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Abstract

We show that the problem of routing messages in a wireless sensor network so as to
maximize network lifetime is NP-hard. In our model, the online model, each message has to
be routed without knowledge of future route requests. We develop also an online heuristic to
maximize network lifetime. Our heuristic, which performs two shortest path computations to
route each message, is superior to previously published heuristics for lifetime maximization–
our heuristic results in greater lifetime and its performance is less sensitive to the selection
of heuristic parameters. Additionally, our heuristic is superior on the capacity metric.
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1 Introduction

We consider message routing in wireless sensor networks in which each sensor is battery operated.

We assume that the batteries are neither replaceable nor rechargeable. This, for example, is the

case when the sensors are deployed in hostile (e.g., battlefield) or otherwise hard to reach (e.g., the

bottom of the ocean) environments. Hence, in the wireless sensor networks we consider, energy

conservation is paramount.

The energy required by a sensor to transmit, under ideal conditions, a unit length message a

distance r is proportional to rd for some d in the range [2, 4] [3, 12]. (More energy is required

if there are obstacles in the transmission path.) Hence, energy is conserved by using multihop

routing. That is, nodes between the source and destination are used as relays. For example,
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suppose that sensors A and C are a distance 4 apart and sensor B is halfway between A and

C. Assume further that d = 2 and the constant of proportionality is 1. It takes A 16 units of

energy to transmit a unit message directly (i.e., via a single hop) to C. However, by using B as a

relay, the message may be transmitted from A to B using 4 units of energy and then from B to

C using an additional 4 units. The total energy consumed by this multihop (more precisly, two

hop) transmission is only 8 units1!

Following the deployment of a sensor network, pairs of sensors exchange messages in an unpre-

dictable sequence. We assume that for proper network operation, it is critical that every attempt

to transmit a message succeed. Hence, the lifetime of a sensor network is defined as the number

of messages successfully routed before the first failed message route.

Although several researchers have proposed heuristics to maximize network lifetime, none has

actually shown that maximizing network lifetime is NP-hard. In Section 4, we show that maxi-

mizing network lifetime is NP-hard. In Section 5, we develop a new heuristic, the online maximum

lifetime (OML) heuristic, to maximize lifetime. Zone-based and distributed versions of OML are

described in Section 6. In Section 7, the performance of our OML heuristic is compared with

previously proposed heuristics for lifetime maximization. Our experiments show that our OML

heuristic is superior to the previously proposed heuristics. We begin, in Section 2, by introducing

our terminology. Section 3 describes related work.

2 Terminology

The sensor network is modeled as a directed graph G = (V, E). V is the set of sensors in the

network and n = |V | is the number of sensors. E is the edge set. There is a directed edge

(u, v) ∈ E from sensor u to sensor v iff a single-hop transmission from u to v is possible. Let

ie(i) > 0 be the initial energy in sensor i, ce(i) ≥ 0 denotes the current energy in sensor i, and

for each (u, v) ∈ E, w(u, v) > 0 denotes the energy required to do a single-hop transmission from

sensor u to sensor v. Following a single-hop message tranmission from u to v, the current energy

in sensor u becomes ce(u) − w(u, v). Note that this single-hop transmission is possible only if

ce(u) ≥ w(u, v). Since we assume no energy is consumed during message reception, the current

1In reality, slightly more than 8 units are used as both B and C have to expend some energy receiving the
message. In this paper, as is done in other papers on routing, we ignore the energy needed to receive a message.
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energy in sensor v is unaffected by a transmission from u to v.

A routing request is a pair (s, t), where s is the source sensor for the message that is to be

routed and t is the destination sensor. Although, in this paper, we assume that all messages have

the same length, our work is easily extended to the case when messages have different length.

Let R = r1, r2, · · · be a sequence of routing requests. Note that each ri is a source-destination

pair (si, ti). The lifetime of a network for request sequence R is the maximum j such that

routing requests r1, · · ·, rj are successfully routed. An online routing algorithm routes ri without

knowledge of any rj, j > i. An offline routing algorithm, on the other hand, determines the routes

for each ri with full knowledge of all succeeding routing requests. Clearly, the lifetime obtainable

by the best offline algorithm is at least as much as that obtainable by any online algorithm. The

competitive ratio of an online routing algorithm is the maximum value of the lifetime obtained

using the online algorithm divided by the lifetime obtained by the best offline algorithm; the

maximum is taken over all routing sequences R.

3 Related Work

Several authors have developed energy-efficient algorithms for point-to-point communication [4,

5, 6, 10, 11, 13, 17, 18, 19, 20, 22]. The overall objective of these algorithms is to either maximize

the lifetime (time at which a communication fails first) or the capacity of the network (amount of

data traffic carried by the network over some fixed period of time).

Aslam, Li and Rus [3] have shown that there is no online routing algorithm with o(n) competitve

ratio for the lifetime maximization problem. Singh, Woo and Raghavendra [17] propose five

metrics that may be used in the selection of the routing path for energy efficient routing. The

first of these is to use a minimum-energy path (i.e., a path in G for which the sum of the edge

weights is minimum) from s to t. Such a path may be computed using Dijkstra’s shortest path

algorithm [16]. Although this metric tends to minimize the total (or averge) energy consumed

over a sequence of routes, it doesn’t focus on the primary objective of maximizing lifetime. This

is because using a minimum-energy path for the current route request may prevent the successful

routing of future messages.

The remaining four metrics proposed in [17] are maximize time to network partition, minimize
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variance in node energy levels, minimize the node cost of each transmission (the cost of a node is

some function of the amount of energy used so far by that node), and minimize maximum node

cost. Of the proposed five metrics, only the first (minimum-energy path) and fourth (minimize

node cost) have been implemented by Singh, Woo and Raghavendra [17]. They raise concerns

about the diffculty of implementing the remaining three in a routing protocol.

Toh et al. [20] propose the MMBCR and CMMBCR (conditional MMBCR) online algorithms

to select a source-to-destination path. The MMBCR algorithm selects a path P for which the

minimum of the residual energies (i.e., energy remaining following a route) of the sensors on P is

maximum. Recognizing that to maximize lifetime we need to achieve some balance between the

energy consumed by a route and the minimum residual energy at the nodes along the chosen route,

Toh et al. [20] propose also a conditional MMBCR algorithm, CMMBCR. In CMMBCR we look

for a minimum energy source-to-destination path in which no sensor has residual energy below a

threshold γ. If there is no source-to-destination path with this property, then the MMBCR path

is used.

In the MRPC lifetime-maximization heuristic of Misra and Banerjee [15], the capacity, c(u, v)

of edge (u, v) is defined to be ce(u)/w(u, v). Note that c(u, v) is the number of unit-length

messages that may be transmitted along (u, v) before node u runs out of energy. The lifetime

of path P , life(P ) is defined to be the the minimum edge capacity on the path. In MRPC,

routing is done along a path P with maximum lifetime. Figure 1 gives the MRPC algorithm. A

decentralized implementation as well as a conditional MRPC, CMRPC, also are described in [15].

CMRCP attempts to route on a minimum-energy path P with life(P ) ≥ γ, where γ is a specified

threshold value. If there is no source-to-destination path P with life(P ) ≥ γ, the MRPC path is

used.

Aslam, Li and Rus [3] propose the max-min zPmin-path algorithm to select routes that at-

tempt to make this balance. This algorithm selects a path that uses at most z ∗ Pmin energy,

where z is a parameter to the algorithm and Pmin is the energy required by the minimum-energy

path. The selected path maximizes the minimum residual energy fraction (energy remaining after

route/initial energy) for nodes on the route path. Notice that the possible values for the residual

energy fraction of node u may be obtained by computing (ce(u) − w(u, v))/ie(u), where ce(u) is
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Step 1: [Initialize]
Eliminate from G every edge (u, v) for which ce(u) < w(u, v).
For every remaining edge (u, v) let c(u, v) = ce(u)/w(u, v).
Let L be the list of distinct c(u, v) values.

Step 2: [Binary Search]
Do a binary search in L to find the maximum value max for which there is a path P from
source to destination that uses no edge with c(u, v) < max.
For this, when testing a value q from L, we perform a depth- or breadth-first search
beginning at the source. The search is not permitted to use edges with c(u, v) < q.
Let P be the source-to-destination path with lifetime max.

Step 3: [Wrap Up]
If no path is found in Step 2, the route isn’t possible.
Otherwise, use P for the route.

Figure 1: MRPC algorithm of [15]

the (current) energy at node u just before the route. This computation is done for all vertices v

adjacent from u. Hence the union, L, of these values taken over all u gives the possible values for

the minimum residual-energy fraction along any path.

Figure 2 gives the max-min zPmin algorithm.

Several adaptations to the basic max-min zPmin algorithm, including a distributed version are

described in [3]. Kar et al. [12] develop an online capacity-competitive (the capacity is the number

of messages routed over some time period) algorithm, CMAX, with logarithmic competitive ratio.

On the surface, this would appear to violate the Ω(n) bound of [3]. However, to achieve this

logarithmic competitive ratio, the algorithm CMAX does admission control. That is, it rejects

some routes that are possible. The bound of [3] applies only for online algorithms that perform

every route that is possible.

Let α(u) = 1− ce(u)/ie(u) be the fraction of u’s initial energy that has been used so far. Let λ

and σ be two constants. In the CMAX algorithm, the weight of every edge (u, v) is changed from

w(u, v) to w(u, v) ∗ (λα(u) − 1). The shortest source-to-destination path P in the resulting graph

is determined. If the length of this path is more than σ, the routing request is rejected (admission

control); otherwise, the route is done using path P . Figure 3 gives the algorithm.

5



Step 1: [Initialize]
Eliminate from G every edge (u, v) for which ce(u) < w(u, v).
Let L be the list of possible values for the minimum residual-energy fraction.

Step 2: [Binary Search]
Do a binary search in L to find the maximum value max of the minimum residual-energy
fraction for which there is a path P from source to destination that uses at most z ∗ Pmin

energy.
For this, when testing a value q from L, we find a shortest source to destination path that
does not use edges (u, v) that make the residual-energy fraction at u less than q.

Step 3: [Wrap Up]
If no path is found in Step 2, the route isn’t possible.
Otherwise, use the path P corresponding to max.

Figure 2: The max-min zPmin lifetime algorithm of [3]

Step 1: [Initialize]
Eliminate from G every edge (u, v) for which ce(u) < w(u, v).
Change the weight of every remaining edge (u, v) to w(u, v) ∗ (λα(u) − 1).

Step 2: [Shortest Path]
Let P be the shortest source-to-destination path in the modified graph.

Step 3: [Wrap Up]
If no path is found in Step 2, the route isn’t possible.
If the the length of P is more than σ do not do the route.
Otherwise, use P for the route.

Figure 3: CMAX algorithm of [12]

The CMAX algorithm of Figure 3 has a complexity advantage over the max-min zPmin algo-

rithm of Figure 2. The former does only 1 shortest-path computation per routing request while

the latter does O(log n), where n is the number of sensor nodes. Although admission control is

necessary to establish the logarithmic competitive-ratio bound for CMAX, we may use CMAX

without admission control (i.e., route every request that is feasible) by setting σ = ∞. Experimen-

tal results reported in [12] suggest that CMAX with no admission control outperforms max-min
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zPmin on both the lifetime and capacity metrics.

For the performance evaluation of CMAX, Kar et al. [12] introduce another route selection

algorithm, which they can max min. We refer to this algorithm as maxRE here. In maxRE, the

routing path is selected so as to maximize the minimum residual energy fraction of sensors on the

path. This algorithm is equivalent to max-min zPmin with z = ∞.

Chang and Tassiulas [4, 5] develop a linear-programming formulation for lifetime maximization.

This formulation requires knowledge of the rate at which each node generates messages. Wu, Gao

and Stojmenovic [21] propose routing based on connected dominating sets to maximize network

lifetime. Stojmenovic and Lin [19] and Melodia et al. [14] develop localized algorithms to maximize

lifetime and Heinzelman, Chandrakasan and Balakrishnan [9] develop a clustering-based routing

algorithm (LEACH) for sensor networks.

4 NP-hardness of Maximum Lifetime Problem

In this section we show that the Maximum Lifetime Problem (ML) is NP-hard. Our proof employs

the disjoint connecting paths (DCP) problem, which is known to be NP-complete [8]. The input

to the DCP problem is a graph G (either directed or undirected) and a set of k disjoint source

and destination vertex pairs (si, ti), 1 ≤ i ≤ k. The output is “yes” iff G has k vertex-disjoint

paths; the ith path connects si and ti, 1 ≤ i ≤ k.

Theorem 1 The maximum lifetime problem ML is NP-hard.

Proof We show how to construct, for any given instance of the DCP problem, an instance of ML

whose lifetime is k iff the answer to the given DCP instance is “yes”. Since this construction takes

polynomial time, a polynomial time algorithm for ML would imply a polynomial time algorithm

for DCP. Hence, ML is NP-hard.

Let G, (si, ti), 1 ≤ i ≤ k define the DCP instance. The network for the corresponding ML

instance is obtained by introducing k new vertices t′i and k new edges (ti, t
′

i) to G. ie(u) = 1 for

each vertex of G, ie(t′i) = 0, and w(u, v) = 1 for every edge in the constructed sensor network.

The request sequence R has ri = (si, t
′

i), 1 ≤ i ≤ k.

Suppose that the answer to the given DCP instance is “yes”. So, the instance has k vertex-

disjoint paths Pi with Pi connecting si and ti, 1 ≤ i ≤ k. We may route ri along the path P ′

i
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Figure 4: ML instance corresponding to DCP instance given by G and (si, ti), 1 ≤ i ≤ k

obtained by concatenating t′i to Pi. The k paths P ′

i , 1 ≤ i ≤ k are vertex disjoint and so use at

most 1 unit of energy from each vertex of G. Since t′i can only be a terminal vertex of a P ′

i , no t′i

expends energy when these P ′

i paths are used. Hence, the network lifetime is k.

Next, suppose that the lifetime is k. Let P ′

i be the route used for ri, 1 ≤ i ≤ k. Let Pi be

obtained from P ′

i by removing the last edge of P ′

i . Since ie(t′i) = 0, no t′i may be used as a relay

on any path. Hence t′i is on no Pj . Further, the first vertex of Pi is si and the last is ti (as the

only way to get to t′i is to use the edge (ti, t
′

i). The paths P ′

i , 1 ≤ i ≤ k, and so also the paths

Pi, 1 ≤ i ≤ k, must be vertex disjoint as ie(u) = 1 for every vertex u of G and once one of these

vertices is used in a P ′

i , it is depleted of all energy. Hence, the Pis define vertex disjoint si to ti

paths in G and the answer to the DCP instance is “yes”.

Note that the proof of Theorem 1 applies to both directed and undirected sensor networks as

well as to the offline and online versions of the maximum lifetime problem.

5 The Online Maximum Lifetime Heuristic (OML)

To maximize lifetime, we need to delay as much as possible the depletion of a sensor’s energy

to a level below that needed to transmit to its closest neighbor. We attempt to accomplish this

objective using a two-step algorithm to find a path for each routing request ri = (si, ti). In the

first step, we remove from G all edges (u, v) such that ce(u) < w(u, v) as these edges require more

energy than available for a transmit. Let the resulting graph be G′ = (V, E ′). Next, we determine

the minimum energy path, P ′

i , from si to ti in the pruned graph G′. This may be done using
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Dijkstra’s shortest path algorithm [16]. In case there is no si to ti path in the pruned graph G′, the

routing request ri fails. So, assume such a P ′

i exists. Using P ′

i , we compute the residual energy,

re(u) = ce(u)−w(u, v) for (u, v) an edge on P ′

i . Let minRE = min{re(u)|u ∈ P ′

i&&u 6= ti}. Let

G′′ = (V, E ′′) be obtained from G′ by removing all edges (u, v) ∈ E ′ with ce(u)−w(u, v) < minRE.

That is, all edges whose use would result in a residual energy below minRE are pruned from E ′.

This pruning is an attempt to prevent the depletion of energy from sensors that are low on energy.

In the second step, we find the path to be used to route the request ri. For this, we begin

with G′′ as above and assign weights to each (u, v) ∈ E ′′. The weight assignment is done so as

to balance the desire to minimize total energy consumption as well as the desire to prevent the

depletion of a sensor’s energy. Let eMin(u) = min{w(u, v)|(u, v) ∈ E ′′} be the energy needed by

sensor u to transmit a message to its nearest neighbor in G′′. Let ρ(u, v) be defined as below.

ρ(u, v) =

{

0 if ce(u) − w(u, v) > eMin(u)
c otherwise

where c is a non-negative constant and is an algorithm parameter. For each u ∈ V , define

α(u) =
minRE

ce(u)

The weight w′′(u, v) assigned to edge (u, v) ∈ E ′′ is

w′′(u, v) = (w(u, v) + ρ(u, v))(λα(u) − 1)

where λ is another non-negative constant and an algorithm parameter. As can be seen, this

weighting function, through ρ, assigns a high weight to edges whose use on a routing path causes

a sensor’s residual energy to become low. Also, all edges emanating from a sensor whose current

energy is small relative to minRE are assigned a high weight because of the λ term. Thus the

weighting function discourages the use of edges whose use on a routing path is likely to result in

the failure of a future route.

Figure 5 gives our OML algorithm to select a path for request ri. This algorithm may be

used as a heuristic for lifetime maximization. The resulting heuristic is the OML heuristic. Note

that our OML algorithm performs two shortest-path computations for each route request. By

contrast, the CMAX algorithm of [12] does only one shortest-path computation per route request,
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Step 1: [Compute G′′]
G′ = (V, E ′) where E ′ = E − {(u, v)|ce(u) < w(u, v)}.
Let P ′

i be a shortest si to ti path in G′.
If there is no such P ′

i , the route request fails, stop.
Compute the minimum residual energy minRE for sensors other than ti on P ′

i .
Let G′′ = (V, E ′′) where E ′′ = E ′ − {(u, v)|ce(u)− w(u, v) < minRE}.

Step 2: [Find route path]
Compute the weight w′′(u, v) for each edge of E ′′.
Let P ′′

i be a shortest si to ti path in G′′.
Use P ′′

i to route from si to ti.

Figure 5: Our OML algorithm for route request ri = (si, ti)

the max-min zPmin algorithm of [3] does O(log n) shortest-path computations per route request

and the MRPC algorithm of [15] does O(logn) depth- or breadth-first searches per route request.

Note that although both the CMAX and OML algorithms have a λα(u) − 1 term in the edge

weighting function, the two algorithms use a different α(u) function. In the case of CMAX, α(u) =

1−ce(u)/ie(u) is the fraction of u’s initial energy that has been used so far. So, CMAX discourages

the use, as relays, of sensors that have depleted a large fraction of their initial energy (even though

such sensors may a large amount of energy remaining). In OML, α(u) = minRE/ce(u). Hence

OML discourages the use, as relays, of sensors whose current energy is much less than minRE.

6 Distributed OML

OML, as presented in Section 5 is a centralized algorithm that requires a computational node

with complete information regarding the topology of the sensor network and current energy levels

of all sensors. In real sensor networks, these requirements often are impractical. We may develop

a hierarchical zone-based version of OML using the same strategy as used in [3] to arrive at

a zone-based max-min zPmin algorithm. Such a zone-based algorithm divides the sensors into

zones, each zone containing a set of geographically close sensors. Each zone has a host sensor

that does local routing (the host sensor in a zone may change with time and may, for example, be

the sensor with maximum current energy). There is also a sensor or node responsible for global

routing among sensor hosts. This global routing sensor treats each zone as a single network vertex
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and uses an estimate of the current energy in the zone. Kar et al. [12] have pointed out the same

zone-based strategy may be employed to derive a zone-based CMAX algorithm.

Aslam et al. [3] describe also a strategy to arrive at a distributed version of their min-max

zPmin algorithm. The strategy emploed in [3] also may be employed to arrive at a distributed

version of OML. Kar et al. [12] use a limited flooding approach to develop a distributed version

of their CMAX algorithm. In this limited flooding approach, each node computes the shortest

path (using edge weights as described for CMAX) to the destination and forwards the message

to the next hop on this shortest path. Wtih some periodicity, each sensor broadcasts its current

energy level to sensors within some distant r from it. Hence when computing a shortest path to

the destination, a sensor has the global topology, a reasonably recent measure of the energy of

near by sensors and the initial (or much less recent) energy of distant sensors. The distributed

algorithm is augmented with loop avoidance defenses. Clearly, this limited flooding strategy may

be employed to arrive at a distributed OML algorithm as well.

7 Evaluation

Simulations reported in the literature already have established the superiority of CMAX over max-

min zPmin, ME and maxRE [12] as well as the superiority of MRPC and CPRCP over MMBCR,

CMMBCR, and ME [15]. Misra and Banerjee [15] report that for a sensor transmission radius,

rT , (i.e., the maximum distance that a sensor can transmit in a single hop) of 2.9 units (a unit

being the smallest permissible separation between 2 sensors) and larger, MRPC performs slightly

better than does CMRPC whereas for a smaller transmission radius such as 1.9 units, CMRPC

has a better performance. Therefore, the focus of our simulations is the relative performance of

OML, CMAX and MRPC. Since our experiments use rT > 5, we do not include CMRPC in our

study.

Our experimental setup is similar to that employed by Kar et al. [12] and Aslam et al. [3].

We randomly populate either a 10 × 10 or a 25 × 25 grid with sensors. The sensors are deployed

at randomly selected grid points. The energy required by a single-hop transmission between two

sensors is 0.001 ∗ d3, where d is the Euclidean distance between the two sensors.

11



7.1 Selecting OML and CMAX Parameters

To determine suitable values for λ and ρ, we experimented with 10 × 10 grids into which 20

sensors were randomly placed. A total of 10 random placements of 20 sensors were considered.

In other words, we used 10 random sensor networks defined over a 10 × 10 grid. Each network

had 20 sensors. The transmission radius and initial energy for each sensor were set to ∞ and 30,

respectively. For our first experiment, we set c = 0.001r3
T in the definition of ρ. Network lifetime

was determined for λ = 2i, 1 ≤ i ≤ 12. For each network and λ combination, the lifetime over 10

random route request sequences was measured. So, for each λ value, 100 lifetime measurements

(10 networks with 10 sequences each) were made. The average lifetime for these 100 measurements

is reported in Figure 6. Figure 7 gives the average lifetime for 9 of the 10 networks used in the

study of Figure 6. However, this time, the average is over the 120 lifetimes for the 10 sequences

times 12 λ values used for each network. The standard deviation in the lifetime over these 120

tests also is reported. The rows labeled Avg Imp give the average increase in lifetime obtained by

OML over that obtained by CMAX and the rows labeled Std Dev Imp give the standard deviation

in this lifetime increase. The results for the 10th network used in our study are similar to those

reported in Figure 7. In all 1200 lifetime tests (120 per network; 10 networks), the OML algorithm

resulted in a lifetime greater than or equal to that obtained by CMAX!
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Figure 6: Average lifetime for different λ values
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Graph 1 Graph 2 Graph 3
CMAX OML CMAX OML CMAX OML

Avg 10651.1 11540.7 10995.3 11750.3 9680.4 10635.3
Std Dev 890.7 148.9 631.7 269.2 857.3 162.9
Avg Imp (%) 8.3 6.8 9.8
Std Dev Imp (%) 4.9 6.8 10.7

Graph 4 Graph 5 Graph 6
CMAX OML CMAX OML CMAX OML

Avg 10952.2 11988.4 9258.0 10340.8 11729.6 13151.0
Std Dev 756.93 146.67 979.89 170.33 904.38 178.12
Avg Imp (%) 9.5 11.6 12.1
Std Dev Imp (%) 8.0 13.4 8.3

Graph 7 Graph 8 Graph 9
CMAX OML CMAX OML CMAX OML

Avg 14288.9 15457.5 12399.3 13728.2 11206.2 1200.1
Std Dev 954.59 246.65 1095.74 194.39 776.5 185.0
Avg Imp (%) 8.2 10.7 7.1
Std Dev Imp (%) 6.1 11.7 6.6

Figure 7: Lifetime statistics for OML and CMAX

As can be seen from Figure 6, the performance of CMAX is quite sensitive to the chosen value

of λ whereas OML has a relatively stable performance for λ between 104 and 1011. In further

experiments, we used λ = 1011 for both OML and CMAX.

A similar experiment was conducted to determine a suitable value for c in the definition of ρ.

This experiment revealed that, for our data sets, lifetime was reltively insensitive to the choice of

c. However, lifetime was (marginally) best when c = 0.001 ∗ r3
T (recall that our single-hop energy

model is 0.001 ∗ d3 units of energy are needed to transmit a distance d).

7.2 Effect of Transmission Radius

To determine the effect of transmission radius on the performance of OML, CMAX, and MRPC,

we used a 25 × 25 grid. 10 networks, each obtained by placing 50 sensors at randomly chosen

grid points were considered. For each network, 10 route request sequences were generated. The

initial energy at each sensor was set to 30 and the transmission radius rT was varied from 7 to

30. Figure 8 shows the average lifetime and average energy consumed per session (i.e., source-
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Figure 8: Average lifetime and energy consumption as a function of transmission radius

to-destination route). The lifetime obtained usinh either OML or CMAX is significantly larger

than that obtained using MRPC. For small transmission radii, CMAX and OML have similar

performance. As the transmission radius is increased from a low of 7, the lifetime obtained by

both CMAX and OML increases. However, while the lifetime obtained by OML is fairly stable

for rT ≥ 10, the lifetime obtained by CMAX declines rapidly as rT increases beyond 10. Similarly,

the energy consumed per session is much larger when MRPC is used than when either OML or

CMAX is used. For rT < 10, CMAX used slightly less energy per session than did OML. However,

for larger values of rT , CMAX was more energy frugal.

7.3 Effect of Sensor Density

Our next study compared the effect of sensor density on performance. For this study, we placed n

sensors, n ∈ {40, 50, 60, 70, 80, 90, 100}, at random locations in a 25×25 grid. For each choice of n,

we experimented with rT ∈ {10, 20, 30}. The initial energy at each sensor was set to 30. For each

n and rT combination, we generated 10 random placements and for each placement, we generated

10 random request sequences. Figures 9 through 11 graph, as a function of n, the average lifetime

and average energy consumed per session for each rT . For all 700 test instances, the lifetime using

OML was at least as large as that obtained using CMAX. MRPC consistently underperformed
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Figure 9: Lifetime and energy consumed as a function of n, rT = 10

both OML and MRPC. As can be seen from the figures, for all three choices of rT , the percentage

increase in lifetime obtained by OML versus CMAX and MRPC increases as the sensor density

increases. When n = 100 and rT = 30, the average lifetime using OML is 31.9% larger than when

CMAX is used and is 55% larger than when MRPC is used. These percentages at rT = 20 are

16.5% and 53.9% and at rT = 10, they are 4.3% and 53%. Although at rT = 10, the energy

consumed per session by OML and CMAX is virtually the same, OML and CMAX consume, on

average, 33.2% less energy than consumed by MRPC. When rT = 20 OML consumes, on average,

9.1% less energy per session than does CMAX and 35.5% less energey than consumed by MRPC;

at rT = 30, this reduction in energy consumed per session is 17.8% nd 35.5%.

7.4 Comparison with max-min zPmin

The CMAX algorithm was compared experimentally to the max-min zPmin algorithm of [3] in

[12]. From this comparison and our experimental results reported so far, we expect that OML

and CMAX will result in better lifetimes than min-max zPmin. Hoever, the standing of min-max

zPmin relative to MRPC is not known. To resolve this, we ran a lifetime experiment using 20

randomly generated networks; each obtained by randomly placing 50 sensors on a 25 × 25 grid.

The initial energy at each sensor was set to 30 units and an rT value of 20 was used. The remaining
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Figure 10: Lifetime and energy consumed as a function of n, rT = 20
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Figure 11: Lifetime and energy consumed as a function of n, rT = 30

parameters were set to the same values used in our earlier experiments.

Figure 12 shows the average lifetime over 10 different randomly generated request sequences for

each of the 20 random networks. The results are consistent with those reported in [12], CMAX is

superior to max-min zPmin. The new information is that min-max zPmin is superior to MRPC.
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Figure 12: Lifetime under various algorithms

7.5 Network Capacity

As mentioned in Section 3, the CMAX algorithm was developed originally to maximize network

capacity–the number of successful routes in a given time period. Online outing algorithms for

capacity maximization may employ an admission control policy to determine which route requests

they will service. Algorithms developed for lifetime maximization are required to service every

route request for which there is a feasible path. We may use a lifetime maximization algorithm

in a capacity maximization application by using the admission control policy “service the current

route request is there is a feasible path for this request.” We compared the performance of OML,

CMAX and MRPC using the capacity metric. For our experiment, we generated 20 networks by

randomly placing 20 sensors in a 10×10 grid. Each sensor started with 30 units of energy and rT

was set to ∞. For each of the 20 networks, a random sequence of 10,000 message routing requests

was generated. The remaining parameters were as used in our earlier experiments.

Figure 13 shows the average number (for each of the 20 random networks, 10 request sequences

of size 10,000 each were tried) of routing requests successfully completed by each of the 3 test

algorithms. Network capacity using OML is approximately 6.7% higher, on average, than when
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CMAX is used; the capacity is about 58.1% higher using OML rather than MRPC.
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Figure 13: Capacity under various algorithms

8 Conclusion

We have shown that the lifetime maximization problem is NP-hard. We also have proposed a

new online heuristic–OML–for lifetime maximization. Extensive simulations show that our new

heuristic is superior to previously published heuristics for lifetime maximization both in terms of

providing larger lifetime and in terms of sensitivity to algorithm parameters. Additionally, our

proposed heuristic provides larger network capacity than provided by competing heuristics.
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