the measurements
guaranteed to be within a distance-pfo the actual solution. of A1;(S), 2 < j < k, 8" = [d12, ..., d1] in 6*~1. When
Alternatively, by fixing the number of operations tg one there is the possibility of errors in the measurement of the
can achieve the precision= O (2~*). This method is robust A1, values, existing DTOA localization algorithms [14]-[17],
with respect to distance measurement errorsw(i); of the estimate the source location by mlnlleIng the sum of least
same order of magnitude as errors in distance measuremesfigtares error if*~' space. We show, in this section, that
in methods that involve division operations such guarante@n estimate that is close i#t~' space may not be close in
cannot be made; and (ii) it is complete in that it will alway&uclidean spacei?. However, an estimate that is close to
return an answer, even under random measurement erross. 1i¢ source in Euclidean spad#, is necessarily close to the
method is a generalization of the DTOA localization methogPurce ind*~' space (Lemmas 1 and 2, respectively).
in [11] proposed as a part of plume identification when the Lémma 1:Two points that are close to one anothesfi
source is inside the acute triangle formed by sensors. In gace may be arbitrarily far apart f#’.
case, the object can be located anywhere in the monitoring Proof: Consider the three sensofs(1,0), Sa(1, —1),
region. In addition, we also provide a detailed analysis &dS3(—1,0) ((1,0) is the location inkz? of sensors;). Let
the underlying computation and the proof of the requiret2 = -d(S1,52) =-1andd,3 = -2¢, wheree is a small positive.
monotonicity property of the underlying directional deive. The hyperbolic equation foL,5(d12) is =1 andy >= 0. In

This paper is organized as follows. In Section I, we exanfher words,L;5(012) degenerates from a hyperbola to a ray
ine the relationship between proximity in Euclidean spaue afrom S, \{ertlcally up to infinity. The hyperbolic equation for
proximity in DTOA space. Although all previous localizatio L13(913) is #°/(e*) — y?/(1 — €?) = 1 wherez > 0. The
methods have focused on using proximity in DTOA space, olitersection,P, of Li2(d12) and Li3(d13) is (1, (1 — €®)/e).
analysis of Section Il shows that this does not guarantee-pro NOW, suppose we change the value &@f to -4e. The
imity in Euclidean space. We describe our geometric DTORYPerbolic_equation for the newlL,s(013) is x?/(4€2) -
triangulation method in Section IIl. Our geometric methodl /(1 — de?) =1 wherez > 0 and the new intersection,
guarantees proximity in both Euclidean and DTOA spaced; PetweenL;, and Ly is (1, (1 — 4e?)/(2e)). The distance
We prove the correctness of the method in Sections IV and RgtweenP and @ in 62 space is2e. However, the distance,
We present simulation results in Section VI. A conclusion &£ @), betweenP and @ in Euclidean spacd® is |(1 —

drawn in Section VII. 4e?)/(2e) — (1—e?)/e| = e+1/(2¢). As can be seeni(P, Q)
becomes large as the distancefinspace approaches zerm.

Lemma 2:Given two pointsP(zp,y,) and Q(z4,y,) In
Euclidean spac&? and their respective dual poink (z},, /;,)
LetS; = (zi,y:), 1 <i <k, be the locations of sensorsin and Q'(x},y,) in 6% space, then we haw§(P’,Q’) < 2v/2 %
Euclidean spac&?. For any pointP = (z,y) in R?, the dis- (P, Q)
tanced(P, S;), betweenP andS; is v/(z — z;)2 + (y — y:)2. Proof: From the definition, we have), = Ax(P) =
A signal that originates aP at time O arrives aS; at time d(P, S1)—d(P, S2) andz;, = A12(Q) = d(Q, S1)—d(Q, S2).
proportional tod(P, 5;). For simplicity, we assume that the ./ _ ./ = (P, s1) - d(P, 52)) - (d(Q, $1) — d(Q, 52))]
arrival time isd(P, S;). The differenceA;;, in the time of [(d(P, 51) — d(Q, 51)) — (d(P, S2) — d(Q, S2))|
arrival (DTOA) at.S; and.S; is given by ld(P, Q) — (—d(P, Q)|
2xd(P, Q)

II. EUCLIDEAN AND DTOA SPACES

Al

A (P) =d(P,S;) — d(P, S;). o , .
Similarly, we havely, — y,| <2 d(P,Q) as well. So,
Let S;S; be the line through the pointS; and.S;. As we

move P from S; to S, along the lineS;S;, A;;(P) varies  d(P', Q') = \/(% — )2 + (y) — y})? < 2V2 % d(P,Q)
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Corollary 1: Given two pointsP and( in Euclidean space Fig- 2. Canonical placement of 3 sensors dng (12)

R? and their respective dual poini¥ andQ’ in DTOA space
6k, d(P",Q") < 2vVk +d(P,Q).

algorithm geometricDTOA(d12, d13);

begin

I1l. GEOMETRICDTOA METHOD (x12,y12) « intersection point ofL.15 with S1.52;

Ix1 < set of x-coordinates of intersections bfis with S7.53;

In the remainder of this paper, we consider only the case T — set of x-coordinates of intersections bf with 5255

when we havek = 3 sensors,S;, Sz, and Ss. Without Ix «— {Dx1,212, Dx2} UIx1 U Ixo;

loss of generality (w.l.o.g.), we choose our coordinatdesys Ix «— Ix —{z|z € Ix && (z < Dx1 || # > Dx2)};

so that the lineS;S; falls on the y-axis and so that the IIeStoZo: ior{tgﬁ(iX);2 e

midpoint of this line is the originD as shown in Figure 1. let {y<1)7y(2),<. .).’7;‘1);”‘} o oad corresponding-coordinates:
The [Dx1, Dx2] x [Dy1, Dy2] box shown in Figure 1 is the U —0;

monitoring region within which the sourc®is to be localized. fori=1,... Lsor¢e| — 1 do

U« UU{ locate L13 (x(i)7y(i)7w(i+1)7y(i+1))};

The lines 515, S2S53, and S1.53 partition the monitoring return U

region as shown in Figure 1. Although this figure has allend
sensors within the monitoring region, our development ef th
geometric localization method does not require this. Irt,fac
the method works even when some or all of the sensors a&mircesS is to utilize the monotonicity ofA;3(P) to perform
outside the monitoring region. a binary search within each segment of, to determine a
Figure 2 shows our three sensors together with the locsgt, U, of points such thal/ has at least one point within
L12(612). This locus may be partitioned into segments that lie@ specified accuracy of each intersection betwedn »(d:2)
wholly within a region of the partitioning of Figure 1. Theand Li3(d13) that is in the monitoring region. Further, the
segment end points are designasd where; is a lowercase number of points i/ is at most equal to the number of such
letter. So,S,S, and S,S. are two of the segments that;, intersections. It follows that the true source location ithim
is partitioned into in Figure 2. Notice that because of our distancey (in R?) of one of the points if/. The details are
choice of coordinate system, as we move a pdmnblong presented in algorithm geometfitT OA(d12, d13).
any segment ofL12(d12), the z— and y—coordinates of the  Algorithm geometricDTOA first determines the segments
point vary monotonically. This is a consequence of the gatti of L. The end points of these segments are just the inter-
orientation of L;2, which, in turn, is assured by the chosesections of the curvd.;2(d12) with each of the three lines
coordinate system. 51852, S1S3, and S3S3. Although a line and a hyperbola
Let (x;,y;) and (z;,y;), z; < x; be the end points of an may intersect twice (except in the degenerate case when the
L., segment and leP = (z,y) be any point on this segment.hyperbola is a vertical ray), our choice of coordinate gyste
From Lemma 3 (Section V), it follows that; < « < z; and ensures thaf.,, intersectsS;S; exactly once, except when
min{y;,y;} <y < max{y;,y,}. Also, as we moveP along Lis is a ray. We ignore this case whdn, is a vertical ray
a segment ofL15(d12), A13(P) varies monotonically (Sec- for now. So, the number of intersections is at most 5 and,
tion V). In particular, it monotonically decreases witior the in the worst case, we need to consider 6 segments of the
segments in the top, bottom left, and bottom right regiords ahyperbolal5(d12). The computation ofzi2,y12), Ix1 and
monotonically increases for the remaining segments. Baskg, may be carried out either by binary searches on the lines
on these key observations, our overall strategy to estithate S;52, S1.53, and.S,S5 with L1, as objective function or by a




method similar to that used adgorithmlocate L1»>(z, yr,yr). Segment ofL15. This monotonicity property is established in
Note that intersections outside the monitoring region may ISection V. The following assumes that, is not a vertical
ignored. ray. The correctness proof for the case wtign is a vertical
Next, a binary search is performed within each segment, i@y (note that this case, which is not included in the stateme
shown inalgorithm locate L13(zr, yr, R, yr). If d13 IS not of algorithm geometridTOA, is handled by a binary search
in the range P in, Amaz], the algorithm concludes, from theon a segment of thg-axis) is similar and simpler.
monotonicity property, that there is no poiRitwith A;3(P) = Lemma 3:As you move along each segment bfs(d12),
013 on the segment currently being searched. Otherwise, the z-coordinate {-coordinate) monotonically increases or
continuity of the directional derivative ofA;3 implies that decreases.
there is a poin® on the segment for which3(P) = é;3 and Proof: Follows from the definition of a segment and our
a binary search, as described in tteeuntil loop of algorithm choice of coordinate system. ]
locate L 3(zr,yr, xR, yr), t0 locate a point onl,, that is Lemma 4:For any pointP on a segmenTSj of L12(d12),
within v of P in R?. In each iteration, either the- or y- max{d(S;, P),d(S;, P)} < d(S;,S;).

range to be considered is halved by appropriately updating Proof: Let S; = (z,v), S; = (z;,y;), and
or P,. As proved in Theorem 1, our algorithm guarantees 8 = (z,y). W.Lo.g.,, we may assume that the segment
return a point that is within a distaneg in R? space, of the is oriented so thatr; < z;. From Lemma 3, we have
true source location. z, <z < gzjandy, <y < y; (ory; <y < y)
So, max{|z; — z|, |z — z;|} < |z; — z;| and max{|y; —
algorithm locate L13(z 1, y1., € r, YR); Yl ly — ysl} < lyi —y;|. Hence,max{d(S;, P), d(S;, P)} <
begin vmax{[z; — o, [z — 2;[}? + max{ly; —yl.[y —y;[}2 <
T = Tp d(S;, SJ) |
P :f/;L’,yL); Lemma 5:Let P = (z,y) be a point on a segm(_elﬁ'g—Sj of
To «— TR; L12(612) such thatA3(P) = d13. The search of this segment
v :(?/;'R ) using algorithm locatel,5 returns a p_oinf5 on L2(812) such
o Ry (P, Ara(Po)): thatd(P, P) < ~, where~ is the desired accuracy.
Amaz = maz{A13(P1), A3 (P2)}; Proof: (zr,yr) and(zg,yr) are the end points of the
if (Ami’; > 513& or (Amaz < d13) then segmentsS;, 5;. SinceA;3 is monotone on this segment and
do{ retumnguull); P is on the segment};5 is in the range Nin,Amaz]. SO,
if |£1 — 22| > |y1 — y2| then the binary search described in the algorithm is performée. T
T I(g/’cla:;f?)g; ) original search rectangle is determined by pdint= (1, y1)
clse 12RO YL YR, and P, = (zg,yr). In each iteration, we chop the- or y-
Yy — (y1 +92)/2; range, whichever is larger, of the search rectangle intoamal
b ‘_)_'OC""teLl?(yv L, TR); choose the half that contair as the new search rectangle
o= \BY) 5 by updatingP; or P, accordingly. This basic step is repeated
f (Algjj(lpi);.élg) * (A13(P) = 613) > 0 then until the Euclidean distance betweéh and P, is no more
else ' than +. From this and Lemmas 3 and 4, it follows that
. P=P d(P1,P) < v andd(P, P) < v. The lemma now follows
E’e?u”r::'(pd;“(P L P2) <y from the observation that the poifttreturned by the algorithm
end ’ is either P, or P. |

Theorem 1:The set of pointsU returned by algorithm
When L1, is a vertical ray, the source lies on the lifeS, geometricDTOA contains at least one point that is within

but outside the segmeft S2, whose end points ar§; andS,. 7 Of each intersection betweeh;»(d12) and Li3(d13) that

In this case, we may do a binary search on the relevant segmiénit the monitoring region and the number of pointslin

of the y-axis that is contained in the monitoring region anéf at most equal to the number of such intersections in the

excludes either the segment frafh to —co or the segment Monitoring region. Hence, at least one point®fis within

from S, to co. As shown in Section V13 is monotone on <7 Of the true source location provided this location is in the

both these vertical segments. monitoring region.
Proof: The theorem follows from Lemma 5 and the ob-

IV. CORRECTNESS ANDCOMPLEXITY OF THE METHOD servations (a) every segment (or segment portior),efd2)

In this section, we establish the correctness of our gedenetf the monitoring region is searched, (b) every intersectio

DTOA method subject to the monotonicity df;; on each within the monitoring region is on exactly one of the segreent
of Ly5, and (c) algorithm locaté. |3 returns at most one point

per intersection. [ ]
algorithm locate Lo (z, vz, yr): Note that the points in the séf returned by algorithm
begin geometricDTOA are on the locug 12(d12). So, for each point
substitutez into the hyperbolic equation faE12(d12); PcU, Au(P) = §15. Since each returned pOi[ﬂ cU

solve the quadratic equation fgr . L. . 5 . .
return the solution that is in the rangedn{yr,yr}, maz{yr,yr}l. 'S within ~, in R* space, of an intersection dfi»(d12) and

end Li3(d13), it follows that Aj3(P) < 2v/2y (Lemma 2). By




changing the condition on the binary search loop of algorith
locate L1 5, we can ensure that the returned points are within a
specified tolerance of intersection pointsisthspace or within
specified tolerances in botR? and §2 spaces.

The setl,,+ may be computed irO(1) time. Let! =
max{Dxs — Dx1,Dys — Dy1}. In computingU, there are
altogether up to 6 calls to locate s(xy,yr, xR, yr), and

+0

sina + sin 8 = 2sin (a

cosa+cosﬁ:2cos<

each make®)(log(1/7)) calls to locateL»(z, vz, yr), which A. Top Left Region

in turn can be done iIO(1) time. Thus the complexity of

In this case, we have < v; + v < m, 0 < v +v3 < 7,

algorithm geometrid®TOA is O(log(l/7)), which can be gnq.. - ~, as shown in Figure 3. The directional derivative

adapted by suitably specifying. If the number of basic
computational operations is fixed af then we havey <

O(I % 27¢). We note that the inclusion of the case whenp

is a vertical ray does not change the asymptotic compleXity
our algorithm.

d

V. MONOTONICITY OF DIRECTIONAL DERIVATIVE

In this section, we establish the monotonicity of the direc-
tional derivative ofA,3 on each segment df;2(d12). We do
this first for the case when, is not a vertical ray. For this
case, we consider explicitly each of the seven regionsofa) t
left, (b) inside, (c) bottom right, (d) top, (e) bottom leff)
bottom, and (g) top right as shown in Figure 1. We show that
the directional derivative of\,3(.) along the curvel 5(.) is
monotone in each of these regions: it is positive in regians (
(b), (f), and (g) and is negative in regions (c), (d), and (e).

We have fori = 1,2, 3,

dxr  d(P,S;) Jy
Also, the tangent vector th15(d12) at P =

[ aAlng) ]
ox
So, the directional derivative ak3(P) at P on the locus
L12(612) = {P|A12(P) = 512}, for any&lg, is given by

2] 2]
EEAREEE

We note that some authors define the directional deriva-

tive by doing an inner product with a unit tangent vec-

tor rather than with any tangent vector. If we wish to

conform to this definition, we must divide the directional

derivative as given by the above expression by the quantity
dA12(P)

2 2
OA . . .
( 5o ) + (%) . Since we are interested only in

t}w/e sign of the directional derivative, it doesn’t matterieth

of the two definitions we use. We continue with the simpler

definition that does not require the use of a unit tangentovect
We use the following three basic identities extensively in

our derivations:

_ (y — i)
d(P,S;)

(z,y) is given by

and

OA12(P)

anP) 17T

ox

_ 6A12(P)

o
6A123P)
ox

o

_T—x1

(P 51)
(P 51)

_T—x3
© d(P,S3)
_Y—ys
T d(P,S3)

d(P 51) + d(P 52)
qFSy ~ APS

a+p
2

2

sina — sin 8 = 2sin (a—ﬁ

X

APy ~
Y=y
(P51

(

Fig. 3. P

Fig. 4. P=

is given by

LT3 T —Y—ui o Y-yo
CEE | | AR T AR
d(P,S3) 53) d(P,S1) ~ d(P,S2)

—sinvyy + sinys)(cosy1 + cosvyz2)
+(cosy1 + cosy3)(siny1 — sinye)
—sin(y1 +72) + sin(y1 + 73) + sin(ys — 72)

— o+ 2 + :
M) cos (’Yl 72) —sin(y1 + 72)

92sin (
2 D

2 cos <71 —;72

bottom

= (z,y) is located in the top left region.

top

bottom

(z,y) is located inside the triangle.



— Asin (22 +73 Y1+ 72 =73
= Sm|{ ——— | COS| ——— | COS
top 2 2 2

We have0 < v2 + 73 < m, which makes the firstin term
positive. Sinceys > ~1, we have0 < v, + v < m, which
makes the seconebs term positive. Sinceys > v; and0 <
v3 <, we have—r/2 < 522 < 0, which makes the third
cos term positive. Hence the directional derivative is positiv

inside
C. Bottom Right Region

In this case, we have < v; + 93 < w and~ys > 2 as
shown in Figure 5. The directional derivative &f.S1, S3) on
the locus{(z, y)|A(S1, S2) = 012}, for any 12, is given by

_T—x1 _T—x3 T _Y—ya
[ dy(JP 51 d‘v(JP 53) ] o [ d(P s+ a5 ]
AP.Sy ~ APSH aAP.S ~ APSY

= (sin~y; — sinysz)(cosvy1 + cosvya)
P +(—cosy1 — cosyz)(siny; — sin~ys)
= sin(y1 +172) —sin(y +73) + sin(y2 — 3)

_ ggin (208 2v1 + 2+ 73 Y2 — 3
= 2sin| ——=) |cos | —/———=—=) + cos

2 2 2
— Asin Y2 — V3 cos Y1+ 72 cos Y1+ 73

2 2 2

Sinceys > 72 and0 < y3 < 7, we have—r/2 < 2575 <0,
which makes thein term negative. We hav@ < v+ < 7
and0 < v, + v3 < m, which makes the last twoos terms
positive. Hence the directional derivative is negative.

bottom

Fig. 5. P = (z,y) is located in the bottom right region.

inside

32 bottom

D. Top, Bottom Left, Bottom, and Top Right Regions

(d) Top: The case of top is identical to the top left region
except thatr < y; + 73 < 27 as shown in Figure 6,

Fig. 6. P = (z,y) is located in the top region.

(2t 23 N o bl i) which makes the third¢os term negative, and hence the
o ( 2 ) - ( )} directional derivative is negative.
yi+7v\ . (3= 1+ Vs (e) Bottom Left: The case of bottom left is identical to the
= 4 OS< > S < B) > cos ( 5 ) top left region except thate > 3 as shown in Figure

. ) 7, which makes thein term negative, and hence the
We havel < 1 + 72 < m which makes the firstos term directional derivative is negative.

positive. We havey; > v, and0 < 3 < m. Thus0 <

572 < /2, which makes the secondhn term positive. We

have0 < v1+~3 < 7, which makes the thirdos term positive.

Hence the directional derivative is positive. top

B. Inside Region

In this case, we have < v, +v3 < w, andvyz > 7, as
shown in Figure 4. The directional derivative &{.51, S3) on
the locus{(x, y)|A(S1, S2) = d12}, for any 12, is given by

inside

_x—Ty T—x3 + _Y—y2
d(PS d(P,Sg) ° d(P sl) d(P 52)
Y-y _

d(PS d(P sl) d(P 52)

= (siny + sin+y3)(cos y1 + cosyz)
+(—cosy1 — cosy3)(siny1 — sinye)
= sin(y1 +y2) + sin(ys — 1) + sin(y2 + 73) p Yr

— 94 (72-1—73) [ (271-1-72—73) (71 +72>l v
= sin cos| ———— | +cos| ———
2 2 2 ig. 7. P = (z,y) is located in the bottom left region.

bottom




top

Y

Fig. 8. P = (z,y) is located in the bottom region.

top

bottom

Fig. 9. P = (z,y) is located in the top right region.

() Bottom Region: For bottom region, the derivation is
identical to the case of inside region except thak

Fig. 10.

Y2+ 73 < 2w as shown in Figure 8, which keeps the first
sin term still positive, and hence the directional derivative

is positive.

negative

o3y

[1S;  negative
poesitive

5,

negative

SourceS = (z,y) is randomly selected, and the sign of the
directional derivative is computed.

P

Py

S1

(g) Top Right: The case of top right region, as shown in

Figure 9, is identical to inside region except that< ~;.
Thus we have) < 2572 < /2, which makes the third

cos term still positive, and hence the directional derivative

is positive.

Computational results indicating the signs of the direwio

derivative of randomly generated sources are shown in Eigur

10.

When L5 is a vertical ray, we need to consider the portion

of the segments (a) from; to co and (b) fromS; to —c¢

52

that lie within the monitoring region. We consider only (a)Fig- 11. The degenerate case when:(d12) is a vertical ray

The proof for (b) is similar. Let?; and P, be two points on
the segment (a). W.l.0.g., assume tl#atis closer toS; than

is P, (see Figure 11). We see that

Ay3(P1) — A13(P2) = (d(P1,S81) —d(P1,S3))

—(d(P», S1) — d(P2, S3))

= (d(P1,51) —d(P, 51))

—(d(Pr, S3) — d(P2, S3))
= —d(P,P) —d(P,S3) +d(P2, S3)
< 0 (from the triangle inequality)



Hence, the directional derivative df;5 on segment (a) is given. Figure 13 gives this data for the case whgte= (0, 0),

monotone. S2 = (0,50000), S3 = (0.0000000000000001, 100000), and
N = 12345.
VI. SIMULATION RESULTS We note that using our binary search based method versus

We compared the performance of our binary search alth—at of [2] ha_d a great impact on the number of sources that
rithm of Section 11l versus the linear algebra method of [2F°Ud be estimated. For example, for two test cases shown
[6], which requires a solution to a quadratic equation. Both F|gure 12 and_ 13 the percentage .Of souroces that Ieados to
algorithms were implemented in Matlab on a Dell Dimensiofy29!nary roots in the method of [2] is 1'27_/0 and_ 27.75%,
PC with a 2.13 GHz dual-core processor and 2 GB memof spectively, whereas our method never fails to find a real

The typical execution times of both methods are only seve lution. Note that almost 28% of sources can't be estimated
milliseconds by the method of [2] in the second test case. On the other

Each sensor measurement correspondélte f)r where hand, the_estimate given by our method also shows much better
r is the actual distance from sensor to source, gnis 2ccuracyin botts space and?” space than thafc of the method
uniformly randomly generated in the intervé, F] for a of [2]. As shown in Figure 12, to get the ratio of successful
fixed multiplicative factor F. While f values are generatedesnmaltes to be more than 98%drspace, the method of [2]
independently, sensor error magnitude is proportionahto tN€€ds t0 et to be almost 5000, whereas our method always
distance from the sensor to plume origin. Also, the sensgj/eS the successful estimate whanis as small as 0.000001!

errors are correlated due to the spatial relationships damiwy | ¢S|m|lar phenorr?ena IS obsfe:ved_m% Sfar?e as well. When .
the sensor locations. a source close to one sensor genaratés IS _SEt 10000, the successful ratio of the method of [2] is
small error there and larger errors at other sensors, whieh ﬁt'" slightly less than 97%, whereas our method shows a 100%
located farther away. From these measurements, we compLﬁgﬁfe,‘Q’Sfu“eSEmate even if we redu@eby as ml.JCh as qbout
distance-differences and tested DTOA localization meshod) ~ times! This Improvement is even more impressive for
In our experiments, We considered two different scena(ips: the second test case shown in F|giJ1re_ 13, where the estimating
sensor errors are zero (i.€%,= 0), and (i) sensor errors arequahty is improved _by more thaho _t|mes! _
greater than zero (i.eF; > 0). On a related note, the method of Another observa_tlon is thqt _the estimate accurate $pace
[12] accounts for random errors that are independent Gamssfjoes not r_lece_ssanly mean it is also accuratéirspace. For
and hence is not directly applicable to this case. example, in Figure 12, givem; andq; bot2h to be 1000, the
Our simulation was conducted in a network of three sensdfiiC Of successful estimate inspace and?” space is 60.93%
on a0, 100000] [0, 100000] grid, where location of sources and 31.69%, respectively, which implies that at least mioae t

are randomly generated based on the uniform distribution. 29% of sources that are close to the sourcé space are far
away from the source ii? space.

A . F=0

We compare the performance of both methods in case tﬁatF >0
all sensor measurements are accurate. When three sensors fo When sensor measurements may be inaccurate, a finaliza-
a good triangle, the method of [2], [6] may accurately estémation step is added to the end of the original description of
the source location as shown in [13]. By good triangle, weur method of Section Ill. Whe®/ is empty, in other words,
mean its smallest (largest) angle is not close to 0 (180)egegralgorithm locatel3 returnsnull each time it is invoked,
However, when three sensors lie in an almost collinear manniis finalization step chooses as the source estimate timt poi
the method of [2] may fail to find a solution as the quadrati€ of I, for which [A3(P) — d13] is minimized. This
equation have imaginary roots for a certain percentage mpdification is referred to asinary search with finalization
sources as shown in Figure 12 - 13. For our experiments, eaclror our experiments, we used 9 test cases, each described
test case may be described by a tuplel$f, 52, 53, F, N], by the tuple[S1, 52,53, F, N]. We chooseF" from {10/100,
where S1, $2, and S3 are coordinates of three respectivé/100, 1/100. For each test case, we sought varigys and
sensors,F is the sensor error, andv is the number of ~»s. Figures 14 - 22 give the similar data shown in Figure 12.
randomly generated sources. Note that we always Keep Specifically, the value listed agimaginary of our method
closest to the source. Figure 12 gives the number of souriegor the number of sources such that the original version of
such that [2] returns imaginary roots as well as our methadir method without finalization fails to find a solution.
fails to find a solution where&1 = (0,0), S2 = (0,50000), We note that wherF” > 0 our method may not find a solu-
S3 = (0.001,100000), and N = 12635. The ratio of the tion for some sources. However, our method still outperform
number of such sources against the total number of sourcethat of [2] in terms of the number of sources that could be
given. For each test case, we consider variguand-~,, where estimated. In all 9 test cases, the number of such sources by
~v1 and v, are the desired errors acceptabledirspace and our method without finalization is as many as or less than that
R? space, respectively. For eagh(y.), Figure 12 gives the of the method of [2]; the reductions were as high as more than
number of sources whose estimate (excluding the imagin&%.
roots) returned by [2] as well as by our method is within Also, for all different~;s or s in each test case, the
the desired erroty; (2) of the actual source. The ratio of theestimate given by our method consistently shows as good as or
number of such sources to the total number of sources is ataach better accuracy in bohspace andkR? space than that of



S; = (0,0), S2 = (0,50000), S5 = (0.001, 100000), F=0, andN=12635

. . . § space R? space
Method | #imaginary|  ratio 1 #count | ratio Y2 #count | ratio
100 1328 | 0.1051 100 722 | 0.0571
500 4683 | 0.3706 500 2384 | 0.1887
1000 7698 | 0.6093| 1000 4004 | 0.3169
Mellen 161 0.0127 ——5555 11503 | 0.0104] 2500 7487 | 0.5926

5000 12420 | 0.9830 5000 10512 | 0.8320

10000 12473 | 0.9872 10000 12249 | 0.9694
0.00000001] 2619 | 0.2073| 0.00000001 246 0.0195
Ours 0 0.0 0.0000001| 12011 | 0.9506| 0.0000001| 2273 | 0.1799
0.000001 | 12635 1.0 0.000001 | 12635 1.0

Fig. 12. Data forSy = (0,0), S2 = (0, 50000), S5 = (0.001,100000), and F=0

S; = (0,0), S2 = (0,50000), S5 = (0.0000000000000001, 100000), =0, and N=12345

. . . ) space R? space

Method | #imaginary|  ratio Bl #count | ratio 2 #count ratio
100 60 | 0.0049| 100 3 0.00024301

500 134 | 0.0109| 500 16 0.0013

1000 210 [ 0.0170] 1000 30 0.0024

2500 378 | 0.0306] 2500 88 0.0071

Mellen 3426 | 0.2775 —4n, 572 | 0.0463] 5000 200 0.0162
10000 935 [ 0.0757| 10000 421 0.0341

50000 6652 | 0.5388| 50000 2070 0.1677

100000 | 8919 | 0.7225| 100000 | 4037 0.3299

0.00000001] 1437 | 0.1164| 0.00000001 225 0.0182

ours 0 0.0 [ 0.0000001| 10546 | 0.8543] 0.0000001| 2185 0.1770

0.000001 | 12345 | 1.0 | 0.000001 | 12345 1.0

Fig. 13. Data forS; = (0,0), S2 = (0, 50000), S3 = (0.0000000000000001, 100000), and F'=0

S; = (0,0), S5 = (0,50000), S5 = (0.0000000000000001, 100000), F=10/100, andV=12598
5 space R? space
v #count | ratio Y2 #count ratio
10000 907 0.0720( 10000 276 0.0219
25000 2455 0.1949( 25000 861 0.0683
Mellen | 3944 | 0.3131 5555518034 [ 0.6377] 50000 | 1922 | 0.1526
100000| 11873 | 0.9425| 100000 3992 0.3169

Method | #imaginary| ratio

100 25 0.0020| 100 0 0.0
1000 1183 | 0.0939| 1000 258 0.0205
Ours 2149 0.1706| 2500 4495 | 0.3568| 2500 1067 0.0847

5000 9273 | 0.7361| 5000 2483 0.1971
10000 | 12481 | 0.9907| 10000 | 5097 0.4046

Fig. 14. Data forS; = (0,0), S2 = (0, 50000), S3 = (0.0000000000000001, 100000), and F'=10/100

the method of [2]. In particular, when three sensors are simalistance-differences. This problem has been extensivet s
collinear, the improvement made by our method is significariéd in the past and several solutions have been deployed, and
For example, when, is 10000 as shown in Figure 14 -16, theour re-examination is motivated in part by the requirements
increment of the ratio of successful estimate by our methodl low power sensor nodes. Our method is computationally
versus the method of [2] is more than 38%, 62%, and 96%ificient and adaptive as well as robust with respect to mea-
respectively. surement and computational errors. This method is paatityul

suited for deployment in nodes that adapt their computation
VIl. CONCLUSIONS in response to power budgets. This me_thod can also be app_lied

when distance measurements are available, and can offer sim

We presented a computational geometric method for thg advantages over the linear algebraic methods that s of

problem of triangulation in plane using measurements of



S; = (0,0), S2 = (0,50000), S5 = (0.0000000000000001, 100000), F=5/100, andN=12341

. . . § space R? space
Method | #imaginary|  ratio 1 #count | ratio Y2 #count ratio
10000 901 0.0730( 10000 304 0.0246
25000 | 2230 | 0.1807| 25000 877 0.0711

Mellen | 3708 | 0.3005—55565 6382 (05171 50000 | 1881 | 0.1524

100000( 8721 | 0.7067| 100000| 3978 0.3223

100 78 0.0063| 100 9 0.00072928
1000 3048 | 0.2470| 1000 672 0.0545
Ours 1484 0.1202| 2500 8945 | 0.7248| 2500 2129 0.1725

5000 12236 | 0.9915| 5000 4544 0.3682
10000 | 12341 1.0 10000 | 8029 0.6506

Fig. 15. Data forS; = (0,0), S2 = (0, 50000), S3 = (0.0000000000000001, 100000), and F=5/100

S = (0,0), S5 = (0, 50000), S5 = (0.0000000000000001, 100000), F=1/100, andN=12599
5 space R? space
" #count | ratio Y2 #count ratio
10000 951 0.0755| 10000 409 0.0325
25000 2185 | 0.1734| 25000 1063 0.0844
50000 6829 | 0.5420| 50000 2092 0.1660
100000 9109 | 0.7230| 100000 4140 | 0.3286
100 840 0.0667| 100 156 0.0124
250 3693 | 0.2931| 250 760 0.0603
500 8594 | 0.6821| 500 1911 | 0.1517
Ours 650 0.0516| 1000 | 12480 | 0.9906] 1000 4164 | 0.3305
2500 | 12599 1.0 2500 8846 | 0.7021
5000 12599 1.0 5000 11691 | 0.9279
10000 | 12599 1.0 10000 | 12577 | 0.9983

Method | #imaginary| ratio

Mellen 3513 0.2788

Fig. 16. Data forS; = (0,0), S2 = (0, 50000), S3 = (0.0000000000000001, 100000), and F=1/100

S, = (0,0), S5 = (0,50000), S5 = (5000, 100000), £=10/100, andV=12473
5 space R? space

1 #count | ratio Y2 #count | ratio
250 52 0.0042| 250 19 0.0015
500 189 0.0152| 500 58 0.0047
1000 725 0.0581| 1000 215 0.0172
2500 3404 | 0.2729| 2500 932 0.0747
5000 | 7604 | 0.6096| 5000 | 2258 | 0.1810
10000| 10628 | 0.8521| 10000| 4804 | 0.3852
250 78 0.0063| 250 19 0.0015
500 287 0.0230| 500 58 0.0047
1000 | 1026 | 0.0823| 1000 215 | 0.0172
0.1320| 2500 | 4237 | 0.3397| 2500 932 | 0.0747
5000 9093 | 0.7290| 5000 2364 | 0.1895
10000| 12389 | 0.9933| 10000 5378 | 0.4312

Method | #imaginary| ratio

Mellen 1649 0.1322

Ours 1647

Fig. 17. Data forSy = (0,0), So = (0, 50000), S5 = (5000, 100000), and F=10/100



Fig. 18.

Fig. 19.

Fig. 20.

S, = (0,0), S = (0,50000), S5 = (5000, 100000), F'=5/100, andN=12591
o .  space R? space
Method | #imaginary| ratio v #count | ratio Y2 #count | ratio
250 228 0.0181| 250 51 0.0041
500 798 0.0634| 500 238 0.0189
1000 2536 | 0.2014| 1000 726 0.0577
Mellen | 1007 | 0.0800 —5551—g183 [ 0.6499] 2500 | 2468 | 0.1960
5000 | 11502 | 0.9135| 5000 5009 | 0.3978
10000| 11579 | 0.9196| 10000| 8295 | 0.6588
250 258 0.0205| 250 51 0.0041
500 921 0.0731| 500 238 0.0189
ours 1007 1000 2886 | 0.2292| 1000 726 0.0577
0.0800| 2500 9045 | 0.7184| 2500 2468 | 0.1960
5000 12514 | 0.9939| 5000 5116 | 0.4063
10000| 12591 1.0 10000| 8776 | 0.6970

Data forS; = (0,0), Sa = (0,50000), S5 = (5000, 100000), and F=5/100

57 =(0,0), S = (0,50000), 55 = (5000, 100000), F=1/100, andV=12683
. . . § space R? space

Method | #maginary| - ratio " #count | ratio ~vo | #count | ratio
100 | 753 | 0.0594] 100 | 210 | 0.0173

250 | 3582 | 0.2824] 250 | 965 | 0.0761

500 | 8459 | 0.6670] 500 | 2374 | 0.1872

Mellen | 267 | 0.0211 55115337 10.9727] 1000 5030 | 0.3966
25001 12409 | 0.9784| 2500 9636 | 0.7598

50001 12409 | 0.9784| 5000 11926 | 0.9403

100 | 760 | 0.0599| 100 | 210 | 0.0173

250 | 3652 | 0.2879] 250 | 965 | 0.0761

ours 267 | 0.0211[ 500 | 8672 [ 0.6837| 500 | 2374 | 0.1872
1000 12611 | 0.9943] 1000| 5030 | 0.3966

25001 12683 | 1.0 | 2500 9636 | 0.7508

Data forS; = (0,0), S2 = (0,50000), S5 = (5000, 100000), and F=1/100

S; = (0,0), S5 = (0, 100000), S3 = (100000, 0}, F=10/100, andV=12518
. . . ) space R? space

Method | #imaginary|  ratio " #count ratio Y2 #count | ratio
500 12 0.00095862 500 435 0.0347
1000 39 0.0031 1000 1520 | 0.1214
Mellen 20 0.0016| 2500 182 0.0145 2500 | 6270 | 0.5009
5000 624 0.0498 5000 | 10909 | 0.8715
10000| 1875 0.1498 10000| 12449 | 0.9945
250 119 0.0095 250 119 0.0095
500 193 0.0154 500 435 0.0347
ours 0 0.0 1000 725 0.0579 1000 1520 | 0.1214
2500 3460 0.2764 2500 6272 | 0.5010
5000 | 8504 0.6793 5000 | 10917 | 0.8721
10000| 12511 0.9994 10000| 12465 | 0.9958

Data forS; = (0,0), Sz = (0,100000), Ss = (100000, 0), and F=10/100

11
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51 = (0,0), S2 = (0, 100000), S35 = (100000, 0), F=5/100, andV=12483

) space R? space
v1 | #count | ratio Yo | #count | ratio
500 44 0.0035| 500 | 1516 | 0.1214
1000 112 | 0.0090| 1000| 4729 | 0.3788

Method | #imaginary| ratio

Mellen 4 0.00032 5667542 [ 0.0434] 2500 11042 | 0.8846
5000 1542 | 0.1235| 5000 12459 | 0.9981
250 | 183 | 0.0147| 250 | 415 | 0.0332
500 | 680 | 0.0545] 500 | 1516 | 0.1214
Ours 0 0.0

1000| 2392 | 0.1916| 1000| 4729 | 0.3788
2500 | 8494 | 0.6804| 2500 11043 | 0.8846
5000 | 12478 | 0.9996| 5000 | 12463 | 0.9984

Fig. 21. Data forS; = (0,0), S2 = (0,100000), S3 = (100000, 0), and F'=5/100

51 = (0,0), 52 = (0, 100000), S5 = (100000, 0), F=1/100, andV=12398
§ space R? space

v1 | #count | ratio v | #count | ratio
250 149 | 0.0120| 250 | 6337 | 0.5111
500 500 | 0.0403| 500 | 11029 | 0.8896
1000| 1382 | 0.1115| 1000| 12394 | 0.9997
2500 1393 | 0.1124| 2500 | 12398 1.0
100 708 0.0571| 100 1542 | 0.1244
250 | 3432 | 0.2768| 250 | 6337 | 0.5111
Ours 0 0.0 | 500 8436 | 0.6804| 500 11029 | 0.8896
1000 | 12394 | 0.9997| 1000| 12394 | 0.9997
2500 12398 1.0 2500 12398 1.0

Method | #imaginary| ratio

Mellen 0 0.0

Fig. 22. Data forS; = (0,0), S2 = (0,100000), S3 = (100000, 0), and F'=1/100

used for triangulation based on distances. Furthermore, UyS. Department of Energy under Contract No. DE-ACO05-
computing distance-differences from distance measureanel®00OR22725.
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