
1

A Computational Geometry Method for DTOA
Triangulation

Xiaochun Xu
Computer and Information Science and Engineering Department

University of Florida
Gainesville, FL 32611

Email: xxu@cise.ufl.edu

Nageswara S. V. Rao
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN 37831
Email: raons@ornl.gov

Sartaj Sahni
Computer and Information Science and Engineering Department

University of Florida
Gainesville, FL 32611

Email: sahni@cise.ufl.edu

Abstract— We present a computational geometry method for
the problem of triangulation in the plane using measurements
of distance-differences. Compared to existing solutions to this
well-studied problem, this method is: (a) computationallymore
efficient and adaptive in that its precision can be controlled as
a function of the number of computational operations, making
it suitable to low power devices, and (b) robust with respectto
measurement and computational errors, and is not susceptible
to numerical instabilities typical of existing linear algebraic or
quadratic methods. This method employs a binary search on a
distance-difference curve in the plane using a second distance-
difference as the objective function. We establish the unimodality
of the directional derivative of the objective function within each
of a small number of suitably decomposed regions of the plane
to support the binary search. The computational complexityof
this method is O(log(1/γ)), where the computed solution is
guaranteed to be within a distance ofγ to the actual solution. We
present simulation results to compare this method with existing
DTOA triangulation methods.

Keywords: Triangulation, difference in time of arrival,
computational geometry, computational complexity.

I. I NTRODUCTION

The problem of computing the location of an object from
measurements of distance-differences from three known lo-
cations is well-studied (for at least three decades) under the
title of Difference of Time-of-Arrival (DTOA) localization.
This problem arises in a number of established areas such as
tracking in aerospace systems [1], [2]. Recently, it has received
renewed attention due to the increasing proliferation of wire-
less sensor networks [3], [4] and embedded networked systems
[5]. In several of these applications, the wireless nodes are lim-
ited in power and yet the localization computations may have

to be repeated quite frequently. Consequently, it has become
important to trade-off the number and type of computations
needed for localization to save power by gracefully degrading
the quality of solution. In addition, the computational precision
of arithmetic operations may be limited in some sensor nodes,
but its impact on the precision of localization is not well
understood. These factors motivate a closer examination of
the computational aspects of DTOA triangulation methods;
however, our results could be of more general interest as well.

There are two basic formulations of the DTOA localization
problem: (a) distance-differences to an object, such as origin of
a plume, are measured from known locations, and the problem
is to estimate the location of the object; and (b) a device,
such as a sensor node, receives distance-differences from
beacons with known locations, and the problem is to estimate
the location of the sensor node, that is self-localization.The
classical source localization problem using DTOA measure-
ments has been solved using two general approaches: (i) linear
algebraic solution which typically involves matrix inversion
and solving a quadratic equation [2], [6], and (ii) intersection
of hyperbolic curves [7]. A recent overview of network-based
localization methods may be found in [3]–[5], [8]. In general,
the quality of the location estimate is a complex function of
the precision with which the underlying numerical operations
are implemented, and consequently, there is no apparent and
simple way of relating the computations to the “quality”
of location estimate. In particular, it is unclear if devoting
more computational operations would increase the accuracy
of these methods, or conversely if it is possible to reduce
the computations without drastically affecting the quality of
location estimate. In addition, sensor errors can have drastic

2

effects on DTOA localization methods. For example, as will
be shown in Section VI under simple random noise conditions,
the quadratic equation of [2], [6] may have imaginary roots
thereby rendering the method incomplete. Also, numerical
instabilities may arise in the computations implemented with
low precision operations wherein matrix inversions neededfor
linear algebraic methods may become ill-conditioned resulting
in large estimation errors.

The underlying geometric nature of this problem has been
well-known [1] although we are unaware of methods that
exploit it to fine tune computations as done in several com-
putational geometry methods [9], [10]. We present a compu-
tational geometric method for DTOA localization based on a
binary search on an algebraic curve defined by a distance-
difference function. We exploit the monotonicity of the di-
rectional derivative of the other distance-difference on it to
support the binary search. The computational complexity of
this method isO(log(1/γ)), where the computed solution is
guaranteed to be within a distance ofγ to the actual solution.
Alternatively, by fixing the number of operations tok, one
can achieve the precisionγ = O

(

2−k
)

. This method is robust
with respect to distance measurement errors: (i)γ is of the
same order of magnitude as errors in distance measurements;
in methods that involve division operations such guarantees
cannot be made; and (ii) it is complete in that it will always
return an answer, even under random measurement errors. This
method is a generalization of the DTOA localization method
in [11] proposed as a part of plume identification when the
source is inside the acute triangle formed by sensors. In our
case, the object can be located anywhere in the monitoring
region. In addition, we also provide a detailed analysis of
the underlying computation and the proof of the required
monotonicity property of the underlying directional derivative.

This paper is organized as follows. In Section II, we exam-
ine the relationship between proximity in Euclidean space and
proximity in DTOA space. Although all previous localization
methods have focused on using proximity in DTOA space, our
analysis of Section II shows that this does not guarantee prox-
imity in Euclidean space. We describe our geometric DTOA
triangulation method in Section III. Our geometric method
guarantees proximity in both Euclidean and DTOA spaces.
We prove the correctness of the method in Sections IV and V.
We present simulation results in Section VI. A conclusion is
drawn in Section VII.

II. EUCLIDEAN AND DTOA SPACES

Let Si = (xi, yi), 1 ≤ i ≤ k, be the locations ofk sensors in
Euclidean spaceR2. For any pointP = (x, y) in R2, the dis-
tance,d(P, Si), betweenP andSi is

√

(x − xi)2 + (y − yi)2.
A signal that originates atP at time 0 arrives atSi at time
proportional tod(P, Si). For simplicity, we assume that the
arrival time is d(P, Si). The difference,∆ij , in the time of
arrival (DTOA) atSi andSj is given by

∆ij(P) = d(P, Si) − d(P, Sj).

Let SiSj be the line through the pointsSi andSj . As we
move P from Si to Sj along the lineSiSj , ∆ij(P) varies

monotonically and linearly from−d(Si, Sj) to d(Si, Sj), and
equals0 at the bisector point. From this observation and
the triangle inequality, it follows that|∆ij(P)| ≤ d(Si, Sj).
Furthermore, the locus,L12(δ), of points defined by

Lij(δ) = {P |∆ij(P) = δ}
is a hyperbola.

The DTOA space of all(k−1)-tuples [∆12(P), ∆13(P),...,
∆1k(P)] forms a (k − 1)-dimensional vector space denoted
by δk−1. Each pointP = (x, y) in R2 has a unique dual point
P ′ = (p′1, p

′
2, ..., p

′
k−1) in δk−1, wherep′j = ∆1(j+1)(P), j =

1, 2, ..., (k−1). However, each pointP ′ = (p′1, p
′
2, ..., p

′
k−1) in

δk−1 may have zero or more dual points inR2. In fact, the dual
points ofP ′ are those points inR2 that are common to (i.e.,
the common intersections) thek − 1 hyperbolasL1,j+1(P),
1 ≤ j < k.

In this paper, we consider theDTOA localizationproblem of
estimating the location of a sourceS from the measurements
of ∆1j(S), 2 ≤ j ≤ k, S′ = [δ12, ..., δ1k] in δk−1. When
there is the possibility of errors in the measurement of the
∆1j values, existing DTOA localization algorithms [14]–[17],
estimate the source location by minimizing the sum of least
squares error inδk−1 space. We show, in this section, that
an estimate that is close inδk−1 space may not be close in
Euclidean spaceR2. However, an estimate that is close to
the source in Euclidean spaceR2, is necessarily close to the
source inδk−1 space (Lemmas 1 and 2, respectively).

Lemma 1:Two points that are close to one another inδk−1

space may be arbitrarily far apart inR2.
Proof: Consider the three sensorsS1(1, 0), S2(1,−1),

andS3(−1, 0) ((1,0) is the location inR2 of sensorS1). Let
δ12 = -d(S1, S2) = -1 andδ13 = -2e, wheree is a small positive.
The hyperbolic equation forL12(δ12) is x=1 andy >= 0. In
other words,L12(δ12) degenerates from a hyperbola to a ray
from S1 vertically up to infinity. The hyperbolic equation for
L13(δ13) is x2/(e2) − y2/(1 − e2) = 1 wherex > 0. The
intersection,P , of L12(δ12) andL13(δ13) is (1, (1 − e2)/e).

Now, suppose we change the value ofδ13 to -4e. The
hyperbolic equation for the newL13(δ13) is x2/(4e2) −
y2/(1 − 4e2) = 1 where x > 0 and the new intersection,
Q, betweenL12 andL13 is (1, (1− 4e2)/(2e)). The distance
betweenP and Q in δ2 space is2e. However, the distance,
d(P, Q), betweenP and Q in Euclidean spaceR2 is |(1 −
4e2)/(2e)−(1−e2)/e| = e+1/(2e). As can be seen,d(P, Q)
becomes large as the distance inδ2 space approaches zero.

Lemma 2:Given two pointsP (xp, yp) and Q(xq, yq) in
Euclidean spaceR2 and their respective dual pointsP ′(x′

p, y
′
p)

andQ′(x′
q, y

′
q) in δ2 space, then we haved(P ′, Q′) ≤ 2

√
2 ∗

d(P, Q)
Proof: From the definition, we havex′

p = ∆12(P) =
d(P, S1)−d(P, S2) andx′

q = ∆12(Q) = d(Q, S1)−d(Q, S2).

|x′

p − x
′

q| = |(d(P, S1) − d(P, S2)) − (d(Q, S1) − d(Q, S2))|

= |(d(P, S1) − d(Q, S1)) − (d(P, S2) − d(Q, S2))|

≤ |d(P, Q) − (−d(P, Q))|

= 2 ∗ d(P, Q)

Similarly, we have|y′
p − y′

q| ≤ 2 ∗ d(P, Q) as well. So,

d(P ′, Q′) =
√

(x′
p − x′

q)
2 + (y′

p − y′
q)

2 ≤ 2
√

2 ∗ d(P, Q)

3

O

top left

top

bottom left

bottom right

Dy2

Dy1

Dx1

y

x
Dx2Dx2

S2

S3

S1

bottom

inside

top right

Fig. 1. Canonical placement of 3 sensors and partitioning ofmonitoring
region

Corollary 1: Given two pointsP andQ in Euclidean space
R2 and their respective dual pointsP ′ andQ′ in DTOA space
δk, d(P ′, Q′) ≤ 2

√
k ∗ d(P, Q).

III. G EOMETRIC DTOA METHOD

In the remainder of this paper, we consider only the case
when we havek = 3 sensors,S1, S2, and S3. Without
loss of generality (w.l.o.g.), we choose our coordinate system
so that the lineS1S2 falls on the y-axis and so that the
midpoint of this line is the originO as shown in Figure 1.
The [DX1, DX2]× [DY 1, DY 2] box shown in Figure 1 is the
monitoring region within which the sourceS is to be localized.
The lines S1S2, S2S3, and S1S3 partition the monitoring
region as shown in Figure 1. Although this figure has all
sensors within the monitoring region, our development of the
geometric localization method does not require this. In fact,
the method works even when some or all of the sensors are
outside the monitoring region.

Figure 2 shows our three sensors together with the locus
L12(δ12). This locus may be partitioned into segments that lie
wholly within a region of the partitioning of Figure 1. The
segment end points are designatedSj , wherej is a lowercase
letter. So,SaSb and SbSc are two of the segments thatL12

is partitioned into in Figure 2. Notice that because of our
choice of coordinate system, as we move a pointP along
any segment ofL12(δ12), the x− and y−coordinates of the
point vary monotonically. This is a consequence of the vertical
orientation ofL12, which, in turn, is assured by the chosen
coordinate system.

Let (xi, yi) and (xj , yj), xi ≤ xj be the end points of an
L12 segment and letP = (x, y) be any point on this segment.
From Lemma 3 (Section IV), it follows thatxi ≤ x ≤ xj and
min{yi, yj} ≤ y ≤ max{yi, yj}. Also, as we moveP along
a segment ofL12(δ12), ∆13(P) varies monotonically (Sec-
tion V). In particular, it monotonically decreases withx for the
segments in the top, bottom left, and bottom right regions and
monotonically increases for the remaining segments. Based
on these key observations, our overall strategy to estimatethe

6

-x

y

O

S1

S2

S3

Sa

Sb Sc

,
,

,
,

,
,

,
,

,,

,
,

,
,

,
,

H
H

H
H

H
H

H
H

HH

H
H

H
H

H
H

H
H

HH
L12(δ12)

Fig. 2. Canonical placement of 3 sensors andL12(δ12)

algorithm geometricDTOA(δ12, δ13);
begin

(x12, y12)← intersection point ofL12 with S1S2;
IX1 ← set of x-coordinates of intersections ofL12 with S1S3;
IX2 ← set of x-coordinates of intersections ofL12 with S2S3;
IX ← {DX1, x12, DX2}

S

IX1
S

IX2;
IX ← IX − {x|x ∈ IX && (x < DX1 || x > DX2)};
Isort ← sort (IX);
let Isort = {x(1), x(2), . . . , x|Isort|}
let {y(1), y(2), . . . , y|Isort|} be the correspondingy-coordinates;
U ← ∅;
for i = 1, . . . |Isort| − 1 do

U ← U
S

{ locateL13
`

x(i), y(i), x(i+1), y(i+1)

´

};
returnU ;

end

sourceS is to utilize the monotonicity of∆13(P) to perform
a binary search within each segment ofL12 to determine a
set, U , of points such thatU has at least one point within
a specified accuracyγ of each intersection betweenL12(δ12)
and L13(δ13) that is in the monitoring region. Further, the
number of points inU is at most equal to the number of such
intersections. It follows that the true source location is within
a distanceγ (in R2) of one of the points inU . The details are
presented in algorithm geometricDTOA(δ12, δ13).

Algorithm geometricDTOA first determines the segments
of L12. The end points of these segments are just the inter-
sections of the curveL12(δ12) with each of the three lines
S1S2, S1S3, and S2S3. Although a line and a hyperbola
may intersect twice (except in the degenerate case when the
hyperbola is a vertical ray), our choice of coordinate system
ensures thatL12 intersectsS1S2 exactly once, except when
L12 is a ray. We ignore this case whenL12 is a vertical ray
for now. So, the number of intersections is at most 5 and,
in the worst case, we need to consider 6 segments of the
hyperbolaL12(δ12). The computation of(x12, y12), IX1 and
IX2 may be carried out either by binary searches on the lines
S1S2, S1S3, andS2S3 with L12 as objective function or by a

4

method similar to that used inalgorithmlocateL12(x, yL, yR).
Note that intersections outside the monitoring region may be
ignored.

Next, a binary search is performed within each segment, as
shown inalgorithm locateL13(xL, yL, xR, yR). If δ13 is not
in the range [∆min, ∆max], the algorithm concludes, from the
monotonicity property, that there is no pointP with ∆13(P) =
δ13 on the segment currently being searched. Otherwise, the
continuity of the directional derivative of∆13 implies that
there is a pointP on the segment for which∆13(P) = δ13 and
a binary search, as described in thedo-until loop of algorithm
locateL13(xL, yL, xR, yR), to locate a point onL12 that is
within γ of P in R2. In each iteration, either thex- or y-
range to be considered is halved by appropriately updatingP1

or P2. As proved in Theorem 1, our algorithm guarantees to
return a point that is within a distanceγ, in R2 space, of the
true source location.

algorithm locateL13(xL, yL, xR, yR);
begin

x1 ← xL;
y1 ← yL;
P1 = (xL, yL);
x2 ← xR;
y2 ← yR;
P2 = (xR, yR);
∆min = min{∆13(P1),∆13(P2)};
∆max = max{∆13(P1), ∆13(P2)};
if (∆min > δ13) or (∆max < δ13) then

return(null);
do{

if |x1 − x2| ≥ |y1 − y2| then
x ← (x1 + x2)/2;
y ← locateL12(x, yL, yR);

else
y ← (y1 + y2)/2;
x ← locateL12(y, xL, xR);

P̂ = (x, y);
if (∆13(P1)− δ13) ∗ (∆13(P̂)− δ13) > 0 then

P1 = P̂ ;
else

P2 = P̂ ;
} until dist(P1, P2) ≤ γ

return(P̂);
end

WhenL12 is a vertical ray, the source lies on the lineS1S2

but outside the segmentS1S2, whose end points areS1 andS2.
In this case, we may do a binary search on the relevant segment
of the y-axis that is contained in the monitoring region and
excludes either the segment fromS1 to −∞ or the segment
from S2 to ∞. As shown in Section V,L13 is monotone on
both these vertical segments.

IV. CORRECTNESS ANDCOMPLEXITY OF THE METHOD

In this section, we establish the correctness of our geometric
DTOA method subject to the monotonicity ofL13 on each

algorithm locateL12(x, yL, yR);
begin

substitutex into the hyperbolic equation forL12(δ12);
solve the quadratic equation fory;
return the solution that is in the range [min{yL, yR}, max{yL, yR}].

end

segment ofL12. This monotonicity property is established in
Section V. The following assumes thatL12 is not a vertical
ray. The correctness proof for the case whenL12 is a vertical
ray (note that this case, which is not included in the statement
of algorithm geometricDTOA, is handled by a binary search
on a segment of they-axis) is similar and simpler.

Lemma 3:As you move along each segment ofL12(δ12),
the x-coordinate (y-coordinate) monotonically increases or
decreases.

Proof: Follows from the definition of a segment and our
choice of coordinate system.

Lemma 4:For any pointP on a segmentSiSj of L12(δ12),
max{d(Si, P), d(Sj , P)} ≤ d(Si, Sj).

Proof: Let Si = (xi, yi), Sj = (xj , yj), and
P = (x, y). W.l.o.g., we may assume that the segment
is oriented so thatxi ≤ xj . From Lemma 3, we have
xi ≤ x ≤ xj and yi ≤ y ≤ yj (or yj ≤ y ≤ yi).
So, max{|xi − x|, |x − xj |} ≤ |xi − xj | and max{|yi −
y|, |y − yj|} ≤ |yi − yj |. Hence,max{d(Si, P), d(Sj , P)} ≤
√

max{|xi − x|, |x − xj |}2 + max{|yi − y|, |y − yj |}2 ≤
d(Si, Sj).

Lemma 5:Let P = (x, y) be a point on a segmentSiSj of
L12(δ12) such that∆13(P) = δ13. The search of this segment
using algorithm locateL13 returns a point̂P onL12(δ12) such
that d(P̂ , P) ≤ γ, whereγ is the desired accuracy.

Proof: (xL, yL) and (xR, yR) are the end points of the
segmentSi, Sj . Since∆13 is monotone on this segment and
P is on the segment,δ13 is in the range [∆min,∆max]. So,
the binary search described in the algorithm is performed. The
original search rectangle is determined by pointP1 = (xL, yL)
and P2 = (xR, yR). In each iteration, we chop thex- or y-
range, whichever is larger, of the search rectangle into half and
choose the half that containsP as the new search rectangle
by updatingP1 or P2 accordingly. This basic step is repeated
until the Euclidean distance betweenP1 and P2 is no more
than γ. From this and Lemmas 3 and 4, it follows that
d(P1, P) ≤ γ and d(P2, P) ≤ γ. The lemma now follows
from the observation that the point̂P returned by the algorithm
is eitherP1 or P2.

Theorem 1:The set of pointsU returned by algorithm
geometricDTOA contains at least one point that is within
γ of each intersection betweenL12(δ12) and L13(δ13) that
is in the monitoring region and the number of points inU
is at most equal to the number of such intersections in the
monitoring region. Hence, at least one point ofU is within
γ of the true source location provided this location is in the
monitoring region.

Proof: The theorem follows from Lemma 5 and the ob-
servations (a) every segment (or segment portion) ofL12(δ12)
in the monitoring region is searched, (b) every intersection
within the monitoring region is on exactly one of the segments,
of L12, and (c) algorithm locateL13 returns at most one point
per intersection.

Note that the points in the setU returned by algorithm
geometricDTOA are on the locusL12(δ12). So, for each point
P ∈ U , ∆12(P) = δ12. Since each returned pointP ∈ U
is within γ, in R2 space, of an intersection ofL12(δ12) and
L13(δ13), it follows that ∆13(P) ≤ 2

√
2γ (Lemma 2). By

5

changing the condition on the binary search loop of algorithm
locateL13, we can ensure that the returned points are within a
specified tolerance of intersection points inδ2 space or within
specified tolerances in bothR2 andδ2 spaces.

The setIsort may be computed inO(1) time. Let l =
max{DX2 − DX1, DY 2 − DY 1}. In computingU , there are
altogether up to 6 calls to locateL13(xL, yL, xR, yR), and
each makesO(log(l/γ)) calls to locateL12(x, yL, yR), which
in turn can be done inO(1) time. Thus the complexity of
algorithm geometricDTOA is O(log(l/γ)), which can be
adapted by suitably specifyingγ. If the number of basic
computational operations is fixed atc, then we haveγ <
O(l ∗ 2−c). We note that the inclusion of the case whenL12

is a vertical ray does not change the asymptotic complexity of
our algorithm.

V. M ONOTONICITY OF DIRECTIONAL DERIVATIVE

In this section, we establish the monotonicity of the direc-
tional derivative of∆13 on each segment ofL12(δ12). We do
this first for the case whenL12 is not a vertical ray. For this
case, we consider explicitly each of the seven regions: (a) top
left, (b) inside, (c) bottom right, (d) top, (e) bottom left,(f)
bottom, and (g) top right as shown in Figure 1. We show that
the directional derivative of∆13(.) along the curveL12(.) is
monotone in each of these regions: it is positive in regions (a),
(b), (f), and (g) and is negative in regions (c), (d), and (e).

We have fori = 1, 2, 3,

∂d(P, Si)

∂x
=

(x − xi)

d(P, Si)
and

∂d(P, Si)

∂y
=

(y − yi)

d(P, Si)
.

Also, the tangent vector toL12(δ12) at P = (x, y) is given by
[

−∂∆12(P)
∂y

∂∆12(P)
∂x

]

So, the directional derivative of∆13(P) at P on the locus
L12(δ12) = {P |∆12(P) = δ12}, for any δ12, is given by

[

∂∆13(P)
∂x

∂∆13(P)
∂y

]T

◦
[

−∂∆12(P)
∂y

∂∆12(P)
∂x

]

=

[

x−x1

d(P,S1)
− x−x3

d(P,S3)
y−y1

d(P,S1)
− y−y3

d(P,S3)

]T

◦
[

− y−y1

d(P,S1)
+ y−y2

d(P,S2)
x−x1

d(P,S1)
− x−x2

d(P,S2)

]

We note that some authors define the directional deriva-
tive by doing an inner product with a unit tangent vec-
tor rather than with any tangent vector. If we wish to
conform to this definition, we must divide the directional
derivative as given by the above expression by the quantity
√

(

∂∆12(P)
∂x

)2

+
(

∂∆12(P)
∂y

)2

. Since we are interested only in

the sign of the directional derivative, it doesn’t matter which
of the two definitions we use. We continue with the simpler
definition that does not require the use of a unit tangent vector.

We use the following three basic identities extensively in
our derivations:

sin α − sin β = 2 sin

(

α − β

2

)

cos

(

α + β

2

)

sin α + sin β = 2 sin

(

α + β

2

)

cos

(

α − β

2

)

.

cosα + cosβ = 2 cos

(

α + β

2

)

cos

(

α − β

2

)

.

A. Top Left Region

In this case, we have0 < γ1 + γ2 < π, 0 < γ1 + γ3 < π,
andγ3 > γ2 as shown in Figure 3. The directional derivative
is given by
[

x−x1

d(P,S1)
− x−x3

d(P,S3)
y−y1

d(P,S1)
− y−y3

d(P,S3)

]T

◦
[

− y−y1

d(P,S1)
+ y−y2

d(P,S2)
x−x1

d(P,S1)
− x−x2

d(P,S2)

]

= (− sin γ1 + sinγ3)(cos γ1 + cos γ2)

+(cos γ1 + cos γ3)(sin γ1 − sin γ2)

= − sin(γ1 + γ2) + sin(γ1 + γ3) + sin(γ3 − γ2)

= 2 sin

(

γ1 − γ2 + 2γ3

2

)

cos

(

γ1 + γ2

2

)

− sin(γ1 + γ2)

= 2 cos

(

γ1 + γ2

2

)

γ
1

γ
1 γ

3 γ
2

γ
2

bottom

P

S2

S1

S3

Fig. 3. P = (x, y) is located in the top left region.

γ 1γ
2

γ 1 γ
2

top

bottom

γ
3

P

S2

S1

S3

Fig. 4. P = (x, y) is located inside the triangle.

6

γ
1

top

γ
2γ

2

γ
3

P

S2

S1

S3

γ
1

bottom

inside

Fig. 5. P = (x, y) is located in the bottom right region.γ
3

γ
2

γ
2

bottom

γ
1

P

S2

S1

S3

γ
1

inside

Fig. 6. P = (x, y) is located in the top region.

[

sin

(

γ1 − γ2 + 2γ3

2

)

− sin

(

γ1 + γ2

2

)]

= 4 cos

(

γ1 + γ2

2

)

sin

(

γ3 − γ2

2

)

cos

(

γ1 + γ3

2

)

We have0 < γ1 + γ2 < π which makes the firstcos term
positive. We haveγ3 > γ2 and 0 < γ3 < π. Thus 0 <
γ3−γ2

2 < π/2, which makes the secondsin term positive. We
have0 < γ1+γ3 < π, which makes the thirdcos term positive.
Hence the directional derivative is positive.

B. Inside Region

In this case, we have0 < γ2 + γ3 < π, and γ3 > γ1 as
shown in Figure 4. The directional derivative of∆(S1, S3) on
the locus{(x, y)|∆(S1, S2) = δ12}, for any δ12, is given by
[

x−x1

d(P,S1)
− x−x3

d(P,S3)
y−y1

d(P,S1)
− y−y3

d(P,S3)

]T

◦
[

− y−y1

d(P,S1)
+ y−y2

d(P,S2)
x−x1

d(P,S1)
− x−x2

d(P,S2)

]

= (sin γ1 + sin γ3)(cos γ1 + cos γ2)

+(− cosγ1 − cos γ3)(sin γ1 − sin γ2)

= sin(γ1 + γ2) + sin(γ3 − γ1) + sin(γ2 + γ3)

= 2 sin

(

γ2 + γ3

2

) [

cos

(

2γ1 + γ2 − γ3

2

)

+ cos

(

γ1 + γ2

2

)]

= 4 sin

(

γ2 + γ3

2

)

cos

(

γ1 + γ2

2

)

cos

(

γ1 − γ3

2

)

We have0 < γ2 + γ3 < π, which makes the firstsin term
positive. Sinceγ3 > γ1, we have0 < γ1 + γ2 < π, which
makes the secondcos term positive. Sinceγ3 > γ1 and 0 <
γ3 < π, we have−π/2 < γ1−γ2

2 < 0, which makes the third
cos term positive. Hence the directional derivative is positive.

C. Bottom Right Region

In this case, we have0 < γ1 + γ3 < π and γ3 > γ2 as
shown in Figure 5. The directional derivative of∆(S1, S3) on
the locus{(x, y)|∆(S1, S2) = δ12}, for any δ12, is given by
[

x−x1

d(P,S1)
− x−x3

d(P,S3)
y−y1

d(P,S1)
− y−y3

d(P,S3)

]T

◦
[

− y−y1

d(P,S1)
+ y−y2

d(P,S2)
x−x1

d(P,S1)
− x−x2

d(P,S2)

]

= (sin γ1 − sin γ3)(cos γ1 + cos γ2)

+(− cos γ1 − cos γ3)(sin γ1 − sinγ2)

= sin(γ1 + γ2) − sin(γ1 + γ3) + sin(γ2 − γ3)

= 2 sin

(

γ2 − γ3

2

) [

cos

(

2γ1 + γ2 + γ3

2

)

+ cos

(

γ2 − γ3

2

)]

= 4 sin

(

γ2 − γ3

2

)

cos

(

γ1 + γ2

2

)

cos

(

γ1 + γ3

2

)

Sinceγ3 > γ2 and0 < γ3 < π, we have−π/2 < γ2−γ3

2 < 0,
which makes thesin term negative. We have0 < γ1 +γ2 < π
and 0 < γ1 + γ3 < π, which makes the last twocos terms
positive. Hence the directional derivative is negative.

D. Top, Bottom Left, Bottom, and Top Right Regions

(d) Top: The case of top is identical to the top left region
except thatπ < γ1 + γ3 < 2π as shown in Figure 6,
which makes the thirdcos term negative, and hence the
directional derivative is negative.

(e) Bottom Left: The case of bottom left is identical to the
top left region except thatγ2 > γ3 as shown in Figure
7, which makes thesin term negative, and hence the
directional derivative is negative.

top

γ
2

γ
1

γ
2

γ
1

P

S2

S1

S3

γ
3

bottom

inside

Fig. 7. P = (x, y) is located in the bottom left region.

7

P

γ
1

γ
1

top

γ
3

S2

S1

S3

γ
2

γ
2

Fig. 8. P = (x, y) is located in the bottom region.

top

γ
2γ

2

γ
3

P

S2

S1

S3

γ
1

γ
1

bottom

Fig. 9. P = (x, y) is located in the top right region.

(f) Bottom Region: For bottom region, the derivation is
identical to the case of inside region except thatπ <
γ2 +γ3 < 2π as shown in Figure 8, which keeps the first
sin term still positive, and hence the directional derivative
is positive.

(g) Top Right: The case of top right region, as shown in
Figure 9, is identical to inside region except thatγ3 < γ1.
Thus we have0 < γ1−γ3

2 < π/2, which makes the third
cos term still positive, and hence the directional derivative
is positive.

Computational results indicating the signs of the directional
derivative of randomly generated sources are shown in Figure
10.

WhenL12 is a vertical ray, we need to consider the portion
of the segments (a) fromS1 to ∞ and (b) fromS2 to −∞
that lie within the monitoring region. We consider only (a).
The proof for (b) is similar. LetP1 andP2 be two points on
the segment (a). W.l.o.g., assume thatP1 is closer toS1 than
is P2 (see Figure 11). We see that

∆13(P1) − ∆13(P2) = (d(P1, S1) − d(P1, S3))

−(d(P2, S1) − d(P2, S3))

−10 −5 0 5 10

−8

−6

−4

−2

0

2

4

6

8

S
1

S
2

S
3

positive
negative

negative

negative

Fig. 10. SourceS = (x, y) is randomly selected, and the sign of the
directional derivative is computed.

6

-x

y

O

S1

S2

S3

P1

P2

,
,

,
,

,
,

,
,

,,

,
,

,
,

,
,

H
H

H
H

H
H

H
H

HH

H
H

H
H

H
H

H
H

HH

Fig. 11. The degenerate case whenL12(δ12) is a vertical ray

= (d(P1, S1) − d(P2, S1))

−(d(P1, S3) − d(P2, S3))

= −d(P1, P2) − d(P1, S3) + d(P2, S3)

< 0 (from the triangle inequality)

8

Hence, the directional derivative ofL13 on segment (a) is
monotone.

VI. SIMULATION RESULTS

We compared the performance of our binary search algo-
rithm of Section III versus the linear algebra method of [2],
[6], which requires a solution to a quadratic equation. Both
algorithms were implemented in Matlab on a Dell Dimension
PC with a 2.13 GHz dual-core processor and 2 GB memory.
The typical execution times of both methods are only several
milliseconds.

Each sensor measurement corresponds to(1 + f)r where
r is the actual distance from sensor to source, andf is
uniformly randomly generated in the interval[0, F] for a
fixed multiplicative factorF . While f values are generated
independently, sensor error magnitude is proportional to the
distance from the sensor to plume origin. Also, the sensor
errors are correlated due to the spatial relationships between
the sensor locations. a source close to one sensor generatesa
small error there and larger errors at other sensors, which are
located farther away. From these measurements, we computed
distance-differences and tested DTOA localization methods.
In our experiments, We considered two different scenarios:(i)
sensor errors are zero (i.e.,F = 0), and (ii) sensor errors are
greater than zero (i.e.,F > 0). On a related note, the method of
[12] accounts for random errors that are independent Gaussian,
and hence is not directly applicable to this case.

Our simulation was conducted in a network of three sensors
on a [0, 100000]× [0, 100000] grid, where location of sources
are randomly generated based on the uniform distribution.

A. F = 0

We compare the performance of both methods in case that
all sensor measurements are accurate. When three sensors form
a good triangle, the method of [2], [6] may accurately estimate
the source location as shown in [13]. By good triangle, we
mean its smallest (largest) angle is not close to 0 (180) degree.
However, when three sensors lie in an almost collinear manner,
the method of [2] may fail to find a solution as the quadratic
equation have imaginary roots for a certain percentage of
sources as shown in Figure 12 - 13. For our experiments, each
test case may be described by a tuple of[S1, S2, S3, F, N],
where S1, S2, and S3 are coordinates of three respective
sensors,F is the sensor error, andN is the number of
randomly generated sources. Note that we always keepS1
closest to the source. Figure 12 gives the number of sources
such that [2] returns imaginary roots as well as our method
fails to find a solution whereS1 = (0, 0), S2 = (0, 50000),
S3 = (0.001, 100000), and N = 12635. The ratio of the
number of such sources against the total number of sources is
given. For each test case, we consider variousγ1 andγ2, where
γ1 and γ2 are the desired errors acceptable inδ space and
R2 space, respectively. For eachγ1(γ2), Figure 12 gives the
number of sources whose estimate (excluding the imaginary
roots) returned by [2] as well as by our method is within
the desired errorγ1(γ2) of the actual source. The ratio of the
number of such sources to the total number of sources is also

given. Figure 13 gives this data for the case whereS1 = (0, 0),
S2 = (0, 50000), S3 = (0.0000000000000001, 100000), and
N = 12345.

We note that using our binary search based method versus
that of [2] had a great impact on the number of sources that
could be estimated. For example, for two test cases shown
in Figure 12 and 13 the percentage of sources that leads to
imaginary roots in the method of [2] is 1.27% and 27.75%,
respectively, whereas our method never fails to find a real
solution. Note that almost 28% of sources can’t be estimated
by the method of [2] in the second test case. On the other
hand, the estimate given by our method also shows much better
accuracy in bothδ space andR2 space than that of the method
of [2]. As shown in Figure 12, to get the ratio of successful
estimates to be more than 98% inδ space, the method of [2]
needs to setγ1 to be almost 5000, whereas our method always
gives the successful estimate whenγ1 is as small as 0.000001!
The similar phenomena is observed inR2 space as well. When
γ2 is set 10000, the successful ratio of the method of [2] is
still slightly less than 97%, whereas our method shows a 100%
successful estimate even if we reduceγ2 by as much as about
1010 times! This improvement is even more impressive for
the second test case shown in Figure 13, where the estimating
quality is improved by more than1011 times!

Another observation is that the estimate accurate inδ space
does not necessarily mean it is also accurate inR2 space. For
example, in Figure 12, givenγ1 andγ2 both to be 1000, the
ratio of successful estimate inδ space andR2 space is 60.93%
and 31.69%, respectively, which implies that at least more than
29% of sources that are close to the source inδ space are far
away from the source inR2 space.

B. F > 0

When sensor measurements may be inaccurate, a finaliza-
tion step is added to the end of the original description of
our method of Section III. WhenU is empty, in other words,
algorithm locateL13 returns null each time it is invoked,
this finalization step chooses as the source estimate the point
P of Isort, for which |∆13(P) − δ13| is minimized. This
modification is referred to asbinary search with finalization.

For our experiments, we used 9 test cases, each described
by the tuple[S1, S2, S3, F, N]. We chooseF from {10/100,
5/100, 1/100}. For each test case, we sought variousγ1s and
γ2s. Figures 14 - 22 give the similar data shown in Figure 12.
Specifically, the value listed as#imaginary of our method
is for the number of sources such that the original version of
our method without finalization fails to find a solution.

We note that whenF > 0 our method may not find a solu-
tion for some sources. However, our method still outperforms
that of [2] in terms of the number of sources that could be
estimated. In all 9 test cases, the number of such sources by
our method without finalization is as many as or less than that
of the method of [2]; the reductions were as high as more than
22%.

Also, for all different γ1s or γ2s in each test case, the
estimate given by our method consistently shows as good as or
much better accuracy in bothδ space andR2 space than that of

9

S1 = (0, 0), S2 = (0, 50000), S3 = (0.001, 100000), F=0, andN=12635

Method #imaginary ratio
δ space R2 space

γ1 #count ratio γ2 #count ratio

Mellen 161 0.0127

100 1328 0.1051 100 722 0.0571
500 4683 0.3706 500 2384 0.1887
1000 7698 0.6093 1000 4004 0.3169
2500 11503 0.9104 2500 7487 0.5926
5000 12420 0.9830 5000 10512 0.8320
10000 12473 0.9872 10000 12249 0.9694

Ours 0 0.0
0.00000001 2619 0.2073 0.00000001 246 0.0195
0.0000001 12011 0.9506 0.0000001 2273 0.1799
0.000001 12635 1.0 0.000001 12635 1.0

Fig. 12. Data forS1 = (0, 0), S2 = (0, 50000), S3 = (0.001, 100000), andF =0

S1 = (0, 0), S2 = (0, 50000), S3 = (0.0000000000000001, 100000), F=0, andN=12345

Method #imaginary ratio
δ space R2 space

γ1 #count ratio γ2 #count ratio

Mellen 3426 0.2775

100 60 0.0049 100 3 0.00024301
500 134 0.0109 500 16 0.0013
1000 210 0.0170 1000 30 0.0024
2500 378 0.0306 2500 88 0.0071
5000 572 0.0463 5000 200 0.0162
10000 935 0.0757 10000 421 0.0341
50000 6652 0.5388 50000 2070 0.1677
100000 8919 0.7225 100000 4037 0.3299

Ours 0 0.0
0.00000001 1437 0.1164 0.00000001 225 0.0182
0.0000001 10546 0.8543 0.0000001 2185 0.1770
0.000001 12345 1.0 0.000001 12345 1.0

Fig. 13. Data forS1 = (0, 0), S2 = (0, 50000), S3 = (0.0000000000000001, 100000), andF =0

S1 = (0, 0), S2 = (0, 50000), S3 = (0.0000000000000001, 100000), F=10/100, andN=12598

Method #imaginary ratio
δ space R2 space

γ1 #count ratio γ2 #count ratio

Mellen 3944 0.3131

10000 907 0.0720 10000 276 0.0219
25000 2455 0.1949 25000 861 0.0683
50000 8034 0.6377 50000 1922 0.1526
100000 11873 0.9425 100000 3992 0.3169

Ours 2149 0.1706

100 25 0.0020 100 0 0.0
1000 1183 0.0939 1000 258 0.0205
2500 4495 0.3568 2500 1067 0.0847
5000 9273 0.7361 5000 2483 0.1971
10000 12481 0.9907 10000 5097 0.4046

Fig. 14. Data forS1 = (0, 0), S2 = (0, 50000), S3 = (0.0000000000000001, 100000), andF =10/100

the method of [2]. In particular, when three sensors are almost
collinear, the improvement made by our method is significant.
For example, whenγ2 is 10000 as shown in Figure 14 -16, the
increment of the ratio of successful estimate by our method
versus the method of [2] is more than 38%, 62%, and 96%,
respectively.

VII. C ONCLUSIONS

We presented a computational geometric method for the
problem of triangulation in plane using measurements of

distance-differences. This problem has been extensively stud-
ied in the past and several solutions have been deployed, and
our re-examination is motivated in part by the requirements
of low power sensor nodes. Our method is computationally
efficient and adaptive as well as robust with respect to mea-
surement and computational errors. This method is particularly
suited for deployment in nodes that adapt their computations
in response to power budgets. This method can also be applied
when distance measurements are available, and can offer simi-
lar advantages over the linear algebraic methods that are often

10

S1 = (0, 0), S2 = (0, 50000), S3 = (0.0000000000000001, 100000), F=5/100, andN=12341

Method #imaginary ratio
δ space R2 space

γ1 #count ratio γ2 #count ratio

Mellen 3708 0.3005

10000 901 0.0730 10000 304 0.0246
25000 2230 0.1807 25000 877 0.0711
50000 6382 0.5171 50000 1881 0.1524
100000 8721 0.7067 100000 3978 0.3223

Ours 1484 0.1202

100 78 0.0063 100 9 0.00072928
1000 3048 0.2470 1000 672 0.0545
2500 8945 0.7248 2500 2129 0.1725
5000 12236 0.9915 5000 4544 0.3682
10000 12341 1.0 10000 8029 0.6506

Fig. 15. Data forS1 = (0, 0), S2 = (0, 50000), S3 = (0.0000000000000001, 100000), andF =5/100

S1 = (0, 0), S2 = (0, 50000), S3 = (0.0000000000000001, 100000), F=1/100, andN=12599

Method #imaginary ratio
δ space R2 space

γ1 #count ratio γ2 #count ratio

Mellen 3513 0.2788

10000 951 0.0755 10000 409 0.0325
25000 2185 0.1734 25000 1063 0.0844
50000 6829 0.5420 50000 2092 0.1660
100000 9109 0.7230 100000 4140 0.3286

Ours 650 0.0516

100 840 0.0667 100 156 0.0124
250 3693 0.2931 250 760 0.0603
500 8594 0.6821 500 1911 0.1517
1000 12480 0.9906 1000 4164 0.3305
2500 12599 1.0 2500 8846 0.7021
5000 12599 1.0 5000 11691 0.9279
10000 12599 1.0 10000 12577 0.9983

Fig. 16. Data forS1 = (0, 0), S2 = (0, 50000), S3 = (0.0000000000000001, 100000), andF =1/100

S1 = (0, 0), S2 = (0, 50000), S3 = (5000, 100000), F=10/100, andN=12473

Method #imaginary ratio
δ space R2 space

γ1 #count ratio γ2 #count ratio

Mellen 1649 0.1322

250 52 0.0042 250 19 0.0015
500 189 0.0152 500 58 0.0047
1000 725 0.0581 1000 215 0.0172
2500 3404 0.2729 2500 932 0.0747
5000 7604 0.6096 5000 2258 0.1810
10000 10628 0.8521 10000 4804 0.3852

Ours 1647
0.1320

250 78 0.0063 250 19 0.0015
500 287 0.0230 500 58 0.0047
1000 1026 0.0823 1000 215 0.0172
2500 4237 0.3397 2500 932 0.0747
5000 9093 0.7290 5000 2364 0.1895
10000 12389 0.9933 10000 5378 0.4312

Fig. 17. Data forS1 = (0, 0), S2 = (0, 50000), S3 = (5000, 100000), andF =10/100

11

S1 = (0, 0), S2 = (0, 50000), S3 = (5000, 100000), F=5/100, andN=12591

Method #imaginary ratio
δ space R2 space

γ1 #count ratio γ2 #count ratio

Mellen 1007 0.0800

250 228 0.0181 250 51 0.0041
500 798 0.0634 500 238 0.0189
1000 2536 0.2014 1000 726 0.0577
2500 8183 0.6499 2500 2468 0.1960
5000 11502 0.9135 5000 5009 0.3978
10000 11579 0.9196 10000 8295 0.6588

Ours 1007
0.0800

250 258 0.0205 250 51 0.0041
500 921 0.0731 500 238 0.0189
1000 2886 0.2292 1000 726 0.0577
2500 9045 0.7184 2500 2468 0.1960
5000 12514 0.9939 5000 5116 0.4063
10000 12591 1.0 10000 8776 0.6970

Fig. 18. Data forS1 = (0, 0), S2 = (0, 50000), S3 = (5000, 100000), andF =5/100

S1 = (0, 0), S2 = (0, 50000), S3 = (5000, 100000), F=1/100, andN=12683

Method #imaginary ratio
δ space R2 space

γ1 #count ratio γ2 #count ratio

Mellen 267 0.0211

100 753 0.0594 100 219 0.0173
250 3582 0.2824 250 965 0.0761
500 8459 0.6670 500 2374 0.1872
1000 12337 0.9727 1000 5030 0.3966
2500 12409 0.9784 2500 9636 0.7598
5000 12409 0.9784 5000 11926 0.9403

Ours 267 0.0211

100 760 0.0599 100 219 0.0173
250 3652 0.2879 250 965 0.0761
500 8672 0.6837 500 2374 0.1872
1000 12611 0.9943 1000 5030 0.3966
2500 12683 1.0 2500 9636 0.7598

Fig. 19. Data forS1 = (0, 0), S2 = (0, 50000), S3 = (5000, 100000), andF =1/100

S1 = (0, 0), S2 = (0, 100000), S3 = (100000, 0), F=10/100, andN=12518

Method #imaginary ratio
δ space R2 space

γ1 #count ratio γ2 #count ratio

Mellen 20 0.0016

500 12 0.00095862 500 435 0.0347
1000 39 0.0031 1000 1520 0.1214
2500 182 0.0145 2500 6270 0.5009
5000 624 0.0498 5000 10909 0.8715
10000 1875 0.1498 10000 12449 0.9945

Ours 0 0.0

250 119 0.0095 250 119 0.0095
500 193 0.0154 500 435 0.0347
1000 725 0.0579 1000 1520 0.1214
2500 3460 0.2764 2500 6272 0.5010
5000 8504 0.6793 5000 10917 0.8721
10000 12511 0.9994 10000 12465 0.9958

Fig. 20. Data forS1 = (0, 0), S2 = (0, 100000), S3 = (100000, 0), andF =10/100

12

S1 = (0, 0), S2 = (0, 100000), S3 = (100000, 0), F=5/100, andN=12483

Method #imaginary ratio
δ space R2 space

γ1 #count ratio γ2 #count ratio

Mellen 4 0.00032

500 44 0.0035 500 1516 0.1214
1000 112 0.0090 1000 4729 0.3788
2500 542 0.0434 2500 11042 0.8846
5000 1542 0.1235 5000 12459 0.9981

Ours 0 0.0

250 183 0.0147 250 415 0.0332
500 680 0.0545 500 1516 0.1214
1000 2392 0.1916 1000 4729 0.3788
2500 8494 0.6804 2500 11043 0.8846
5000 12478 0.9996 5000 12463 0.9984

Fig. 21. Data forS1 = (0, 0), S2 = (0, 100000), S3 = (100000, 0), andF =5/100

S1 = (0, 0), S2 = (0, 100000), S3 = (100000, 0), F=1/100, andN=12398

Method #imaginary ratio
δ space R2 space

γ1 #count ratio γ2 #count ratio

Mellen 0 0.0

250 149 0.0120 250 6337 0.5111
500 500 0.0403 500 11029 0.8896
1000 1382 0.1115 1000 12394 0.9997
2500 1393 0.1124 2500 12398 1.0

Ours 0 0.0

100 708 0.0571 100 1542 0.1244
250 3432 0.2768 250 6337 0.5111
500 8436 0.6804 500 11029 0.8896
1000 12394 0.9997 1000 12394 0.9997
2500 12398 1.0 2500 12398 1.0

Fig. 22. Data forS1 = (0, 0), S2 = (0, 100000), S3 = (100000, 0), andF =1/100

used for triangulation based on distances. Furthermore, by
computing distance-differences from distance measurements,
this method would be less susceptible to one-sided bias errors
in distance measurements. This is particularly useful in certain
self-localization tasks, where a single sensor is employedto
measure distances to reference beacons.

This paper is only a step towards utilizing computational
geometric methods for solving localization problems. It would
be of future interest to consider extensions of this method
for cases where more than three sensors are deployed and
multiple measurement sets are provided. It would also be
interesting to see if the proposed method can be extended
under random noise models. For the special case whenS1, S2

andS3 form an acute triangle, a training method was proposed
in [11] wherein the localization method can be trained in-situ
to account for sensor correlations. The current method can be
similarly employed but the training procedure is likely to be
more involved. It would be of future interest to explore the
“tracking” ability of this method by repeatedly executing it on
a stream of distance-difference measurements corresponding
to a moving object.

ACKNOWLEDGMENTS

This work is funded by the SensorNet program at Oak
Ridge National Laboratory (ORNL) through Office of Naval
Research. ORNL is managed by UT-Battelle, LLC for

U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

REFERENCES

[1] R. Schmidt, “A new approach to geometry of range difference location,”
IEEE Trans. on Aerospace and Electronic Systems, vol. 8, no. 3, 1972.

[2] G. Mellen, M. Pachter, and J. Raquet, “Closed-form solution for deter-
mining emitter location using time difference of arrival measurements,”
IEEE Trans. on Aerospace and Electronic Systems, vol. 39, no. 3, pp.
1056–1058, 2003.

[3] F. Zhao and L. Guibas,Wireless Sensor Networks. Elsevier, 2004.
[4] B. Krishnamachari, Ed.,Networking Wireless Sensors. Cambridge

University Press, 2005.
[5] G. Pottie and W. Kaiser,Principles of Embedded Networked System

Design. Cambridge University Press, 2005.
[6] H. C. Schau and A. Z. Robinson, “Passive source localization employing

intersecting spherical surfaces from time-of-arrival differences,”IEEE
Trans. on Acoustics, Speech, and Signal Processing, vol. 35, no. 8, pp.
1223–1225, 1987.

[7] B. T. Fang, “Simple solutions for hyperbolic and relatedposition fixes,”
IEEE Transactions on Systems, Man and Cybernetics-B, vol. 26, no. 9,
pp. 748–753, 2005.

[8] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless
location,” IEEE Signal Processing Magazine, pp. 24–40, July 2005.

[9] F. P. Preparata and I. A. Shamos,Computational Geometry: An Intro-
duction. New York: Springer-Verlag, 1985.

[10] H. Edelsbrunner,Algorithms in Combinatorial Geometry. Springer-
Verlag, 1987.

[11] N. S. V. Rao, “Identification of simple product-form plumes using
networks of sensors with random errors,” inInternational Conference
on Information Fusion, 2006.

[12] Y. T. Chan and K. C. Ho, “A simple and efficient estimator for hyperbolic
location,” IEEE Trans. on Image Processing, vol. 42, no. 8, pp. 1905–
1915, 1994.

13

[13] N. S. V. Rao, X. Xu, and S. Sahni, “A Computational Geometry Method
for DTOA Triangulation,” submitted toInternational Conference on
Information Fusion, 2007.

[14] M.A. Spirito and A.G. Mattioli, “On the hyperbolic positioning of GSM
mobile stations,” inProc. International Symposium on Signals, Systems
and Electronics, Sept 1998.

[15] M.A. Spirito, “Further results on GSM mobile station location”, IEE
Electronics Letters, vol. 35, no. 22, 1999.

[16] S. Fischer, H. Koorapaty, E. Larsson, and A. Kangas, “System per-
formance evaluation of mobile positioning methods,” inProc. IEEE
Vehicular Technology Conference,Houston, TX, USA, May 1999.

[17] P-J. Nordlund, F. Gunnarsson, and F. Gustafsson, “Particle filters for
positioning in wireless networks,”, inInvited to EUSIPCO,Toulouse,
France, Sep 2002.

