Correspondence Based Data Structures For Double Ended Priority Queues

Kyun-Rak Chong
Department of Computer Engineering
Honglk University
Seoul, Korea
chong@cs.hongik.ac.kr

and
Sartaj Sahni
Computer & Information Science & Engineering Department
University of Florida
Gainesville, FL 32611
sahni@cise.ufl.edu

We describe three general methods-total, dual, and leaf correspondence—that may be used to derive efficient double-ended priority queue structures from efficient single-ended priority queue structures. These methods are illustrated by developing double-ended priority queue structures that are based on the classical heap structure. Experimental results indicate that the leaf-correspondence method generally leads to a faster double-ended priority queue structure than the structures obtained using either total or dual correspondence. On randomly generated test sets, however, the splay tree outperforms the tested correspondence-based double-ended priority queue structures.

General Terms: Data structures

Additional Key Words and Phrases: Double-ended priority queues, correspondence-based data structures, runtime efficiency, heaps, leftist trees, splay trees

1. INTRODUCTION

A $min\ priority\ queue\ (minPQ)$ is a data structure which supports the following operations :

-FindMin(Q): return the minimum element in Q

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works, requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

```
    DeleteMin(Q): delete the minimum element in Q
    Insert(Q,x): insert x into the minPQ Q
```

A max priority queue (maxPQ) is an analogous data structure in which the operations FindMin(Q) and DeleteMin(Q) are replaced by the operations FindMax(Q) and DeleteMax(Q). Several implicit and explicit data structures have been developed for minPQs (and hence for maxPQs) [2; 5; 7; 8; 9; 10; 17; 18; 19].

A min meldable priority queue (minMPQ) is a min priority queue which also supports the operation

—Meld (Q_1,Q_2) : return a min priority queue that contains all the elements in minPQs Q_1 and Q_2 . Q_1 and Q_2 may be destroyed by the operation.

A maxMPQ is defined similarly. Among the known priority structures, the structure, Fast Meldable Priority Queue (FMPQ), has the best asymptotic properties - DeleteMin(Q) runs in logarithmic time and the remaining operations take constant time [2].

A double ended priority queue (DEPQ) is a data structure which supports the operations:

```
—FindMin(Q): return the minimum element in Q
—FindMax(Q): return the maximum element in Q
—DeleteMin(Q): delete the minimum element in Q
—DeleteMax(Q): delete the maximum element in Q
—Insert(Q,x): insert x into Q
```

Many data structures [1; 2; 3; 4; 6; 12; 15; 20] have been proposed for the representation of a DEPQ. Some of these data structures [2; 6; 15] were developed to also support the Meld operation efficiently. For Example, Brodal [2] describes how his FMPQ structure may be used to perform the DeleteMin and DeleteMax operation in logarithmic time and the remaining operations in constant time.

The purpose of this paper is to demonstrate the generality of two techniques used in [6] to develop an MDEPQ representation from an MPQ representation – height biased leftist trees. These methods – total correspondence and leaf correspondence – may be used to arrive at efficient DEPQ and MDEPQ data structures from PQ and MPQ data structures such as the pairing heap [8; 18], Binomial and Fibonacci heaps [9], and Brodal's FMPQ [2] which also provide efficient support for the operation:

```
-Delete(Q,p): delete and return the element located at p
```

We begin, in Section 2, by reviewing a rather straightforward way, dual priority queues, to obtain a (M)DEPQ structure from a (M)PQ structure. This method [2; 6] simply puts each element into both a minPQ and a maxPQ. In Section 3, we describe the total correspondence method and in Section 4, we describe leaf correspondence. Both sections provide examples of PQs and MPQs and the resulting DEPQs and MDEPQs. Section 5 gives complexity results. In Section 6, we provide the result of experiments that compare the performance of the MDEPQs based on height biased leftist tree [7], pairing heaps [8; 18], and FMPQs [2]. For reference purpose, we also provide run times for the splay tree data structure [16]. Although splay trees were not specifically designed to represent DEPQs, it is easy

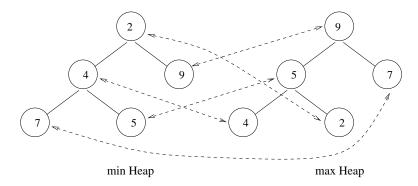


Fig. 1. Dual heap structure

to use them for this purpose. Note that splay trees do not provide efficient support for the Meld operation.

2. DUAL PRIORITY QUEUES

A simple strategy, dual priority queues, to use to arrive at a DEPQ structure from a PQ structure that also supports Delete(Q, p) is to maintain both a minPQ Qmin and a maxPQ Qmax; every element of the PQ is in both Qmin and Qmax; and there are pointers between the two copies of any element e (note that one copy of e is in Qmin and the other in Qmax). For example, if the DEPQ is to contain elements with priorities [5, 9, 2, 4, 7], then we could set up a min heap and a max heap as in Figure 1. Pointers between the two copies of an element are shown by broken lines. When dual priority queues are used, the (M)DEPQ operations are performed as follows.

```
\begin{split} &-\mathtt{FindMin}(\mathbb{Q}) = \mathtt{return} \ \mathtt{FindMin}(\mathbb{Qmin}) \\ &-\mathtt{FindMax}(\mathbb{Q}) = \mathtt{return} \ \mathtt{FindMax}(\mathbb{Qmax}) \\ &-\mathtt{Insert}(\mathbb{Q}, \mathbf{x}) = \{\mathtt{Insert}(\mathbb{Qmin}, \mathbf{x}); \ \mathtt{Insert}(\mathbb{Qmax}, \mathbf{x}); \ \mathtt{SetPointers}(); \} \\ &-\mathtt{DeleteMin}(\mathbb{Q}) = \{\mathtt{Delete}(\mathbb{Qmax}, \mathtt{Pointer}(\mathtt{FindMin}(\mathbb{Qmin}))); \ \mathtt{DeleteMin}(\mathbb{Qmin}); \} \\ &-\mathtt{DeleteMax}(\mathbb{Q}) = \{\mathtt{Delete}(\mathbb{Qmin}, \mathtt{Pointer}(\mathtt{FindMax}(\mathbb{Qmax}))); \ \mathtt{DeleteMax}(\mathbb{Qmax}); \} \\ &-\mathtt{Meld}(Q_1, Q_2) = \{\mathtt{Meld}(Q_1 \min, Q_2 \min); \ \mathtt{Meld}(Q_1 \max, Q_2 \max); \} \end{split}
```

SetPointers() creates the pointers between the two copies of the newly inserted element. The code to do this task could easily be integrated into the code for Insert. Pointer(y) gives the pointer to the copy of y in the dual priority queue.

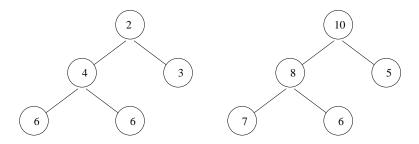
If we make the assumption that Delete(Q,p) has the same complexity as DeleteMin and DeleteMax, then the asymptotic complexity of the individual operations for a (M)DEPQ are the same as for the corresponding operations in a (M)PQ. Since this assumption is valid for all PQ structures cited earlier other than the weight biased leftist trees of [5], the concept of dual priority queues may be used to arrive at efficient (M)DEPQ structures from each of the cited (M)PQ structures other than weight biased leftist trees.

Although the notion of dual priority queues is straightforward, it suffers from at least two deficiencies: (1) The number of nodes in the two priority queues is twice the number of elements and (2) Each operation of the (M)DEPQ takes

approximately twice the time it takes for the corresponding operation in a PQ because the corresponding operation needs to be done in both the minPQ and the maxPQ. The concepts of total and leaf correspondence overcome both these deficiencies.

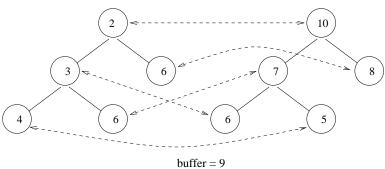
A refinement of dual priority queues was proposed by Cho and Sahni [6]. This refinement applies to linked priority queues such as leftist trees and Brodal's FMPQ structure. The two nodes used for each element in ordinary dual priority queues are combined into a single node. So, in refined dual priority queues based on leftist trees, for example, each node will have 1 data field, 2 left child fields (one for the min leftist tree, the other for the max leftist tree), 2 right child fields, and 2 sh (length of shortest path to an external node) fields.

3. TOTAL CORRESPONDENCE


The notion of total correspondence borrows heavily from the ideas used in a twin heap [20]. In the twin heap data structure n elements are stored in a min heap using an array minHeap[1:n] and n other elements are stored in a max heap using the array maxHeap[1:n]. The min and max heaps satisfy the inequality minHeap[i] \leq maxHeap[i], $1 \leq i \leq n$. In this way, we can represent a DEPQ with 2n elements. When we must represent a DEPQ with an odd number of elements, one element is stored in a buffer, and the remaining elements are divided equally between the arrays minHeap and maxHeap.

In total correspondence, we remove the positional requirement in the relationship between pairs of elements in the min heap and max heap. The requirement becomes: for each element a in minPQ there is a distinct element b in maxPQ such that a \leq b and vice versa. (a,b) is a corresponding pair of elements. Figure 2(a) shows a twin heap with 11 elements and Figure 2(b) shows a total correspondence heap. The broken arrows connect corresponding pairs of elements.

In a twin heap the corresponding pairs (minHeap[i], maxHeap[i]) are implicit, whereas in a total correspondence heap these pairs are represented using explicit pointers. The (M)DEPQ operations can be performed on a total correspondence priority queue as below.


```
FindMax(Q) =
if (the buffer is empty)
  return FindMax(Qmax)
else
  return max{buffer, FindMax(Qmax)}
FindMin(Q) = similar to FindMax(Q)

Insert(Q,e) =
if (the buffer is empty)
  put e into the buffer;
else {
  Insert(Qmax,max{buffer,e});
```


buffer = 9

(a) Twin heap

(b) Total correspondence heap

Fig. 2. Twin heap and total correspondence heap

```
K. Chong and S. Sahni
```

6

```
Insert(Qmin,{buffer,e} - max{buffer,e});
  SetPointers();
  buffer = empty;
DeleteMax(Q) =
if (the buffer is empty) {
  y = FindMax(Qmax);
  DeleteMax(Qmax);
  buffer = Delete(Qmin, Pointer(y));
}
else {
  if (buffer < FindMax(Qmax)) {
    // delete FindMax(Qmax)
    y = FindMax(Qmax);
    DeleteMax(Qmax);
    if (buffer \geq element at Pointer(y)) {
       Insert(Qmax,buffer);
       SetPointers(); // between Pointer(y) and buffer
    else {
       Insert(Qmax, element at Pointer(y));
       Delete(Qmin, Pointer(y));
       Insert(Qmin, buffer);
       SetPointers();
  buffer = empty;
DeleteMin(Q) = similar to DeleteMax(Q);
\mathtt{Meld}(Q_1,Q_2) = \{\mathtt{Meld}(Q_1 \; \mathtt{min},Q_2 \; \mathtt{min}); \, \mathtt{Meld}(Q_1 \; \mathtt{max},Q_2 \; \mathtt{max}); \}
```

In a total correspondence (M)DEPQ, the number of nodes is either n or n-1. The space requirement is half that needed by the dual priority queue representation. The time required is also reduced. For example, if we do a sequence of inserts, every other one simply puts the element in the buffer. The remaining inserts put one element in Qmax and one in Qmin. So, on average, an insert takes time comparable to an insert in either Qmax or Qmin. Recall that when dual priority queues are used the insert time is the sum of the times to insert into Qmax and Qmin. Note also that the size of Qmax and Qmin together is half that of a dual priority queue.

If we assume that the complexity of the insert operation for priority queues as well as 2 Delete() operations is no more than that of the delete max or min operation (this is true for all known priority queue structures other than weight biased leftist trees), then the complexity of DeleteMax and DeleteMin for total correspon-

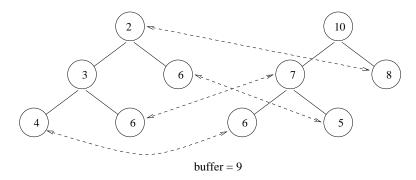


Fig. 3. Leaf correspondence heap

dence (M)DEPQ is the same as for the DeleteMax and DeleteMin operation of the underlying priority queue data structure. The complexity of the Meld operation is the same as that for the underlying priority queue.

Using the notion of total correspondence, we trivially obtain efficient (M)DEPQ structures starting with any of the known priority queue structures (other than weight biased leftist trees). In particular, if we use the FMPQ structure of [2] as the base priority structure, we obtain a total correspondence MDEPQ structure in which DeleteMax and DeleteMin take logarithmic time, and the remaining operations take constant time. This adaptation is superior to the dual priority queue adaptation proposed in [2] because the space requirements are almost half. Additionally, the total correspondence adaptation is faster (see Section 6).

The DeleteMax and DeleteMin operations can generally be programmed to run faster than suggested by our generic algorithms. This is because, for example, a DeleteMax and Insert into a maxPQ can often be done faster as a single operation ChangeMax. Similarly a Delete and Insert can be programmed as a Change operation.

4. LEAF CORRESPONDENCE

In leaf correspondence (M)DEPQs, for every leaf element a in minPQ, there is a distinct element b in maxPQ such that $a \le b$ and for every leaf element c in maxPQ there is a distinct element d in minPQ such that $d \le c$. Figure 3 shows a leaf correspondence heap.

Efficient leaf correspondence (M)DEPQs may be constructed easily from (M)PQs which satisfy the following requirements:

- (a) The (M)PQ supports the operation Delete(Q,p) efficiently.
- (b) When an element is inserted into the (M)PQ, no nonleaf node becomes a leaf node (except possibly the node for the newly inserted item).
- (c) When an element is deleted (using Delete, DeleteMax or DeleteMin) from the (M)PQ, no nonleaf node (except possibly the parent of the deleted node) becomes a leaf node.
- (d) The Meld operation (if supported) should not create new leaf nodes.

Some of the (M)PQ structures that satisfy these requirements are height biased

leftist tree, pairing heaps, and Fibonacci heaps. Requirements (b) and (c) are not satisfied, for example, by ordinary heaps and the FMPQ structure of [2].

The FindMax, FindMin, and Meld algorithms for a leaf correspondence (M)DEPQ are the same as those for a total correspondence (M)DEPQ. The Insert and DeleteMax algorithms are given below. DeleteMin is similar to DeleteMax.

```
Insert(Q,x) =
if (the buffer is empty)
  buffer = x;
else {
  small = min \{buffer, x\};
  large = \{buffer, x\} - \{small\};
  Insert(Qmin, small);
  if (small is a leaf) {
    Insert(Qmax, large);
    SetPointers(); // between small and large
    buffer = empty;
  else buffer = large;
DeleteMax(Q) =
if (the buffer is empty) {
  y = FindMax(Qmax);
  DeleteMax(Qmax);
  if (Pointer(y) \neq null)
    if (Pointer(y) is not a leaf)
      Pointer(Pointer(y)) = null;
    else { // must establish leaf correspondence
      p = Parent(Pointer(y));
      y = Delete(Qmin,Pointer(y));
      if (p is now a leaf and Pointer(p) = null) {
        Insert(Qmax,y);
        SetPointers(); // between p and y
      else buffer = y;
else { // buffer is not empty
  y = FindMax(Qmax);
  if (buffer \geq y)
    buffer = empty;
  else { // delete from Qmax
    DeleteMax(Qmax);
    if (Pointer(y) \neq null) {
      if (Pointer(y) is a leaf) {
        // must establish leaf correspondence
```

```
if (buffer > element at Pointer(y)) {
          Insert(Qmax,buffer);
          SetPointers(); // between Pointer(y) and buffer
          buffer = empty;
        else {
          p = Parent(Pointer(y));
          z = Delete(Qmin, Pointer(y));
          Insert(Qmax,z);
          if (either p or z has become a leaf and Pointer(p) is null)
            SetPointers(); // between p and z
          else
           if (z has become a leaf) { // Pointer(p) is not null
              Insert(Qmin, buffer);
              SetPointers(); // between z and buffer
              buffer = empty;
            else Pointer(z) = null;
      else Pointer(Pointer(y)) = null;
}
```

The operations on leaf correspondence height biased leftist trees and pairing heaps have the same asymptotic complexity as when total correspondence is used.

Although heaps and Brodal's FMPQ structure do not satisfy the requirements of our generic approach to build a leaf correspondence (M)DEPQ structure from a priority queue, we can nonetheless arrive at leaf correspondence heaps and leaf correspondence FMPQs using a customized approach.

4.1 Leaf Correspondence Heaps

We assume familiarity with the top-down delete and bottom-up insert algorithms for min and max heaps [10]. We first describe a way to establish correspondence between two nodes P and Q, P is in the max heap, Q is in the min heap, one or both are leaves, and both presently have null correspondence pointers. If the element, $\mathtt{data}(P)$, in node P is such that $\mathtt{data}(P) \geq \mathtt{data}(Q)$, then we can simply set correspondence pointers between P and Q. So, suppose that $\mathtt{data}(P) < \mathtt{data}(Q)$. To establish a correspondence between node P and Q, we must change the elements in P and/or Q so that $\mathtt{data}(P) \geq \mathtt{data}(Q)$. To this end, we traverse the path from P to the root of the max heap maxHeap collecting elements that are $< \mathtt{data}(Q)$. In the example of Figure 4(a), the elements 7, 10, and 15 are collected.

Next, we collect elements on the path from Q to the root of minHeap that are > data(P), the elements 20, 18, 12, and 9 are collected. The two lists of collected elements are merged to get the list 7, 9, 10, 12, 15, 18, 20 and these elements are reassigned to the nodes of minHeap and maxHeap. The first four elements are put in minHeap because four elements of the list came from minHeap, the remaining

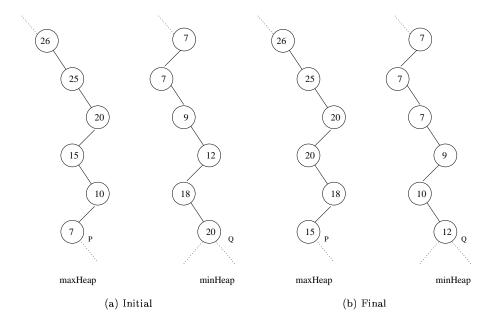


Fig. 4. Estabilishing correspondence between P and Q

elements are put into maxHeap. The resulting configuration is shown in Figure 4(b). This element reassignment process replaces elements on the path from P to the root of maxHeap by possibly larger ones and those on the path from Q to the root of minHeap by possibly smaller ones. Consequently, the heap property is not violated. Further data(P) \geq data(Q) and we can set correspondence pointers between P and Q. Note that correspondence pointers in nodes on the paths from P and Q to their respective roots are still valid. We shall refer to this method of establishing correspondence as "establish PQ correspondence". Note that we can establish PQ correspondence in $O(\log n)$ time, where n is the total number of elements in the leaf correspondence heap.

4.1.1 Inserting into a Leaf Correspondence Heap. When a new element is inserted into a nonempty min heap or max heap, it is possible for a nonleaf existing element to become a leaf. This can happen only when we insert an element into a heap that has an even number of elements. Figure 5(a) shows a min heap with 10 elements. If we insert 3 into this min heap, the result is the min heap of Figure 5(b).

Element 10 which is a nonleaf of Figure 5(a) becomes a leaf because of the insertion. The new node R is the right child of its parent p(R). During the insertion of element x into a min heap a nonleaf becomes a leaf iff (a) the new node R is the right child of its parent and (b) the original element in p(R) > x. A similar observation may be made about insertion into a max heap. With this knowledge, we arrive at the following algorithm to insert an element x into a leaf correspondence heap.

InsertLCH(Q,e) =

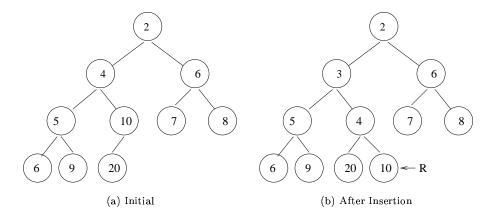


Fig. 5. Heap insertion

```
if (the buffer is empty)
  buffer = x;
else {
  small = min \{buffer, x\};
  large = {buffer, x} - {small};
  insert large into maxHeap using the max heap insertion algorithm;
  if (a nonleaf of the original maxHeap is now a leaf that has a null correspondence pointer)
    remove the new leaf and put it in the buffer;
  insert small into minHeap using the min heap insertion algorithm;
  if (small is a leaf)
    set correspondence pointers between small and large;
    if (a nonleaf R (see Figure 5) with null corresponding pointer becomes a leaf)
      establish PQ correspondence with P = R and Q = large;
    else
      if (large is a leaf)
        set correspondence pointers between small and large;
}
```

The time required to insert an element into an LCH is $O(\log n)$.

4.1.2 Deleting the Maximum Element from a Leaf Correspondence Heap. Next, consider deleting the maximum element from a LCH (deleting the minimum element is similar). The maximum element is either in the buffer or in the root of maxHeap. The case when the maximum element is in the buffer is handled by simply emptying the buffer. When the maximum element is in the root of the maxHeap, we first use the delete max algorithm for max heaps. This algorithm takes the last element, data(last), out of the max heap and reinserts this element into the max heap in a top down manner (see Figure 6).

As a result of this deletion process, the former parent, p(last), of the last element

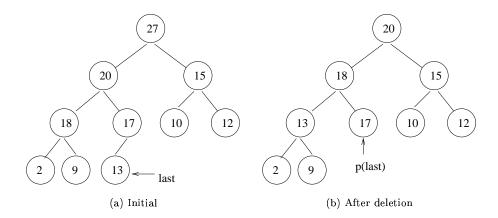


Fig. 6. Deletion from a max heap

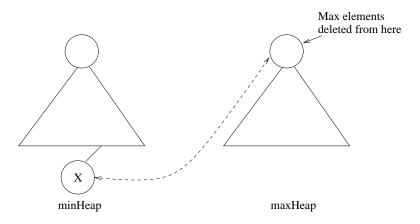


Fig. 7. Establishing correspondence for the correponding node

may become a leaf. When p(last) has a null correspondence pointer, we need to establish correspondence for this new leaf node. Notice that the deletion process moves an element from a leaf node to a nonleaf node. This element is data(last) in Figure 6(a), and is data(new Parent(data(last))) when data(last) is a leaf node following reinsertion. Let C be the corresponding node in the minHeap for the former leaf. Establish PQ correspondence with P = p(last) and Q = C.

Having taken care of possible correspondence problems in maxHeap, we proceed to take care of such problems in minHeap. Problems of this type arise only when the deleted max element is the corresponding element for a leaf element data(x) in minHeap. We must establish correspondence for leaf node x of minHeap.

First, consider the case when x is the last node of minHeap. If the removal of x does not cause the parent node p(x) to become a leaf or if p(x) has a non null correspondence pointer, we remove node x from minHeap and insert data(x) back into the LCH using InsertLCH. If the removal of x cause p(x) to become a leaf with a null correspondence pointer, we insert data(x) into maxHeap using the bottom

FindMax/Min DeleteMax/Min Insert Meld Dual Correspondence $\overline{O(t_{Insert})}$ $O(t_{Meld}$ $O(t_{FindMax})$ $O(t_{DeleteMax})$ Total Correspondence $O(t_{Insert})$ $O(t_{FindMax})$ $O(t_{DeleteMax} + t_{Insert} + t_{Delete})$ $O(t_{Meld})$ DLT/TLT/LLT DPH/TPH/LPH $O(t_{Insert})$ $O(t_{Meld})$ $O(t_{FindMax})$ $O(t_{DeleteMax} + t_{Insert} + t_{Delete})$ DFMPQ/TFMPQ/LFMPQ

Table 1. Complexity of the (M)DEPQ operations

up insertion algorithm for a max heap. This insertion creates a new leaf. If this new leaf has a null correspondence pointer, we establish PQ correspondence with P = new leaf and Q = p(x); otherwise, we establish PQ correspondence with P = node that contains data(x) and Q = p(x).

The second and final case to consider is when x is not the last node of minHeap. Let last \neq x be the last node. If p(last) has a non null correspondence pointer or p(last) does not become a leaf when node last is removed, then remove node last; establish PQ correspondence with P = node of maxHeap that corresponds to the former leaf last and Q = x; insert data(last) into the LCH using InsertLCH. If p(last) has a null correspondence pointer and p(last) becomes a leaf following removal of the node last, move data(last) and correspondence(last) to p(last); remove node last; and insert the original data(p(last)) into maxHeap. This creates a new leaf in maxHeap. If this new leaf has a null correspondence pointer, we establish PQ correspondence with P = new leaf and Q = x; otherwise, we establish PQ correspondence with P = node that contains the original data(p(last)) and Q = x.

The complexity of the DeleteMaxLCH process described above is $O(\log n)$.

4.2 Leaf Correspondence FMPQs

The generic leaf correspondence algorithms may be applied to leaf correspondence FMPQs. However, the application of these algorithms may leave behind leaves that have a null correspondence pointer. To overcome this problem, newly created leaves with null correspondence pointer are detached from their trees and reinserted into the leaf correspondence FMPQ. It may be shown that O(1) such reinsertions are needed. Therefore, the asymptotic complexity of each MDEPQ operation is the same as for the corresponding operation in an FMPQ.

5. COMPLEXITY OF CORRESPONDENCE (M)DEPQS

Let $t_{FindMax}(=t_{FindMin})$, $t_{DeleteMax}(=t_{DeleteMin})$, t_{Delete} , t_{Insert} and t_{Meld} be the complexity of FindMax, DeleteMax, Delete, Insert and Meld operations for the (M)PQ upon which a correspondence DEPQ is based. Table 1 summarizes the complexity of the (M)DEPQ operations when the generic and customized correspondence algorithms are used. In this table, DLT refers to dual correspondence leftist trees, TLT to total correspondence leftist trees, and LLT to leaf correspondence leftist trees; PH is an abbreviation for the pairing heap data structure.

As far as space complexity is concerned, dual and refined dual correspondence require approximately twice as much space as taken by total and leaf correspondence;

inputs	m	n	DLT	TLT	LLT	DPH	TPH	LPH	DFD	TFD	LFD	Splay
		1 K	432	401	313	306	319	274	1968	1611	1384	262
	100K	10K	782	744	603	585	582	528	2734	2308	2037	491
		100K 1M	1681 2416	1576 2226	1339 1913	1527 5493	1343 3516	1276 3442	3331 4175	2913 3703	2683 3433	1013 1391
		1K	825	764	594	5493	609	518	3933	3212	2755	496
	200K	10K	1290	1225	979	934	949	847	5427	4560	3974	803
		100K	2955	2798	2355	2397	2228	2101	6576	5704	5209	1809
RD1		1M	4699	4348	3733	6958	5001	4856	8325	7371	6831	2733
		1 K	1994	1842	1429	1396	1468	1245	9863	8057	6882	1194
	500K	10 K	2614	2466	1942	1847	1911	1672	13503	11316	9733	1604
		100K	5794	5550	4589	4327	4213	3921	16201	13918	12412	3601
		1 M	11005	10274	8788	11069	9164	8814	20576	18154	16850	6503
	13.5	1K	3934	3633	2816	2752	2898	2451	19704	16090	13734	2354
	1 M	10K 100K	4666 9298	4373 8940	3420	3269 6694	3410 6675	2946 6130	26972 32135	22564 27425	19259 23967	2836 5791
		100K	20165	18996	7277 16168	17106	15277	14604	40581	35618	33262	12091
-		1K	429	397	310	305	318	272	1953	1597	1373	257
	100K	10 K	744	705	572	569	565	511	2646	2229	1955	438
	10011	100K	1457	1359	1152	1421	1236	1169	3102	2707	2460	755
		1M	1819	1662	1424	5209	3231	3158	3823	3371	3090	862
		1 K	817	755	587	577	605	514	3920	3202	2738	489
	200K	10 K	1224	1156	924	904	918	816	5292	4442	3848	718
		100K	2546	2396	2012	2201	2030	1903	6172	5347	4790	1348
RD2		1 M	3537	3247	2778	6403	4442	4298	7617	6708	6147	1696
	F0075	1K	1977 2492	1822	1414	1390	1460	1235	9813	8009	6839	1179
	500K	10K 100K	4964	2336 4713	1839 3887	1789 3921	1850 3802	1611 3512	13287 15376	11121 13192	9524 11519	1458 2694
		100K	8268	7653	6526	9754	7835	7489	18927	16605	15285	4047
		1K	3899	3589	2782	2737	2878	2428	19631	16019	13663	2325
	1M	10K	4484	4177	3265	3181	3317	2853	26674	22296	18974	2629
		100K	7975	7586	6161	6045	6012	5474	30868	26325	22661	4394
		1 M	15107	14105	11965	14654	12800	12137	37552	32792	30253	7549
		1K	705	407	199	228	244	190	1941	1501	1218	58
	100K	10K	913	495	200	244	231	199	2694	2110	1673	58
		100K	1149	603	200	419	307	287	3244	2571	2017	58
		1 M	1482	757	200	2219	1207	1187	3839	3062	2408	58
	200K	1K 10K	1402 1824	815	399 400	456 472	497 472	382 391	3824	2967 4230	2427 3394	118 118
	200K	10K	2249	993 1183	400	640	515	474	5381 6461	5124	4020	117
INC		1M	2894	1481	400	2440	1416	1374	7689	6153	4814	117
11.0		1K	3512	2036	1000	1138	1261	953	9589	7442	6091	295
	500K	10 K	4559	2494	1000	1156	1222	964	13443	10564	8563	294
		100K	5623	2949	1001	1309	1160	1041	16089	12761	10024	294
		1M	7007	3592	1001	3101	2039	1937	19183	15324	12052	294
		1K	7023	4086	1999	2273	2530	1907	19204	14908	12189	589
	1 M	10K 100K	9117	5000	2001 2001	2294 2450	2511 2316	1920 1997	26911	21162	17188 20066	589
		100K	11221 13729	5900 7056	2001	4201	3080	2872	31936 38353	25453 30641	24095	588 587
\vdash		1 K	701	413	210	232	258	202	1937	1506	1276	63
	100K	10K	906	551	329	284	312	232	2825	2256	1926	104
	10011	100K	986	656	478	372	386	278	3661	2998	2686	324
		1M	986	656	478	372	386	278	4409	3609	3250	2124
		1 K	1400	821	402	459	513	394	3852	2990	2536	120
	$200 \mathrm{K}$	10 K	1811	1062	429	530	587	429	5515	4365	3668	147
		100K	2093	1421	549	939	872	551	7263	5952	5337	285
DEC		1 M	2093	1421	549	2683	1659	551	8806	7201	6516	618
	F0075	1K	3491	2039	1007	1136	1265	938	9541	7404	6290	299
	500K	10K 100K	4537 5554	2553 3457	1127 2348	1191 1713	1374 1814	1032 1335	13573 17485	10693 14313	8923 12574	340 755
		100K	5652	3632	2548	1863	1939	1394	22057	18048	16345	2622
		1K	6999	4081	2007	2272	2533	1998	19112	14847	12586	593
	1M	10K	9094	5068	2129	2329	2714	2032	27025	21307	17707	635
		100K	11151	6468	3637	2852	3188	2329	33291	26984	22737	1050

 $m\equiv$ the number of operations performed $n\equiv$ the number of elements in initial data structures

Table 2. The number of key comparisons

inputs	m	n	DLT	TLT	LLT	DPH	TPH	LPH	DFD	TFD	LFD	Splay
		1 K	2.47	2.92	2.28	1.89	2.26	2.08	9.67	9.44	6.92	1.88
	100K	10 K	2.39	1.97	1.81	1.49	1.68	1.53	2.57	4.78	4.75	1.24
		100K	2.52	3.16	1.93	2,15	2,10	2.12	8.78	11,24	6.39	1.49
		1 M	1.55	1.79	1.83	1.33	1.58	1.51	7.14	7.32	10.01	1.22
		1 K	2.66	2.88	2.28	1.94	2.28	2.14	16.75	15.28	10.46	1.63
	$200 \mathrm{K}$	10 K	4.69	4.70	4.08	3.66	3.69	3.51	5.14	8.39	8.38	3.17
RD1		100K	5.11	4.14	4.20	3.26	3.29	2.79	11.80	12.05	21.82	2.57
		1M	3.74	3.65	2.54	1.79	1.64	1.72	8.85	11.10	9.05	1.95
		1 K	6.45	7.62	6.14	5.12	6.07	5.36	30.63	28.69	18.18	5.04
	500K	10 K	5.10	5.29	4.07	4.22	4.64	3.94	7.77	13.14	12.56	3.91
		100K	6.90	7.26	5.81	4.06	4.62	4.04	28.19	33.94	52.05	4.52
		1M	6.28	6.63	5.45	4.50	4.19	3.84	10.35	10.94	42.49	3.21
		1 K	6.89	8.42	7.29	5.75	7.04	6.27	30.97	29.73	18.86	5.95
	1M	10K	6.95	7.17	6.44	5.99	6.40	5.67	12.12	15.77	20.90	6.01
		100K	10.16	8.10	7.52	6.51	7.65	6.32	22.56	28.77	98.10	6.50
		1M	9.17	10.15	8.58	7.59	7.64	6.88	17.44	21.98	122.12	6.35
		1 K	2.45	2.11	2.00	1.78	1.75	1.79	8.74	7.42	5.38	1.87
	100K	10 K	1.88	1.75	1.56	1.38	1.35	1.36	3.85	5.36	3.76	1.27
		100K	3.25	2.54	2.46	2.14	2.12	2.19	7.47	8.72	6.60	1.51
		1M	2.52	1.91	1.65	1.82	1.09	1.47	7.15	7.87	7.76	0.87
		1 K	2.31	2.52	2.25	1.83	2.26	1.75	16.76	14.36	7.71	1.71
	$200 \mathrm{K}$	10 K	3.34	3.53	2.34	2.75	2.94	2.50	4.20	7.15	10,11	2.40
		100K	3.25	3.70	3.36	2.84	3.27	2.90	17.14	19.67	17,18	1.78
RD2		1M	3.87	4.31	2.85	2.05	2.16	2.41	10.01	9.91	8.93	1.01
		1 K	4.12	4.58	3.26	3.23	3.70	3.36	30.02	25.23	16.51	2.96
	500K	10 K	3.83	4.52	3.03	3.21	4.14	3.52	8.92	12.77	16.16	3.05
		100K	6.46	6.93	5.21	5.74	5.84	4.63	27.60	33.38	39.81	3.65
		1M	6.42	5.92	3.13	4.28	4.61	3.52	11.21	12.28	76.52	2.40
		1 K	8.01	8.74	6.76	5.79	7.20	5.85	39.59	31.80	22.46	5.74
	1 M	10 K	6.17	5.68	5.25	4.36	4.86	4.31	12.53	16.43	19.51	4.72
		100K	10.74	11.35	9.30	8.77	9.32	9.44	38.54	42.82	81.32	6.14
		1M	12.00	11.08	8.47	8.60	7.76	7.55	16.51	21.36	54.28	4.41

m = the number of operations performed n = the number of elements in initial data structures

Table 3. Standard deviation of the number of key comparisons

the space requirements of total and leaf correspondence are the same.

6. EXPERIMENTAL RESULTS

From Table 1 we see that the asymptotic complexity of operations performed on DEPQ data structures that result from the application of the correspondence methods described in this paper to any given priority queue structure is the same regardless of which correspondence method is used. To evaluate te relative merits of the various correspondence methods as far as time performance is concerned, we resort to experimentation. An experimental study is also needed to determine which of the many possible correspondence-based DEPQ structures can be expected to perform best in practice. To answer these two questions, we compared the run time performance of dual, total and leaf correspondence double ended priority queue structures. Our experiements were limited to correspondence structures based on height biased leftist trees, pairing heaps, and fast meldable priority queues; the first of these permits $O(\log n)$ time melds while in the other two, a meld takes O(1)time. For comparison purposes, our experimental study also includes the splay tree [16]. This tree was adapted to perform the DEPQ operations. We chose the splay tree because the results of [11] indicate that a splay tree modified to work as a priority queue generally outperforms all other priority queue structures using the hold model (i.e., size of data structure remains relatively stable as insert and delete operations are performed). Note that when a priority queue is embedded within an application such as constructing minimum-cost spanning trees or finding shortest paths, the paring heap generally results in the fastest implementation for the application [13; 14].

Inputs	0.058 0.138 0.376 0.615 0.615 0.616 0.216 0.226 0.402 8 1.238 1.238 4 0.673 5 1.979 8 5.208 0.402 1.236 0.402 1.236 0.402 1.233 0.056 0.114 0.233 0.233 0.250 0.114 0.233 0.233 0.235 0.114 0.233 0.235 0.236 0.114 0.233 0.236 0.23
RD1	0.138 0.376 0.615 0.106 0.216 0.672 1.225 0.402 8.1.238 4.0.673 4.0.673 0.673 0.402 8.1.238 5.2.795 0.056 0.103 0.056 0.114 0.233 0.233 0.235 0.114 0.233 0.285 0.103 0.285 0.103 0.285
100K	0.376 0.615 0.106 0.216 0.216 0.256 0.250 0.402 1.225 0.402 1.238 5.2.795 1.979 8.5.208 0.056 1.014 0.233 0.233 0.285 0.114 0.233 0.285 0.103 0.279 0.114
RD1	0.615 0.106 0.216 0.271 0.672 1.225 0.402 8 1.238 1.238 1.238 1.238 4 0.673 5 1.979 8 5.208 0.114 1.238 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.234
RD1	0.106 0.216 0.672 1.225 0.250 0.402 1.238 5.2795 1.0498 5.208 0.498 5.208 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.104 0.233 0.233 0.114 0.233 0.179 0.399 0.394
RD1	0.216 0.672 1.225 0.250 0.402 8.5 1.238 5 1.238 4 0.673 5 1.979 8 5.208 0.056 0.114 0.233 0.233 0.285 0.103 0.179 0.399
RD1	0.672 1.225 0.402 8 1.238 5 2.795 4 0.673 4 0.673 5 1.979 8 5.208 1 0.114 4 0.233 0.285 1 0.103 1 0.179 0.394 1 0.544
1K	0.250 0.402 8 1.238 1.238 2.795 0.498 4 0.673 5 1.979 8 5.208 0.056 0.114 0.233 0.285 0.103 0.285 0.103 0.394 0.544
The color of the	0.402 1.238 5.2795 1.0498 1.0498 1.0498 5.208 1.0795 1.079 1.0233 1.0233 1.0285 1.0103 1.0233 1.0233 1.0285 1.0199 1.0399 1.0399 1.0344 1.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 1.238 2.795 3 0.498 4 0.673 1.979 8 5.208 0.056 0.114 4 0.233 0.285 0.179 7 0.399 0.544
1M	5 2.795 4 0.673 5 1.979 8 5.208 6 0.056 6 0.114 1 0.233 1 0.285 7 0.103 9 0.544 1 0.244
1K	0.498 0.673 5 1.979 8 5.208 6 0.056 6 0.114 6 0.233 7 0.285 7 0.399 9 0.544 7 0.244
1M	4 0.673 5 1.979 5.208 0.056 0.114 0.233 0.285 0.103 0.179 0.399 4 0.544
100K	5 1.979 5.208 0.056 0.114 0.233 0.285 0.103 0.179 0.399 0.544
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8 5.208 0.056 1 0.114 1 0.233 0.285 0.103 0.179 0.399 0.544 0.244
10	0.056 0.114 0.233 0.285 0.103 0.179 0.399 0.544
100K	0.114 0.233 0.285 0.103 0.179 0.399 0.544
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.233 0.285 0.103 0.179 0.399 0.544 0.244
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.285 0.103 0.179 0.399 0.544
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.103 0.179 0.399 0.544
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.399 0.544 0.244
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.544
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.244
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.340
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
1K	
1M 10K 1.326 1.120 0.915 1.153 1.091 0.956 21.251 12.964 10.5 10K 3.660 3.112 2.693 3.329 2.751 2.534 32.839 24.610 19.5 1M 8.899 7.945 6.888 11.037 8.439 7.918 48.973 37.792 32.33 1K 0.136 0.095 0.051 0.067 0.071 0.060 1.110 0.748 0.63	
100K 3.660 3.112 2.693 3.329 2.751 2.534 32.839 24.610 19.5 1M 8.899 7.945 6.888 11.037 8.439 7.918 48.973 37.792 32.3 1K 0.136 0.095 0.051 0.067 0.071 0.060 1.110 0.748 0.65	
1M 8.899 7.945 6.888 11.037 8.439 7.918 48.973 37.792 32.3 1K 0.136 0.095 0.051 0.067 0.071 0.060 1.110 0.748 0.63	
1K 0.136 0.095 0.051 0.067 0.071 0.060 1.110 0.748 0.63	
100K 0.341 0.174 0.056 0.224 0.140 0.140 2.294 1.505 1.28	
1M 0.587 0.298 0.057 2.162 1.100 1.083 3.247 2.261 1.84	
1K 0.271 0.194 0.106 0.168 0.161 0.136 2.224 1.495 1.27	0.069
200K 10K 0.401 0.240 0.107 0.204 0.172 0.148 4.010 2.395 2.02	
100K 0.674 0.335 0.112 0.368 0.237 0.221 4.498 2.954 2.49	
INC 1M 1.156 0.593 0.120 2.390 1.247 1.229 6.437 4.464 3.62	
1K 0.693 0.490 0.264 0.421 0.420 0.340 5.580 3.768 3.21	
500K 10K 1.040 0.612 0.275 0.485 0.431 0.366 10.795 6.151 5.34 100K 1.742 0.887 0.284 0.689 0.504 0.457 11.920 7.895 6.60	
1M 2.776 1.405 0.290 2.662 1.489 1.423 16.113 10.976 9.08	
1M 2.770 1.400 0.390 2.002 1.489 1.420 10.113 10.970 9.06 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	
1M 10K 2.214 1.276 0.567 0.986 0.896 0.723 22.258 12.640 10.9	
100K 3.734 1.849 0.580 1.204 0.951 0.858 26.736 17.595 14.6	
1M 5.646 2.862 0.592 3.167 1.910 1.806 32.060 21.748 18.0	
1K 0.139 0.098 0.056 0.084 0.083 0.068 1.115 0.760 0.60	
100K 10K 0.199 0.135 0.086 0.103 0.099 0.079 2.150 1.339 1.09	0.045
100K 0.235 0.164 0.117 0.131 0.119 0.089 3.201 2.264 1.95	
1M 0.250 0.160 0.112 0.138 0.120 0.096 4.559 3.556 2.84	
1K 0.271 0.195 0.105 0.166 0.166 0.133 2.230 1.517 1.21	
200K 10K 0.410 0.262 0.112 0.213 0.201 0.145 4.860 2.604 2.07	
DEC 100K 0.595 0.375 0.140 0.482 0.338 0.191 6.638 4.760 4.13 DEC 1M 0.582 0.364 0.135 2.407 1.204 0.188 9.276 7.275 5.90	
DEC 1M 0.582 0.364 0.135 2.407 1.204 0.188 9.276 7.275 5.90 1K 0.699 0.492 0.265 0.424 0.420 0.331 5.562 3.760 2.97	
1 K 0.099 0.492 0.265 0.424 0.420 0.331 5.502 5.700 2.97 500K 10K 1.058 0.638 0.300 0.468 0.472 0.368 11.172 6.396 5.13	
100K 1.704 0.955 0.637 0.665 0.604 0.489 16.824 12.012 10.1	
1 M 1.816 1.031 0.715 0.721 0.646 0.502 23.953 18.327 15.2	
1K 1.396 0.988 0.530 0.841 0.845 0.679 11.079 7.515 5.97	
1M 10K 2.191 1.262 0.571 0.918 0.921 0.707 22.387 12.717 10.1	
100K 3.549 1.929 1.036 1.168 1.089 0.854 33.389 23.052 18.1	5 0.449
1M 4.100 2.335 1.535 1.433 1.276 0.996 47.838 36.422 31.0	

 $\begin{tabular}{ll} Time \ Unit: sec \\ m = the number of operations performed \\ n = the number of elements in initial data structures \\ \end{tabular}$

Table 4. Run time using real (double) keys

inputs	m	n	DLT	TLT	LLT	DPH	TPH	LPH	DFD	TFD	LFD	Splay
ĺ	40075	1 K	0.006	0.006	0.004	0.005	0.005	0.004	0.015	0.008	0.008	0.004
	100K	10K 100K	0.013	0.007	0.007	0.018	0.013	0.012	0.026	0.027	0.015	0.007
		100K	0.064 0.088	0.075 0.067	0.067 0.052	0.085 0.224	0.069 0.163	0.063 0.138	0.094 0.128	0.098 0.112	0.081 0.123	0.028 0.040
	-	1 K	0.006	0.007	0.005	0.224	0.103	0.004	0.023	0.020	0.123	0.005
	200K	10K	0.014	0.009	0.009	0.032	0.022	0.019	0.049	0.047	0.031	0.011
	20011	100K	0.124	0.117	0.100	0.104	0.102	0.077	0.257	0.152	0.127	0.045
RD1		1 M	0.183	0.163	0.159	0.230	0.201	0.453	0.282	0.174	0.143	0.076
		1 K	0.015	0.018	0.012	0.011	0.008	0.008	0.048	0.150	0.047	0.004
	500K	10K	0.015	0.017	0.015	0.026	0.027	0.024	0.146	0.138	0.059	0.015
		100K	0.186	0.242	0.184	0.099	0.095	0.139	0.492	0.277	0.250	0.071
		1M	0.329	0.366	0.235	0.403	0.359	0.309	0.748	0.373	0.376	0.173
	13.5	1K	0.024	0.029	0.025	0.021	0.014	0.017	0.120	0.090	0.062	0.008
	1M	10K 100K	0.046 0.212	0.022 0.268	0.022 0.178	0.047 0.205	0.028 0.210	0.024 0.184	0.380 0.514	0.229 0.359	0.217 0.346	0.018 0.120
		100K	0.332	0.405	0.178	0.476	0.355	0.184	0.687	0.525	0.563	0.120
		1 K	0.006	0.405	0.004	0.005	0.004	0.005	0.007	0.013	0.008	0.005
	100K	10K	0.000	0.011	0.004	0.003	0.012	0.014	0.011	0.021	0.019	0.005
]	10011	100K	0.054	0.074	0.059	0.086	0.073	0.064	0.098	0.079	0.090	0.011
		1M	0.036	0.042	0.035	0.163	0.123	0.127	0.122	0.106	0.081	0.015
		1 K	0.008	0.006	0.006	0.005	0.005	0.005	0.023	0.013	0.013	0.005
	200 K	10 K	0.011	0.012	0.008	0.030	0.023	0.016	0.053	0.043	0.124	0.011
		100K	0.133	0.116	0.096	0.085	0.066	0.061	0.165	0.148	0.126	0.021
RD_2		1M	0.108	0.087	0.089	0.208	0.154	0.174	0.182	0.345	0.147	0.023
	F0075	1K	0.015	0.017	0.013	0.013	0.008	0.011	0.074	0.054	0.029	0.007
	500K	10K 100K	0.024 0.165	0.014 0.171	0.015 0.137	0.032 0.145	0.031 0.164	0.032 0.118	0.139 0.240	0.082 0.292	0.060 0.178	0.011 0.036
		100K	0.103	0.171	0.137	0.143	0.104	0.116	0.559	0.292	0.178	0.036
	-	1 K	0.029	0.016	0.020	0.017	0.014	0.230	0.339	0.054	0.041	0.003
	1M	10K	0.021	0.029	0.025	0.054	0.042	0.037	0.235	0.184	0.093	0.016
		100K	0.215	0.204	0.228	0.209	0.143	0.133	0.443	0.354	0.321	0.029
		1 M	0.411	0.338	0.322	0.298	0.251	0.206	0.720	0.461	0.424	0.087
		1 K	0.007	0.005	0.003	0.005	0.002	0.000	0.007	0.005	0.004	0.005
	100K	10K	0.011	0.009	0.013	0.007	0.004	0.005	0.030	0.028	0.016	0.002
		100K	0.022	0.016	0.005	0.026	0.008	0.018	0.029	0.023	0.009	0.011
		1M	0.039	0.018	0.006	0.237	0.103	0.096	0.088	0.054	0.044	0.018
	200K	1 K	0.007	0.005	0.005	0.004	0.004	0.006	0.017	0.009	0.010	0.002
	200K	10K 100K	0.015	0.009 0.025	0.005 0.004	0.017 0.025	0.009 0.009	0.010 0.010	0.070 0.045	0.053	0.018 0.047	0.005 0.011
INC		1M	0.092	0.025	0.004	0.023	0.009	0.016	0.165	0.031	0.047	0.011
1110		1 K	0.032	0.011	0.006	0.022	0.012	0.012	0.133	0.031	0.033	0.008
	500K	10K	0.033	0.019	0.006	0.034	0.020	0.015	0.097	0.060	0.048	0.009
		100K	0.147	0.065	0.010	0.032	0.019	0.018	0.089	0.116	0.089	0.022
		1M	0.199	0.089	0.008	0.109	0.058	0.038	0.189	0.137	0.125	0.027
]		1K	0.046	0.022	0.010	0.022	0.024	0.019	0.088	0.054	0.037	0.012
]	1M	10K	0.097	0.073	0.025	0.048	0.031	0.021	0.136	0.198	0.109	0.015
		100K 1M	0.326 0.407	0.127 0.212	0.022 0.015	0.036 0.101	0.035 0.062	0.021 0.060	0.192 0.292	0.146 0.154	0.181 0.188	0.022 0.049
<u> </u>		1 M	0.407	0.212	0.015	0.101	0.062	0.000	0.292	0.154	0.188	0.049
	100K	10K	0.008	0.005	0.003	0.007	0.005	0.003	0.014	0.042	0.007	0.005
]	10011	100K	0.014	0.003	0.004	0.008	0.006	0.007	0.059	0.032	0.017	0.003
		1M	0.019	0.006	0.004	0.010	0.008	0.019	0.155	0.111	0.110	0.028
		1 K	0.009	0.007	0.006	0.009	0.005	0.009	0.027	0.018	0.014	0.004
	$200\mathrm{K}$	10 K	0.015	0.007	0.007	0.018	0.011	0.007	0.064	0.065	0.024	0.005
		100K	0.062	0.023	0.007	0.035	0.024	0.011	0.176	0.131	0.104	0.024
DEC		1M	0.052	0.023	0.009	0.115	0.074	0.009	0.273	0.223	0.193	0.028
	l	1 K	0.022	0.007	0.007	0.020	0.012	0.014	0.035	0.029	0.016	0.009
	500K	10K	0.039	0.020	0.015	0.032	0.016	0.018	0.113	0.052	0.054	0.012
		100K	0.139	0.031	0.022	0.022	0.019	0.022	0.207	0.197	0.149	0.040
	-	1M 1K	0.124	0.064	0.039	0.031	0.023	0.019 0.016	0.282	0.202	0.262 0.042	0.088 0.012
	1M	10K	0.050 0.068	0.023 0.034	0.010	0.034 0.040	0.019 0.027	0.016	0.068	0.049	0.042	0.012
	1 141	10K	0.008	0.034	0.017	0.036	0.027	0.031	0.410	0.195	0.037	0.010
		1M	0.268	0.131	0.072	0.037	0.024	0.026	0.433	0.256	0.309	0.091
					0.0.2	0.007		0.0-0			2,000	0.00-

Time Unit : sec m = the number of operations performed n = the number of elements in initial data structures

Table 5. Standard deviation of run time using real keys

An experimental comparison of leaf correspondence leftist trees and unbalanced binary search trees, min-max heaps, deaps, AVL trees etc. appears in [5]. The conclusion of [5] for keys of data type double, is that unbalanced binary search trees are the best data structure when keys are selected at random; leaf correspondence leftist trees are the best data structure when keys are in ascending or descending order. Our experimental study is modeled after that used in [6; 11]. That is, we use a variant of the hold model. Each timing experiment began with a DEPQ with an initial size $n \in \{1000, 10000, 100000, 1000000\}$ and performed a sequence of $m \in \{100000, 200000, 500000, 1000000\}$ DEPQ operations. Insert operations occurred with probability 0.5, and delete max and delete min had probability 0.25 each

This particular mix of operations is motivated by the use of the DEPQ data structure in implementing an external memory quick sort. Each phase of an external memory quick sort partitions a file of records into three groups. The left (right) group has records whose keys are \leq (\geq) all keys in the middle group. The middle group is in sorted order. Following one phase, the left and right groups are sorted recursively. In the external memory quick sort application, as much internal memory as is available is used to maintain a DEPQ. The elements in the DEPQ will eventually define the middle group. Suppose that enough internal memory is available for a DEQP with n elements. The DEPQ is initialized with n records from the file that is to be sorted. The remaining records in the file are processed one at a time. If the record key is \leq (\geq) the min key in the DEPQ the record is output as part of the left (right) group. When the record key lies between the min and max keys in the DEPQ, either the min or max key (and associated record) is deleted from the DEPQ and the new record inserted. If the min (max) record is deleted from the DEPQ, the deleted record is output as part of the left (right) group. When all records have been processed, a sequence of delete min operations is done to output the middle group in sorted order. When partitioning a file with p > n records, the operation sequence is: perform n inserts into an initially empty DEPQ, perform an alternating sequence of q ($q \le p - n$) delete (max or min) and qinsert operations. For a randomly ordered file, we expect the number of delete min operations to approximately equal the number of delete max operations. So half the m=2q operations of the alternating sequence are inserts, one-fourth are delete mins, and the remaining one-fourth are delete max operations. Another motivating factor for our mix of operations is that this mix (i.e., with roughly equal inserts and deletes) follows the hold model used in [11].

The insert keys were selected in four different ways:

- —RD1: random double precision keys between 1 and 1,000,000
- —RD2: random double precision keys between 1 and 1,000
- —INC: increasing sequence of double precision keys
- —DEC: decreasing sequence of double precision keys

Although the keys are double precision, their actual values are integral, an integer random number generator was used and the numbers typecast to the double data type. All programs were written in C and run on a SUN Ultra Sparc workstation. For each choice of n, m and data set (RD1,RD2) 20 experiments were done, the average results are reported. Table 2 gives the number of key comparisons performed

(x1000) and Table 3 gives the standard deviations for RD1 and RD2 (over the 20 experiments). The standard deviations are rather small, boosting our confidence in the reliability of the experiments.

The average ratio of the number of key comparisons made by total and leaf correspondence structures and their dual correspondence counterparts is shown in Table 6 for the RD2 data set. The average is computed over the 16 key comparison counts given in Table 2 for the RD2 data set for each data structure.

	LT	PH	FD
total correspondence	0.932	0.939	0.849
leaf correspondence	0.759	0.845	0.748

Table 6. Ratio of key comparisons ($\times 1000$) for the RD2 data set

For leftist trees, pairing heaps and FMPQs, leaf correspondence made the fewest number of comparisons in all our experiments. For leftist trees and paring heaps, dual correspondence was always inferior to total correspondence, which, in turn, was always inferior to leaf correspondence. In fact, in the INC data set dual correspondence leftist trees made seven times as many comparisons as did leaf correspondence leftist trees for some combinations of n and m. On the comparison count measure, dual correspondence worked better than total correspondence only for pairing heaps with $n \in \{1K, 10K\}$ and for data set DEC with $m \in \{100K, 500K, 1M\}$ and all tested n. Of the priority queue structures used by us, leaf correspondence pairing heaps generally outperformed the others. But, even leaf correspondence priority queues were, often, no match for splay trees. For the RD2 data set and n = 100K, the key comparison data of Table 2 is plotted in Figure 8 for the leaf correspondence data structures and for splay trees.

Table 4 gives the run times for the various methods, and Table 5 gives the standard deviations in run time. Once again, the standard deviations are relatively small. The leaf correspondence version of each data structure was, almost always, superior to the total correspondence version; and the total correspondence version was always superior to the dual correspondence version. The average ratio of the run times for total and leaf correspondence structures and their dual correspondence counterparts is shown in Table 7 for the RD2 data set. The average is computed over the 16 times given in Table 4 for the RD2 data set for each data structure.

	LT	РН	FD
total correspondence	0.857	0.835	0.717
leaf correspondence	0.722	0.761	0.595

Table 7. Ratio of run times(x 1000) for the RD2 data set

Of the priority queue structures used by us, leaf correspondence leftist trees took least time almost always. In fact, leaf correspondence leftist trees took one-sixth the

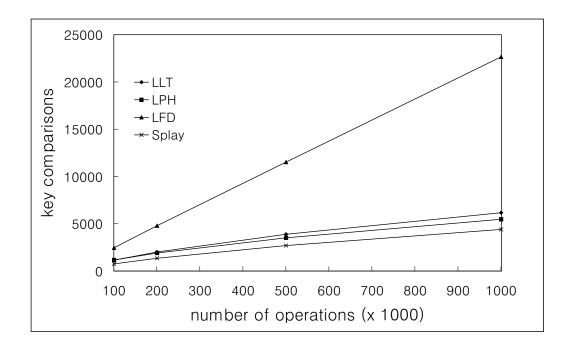


Fig. 8. Number of key comparisons ($\times 1000$) for the RD2 data set and n = 100K

time taken by leaf correspondence pairing heaps and one-twentieth the time taken by leaf correspondence FMPQs on some data sets. Even though leaf correspondence leftist trees were faster than the other priority queue structure, they were generally slower than splay trees, at times taking three times as much time. Note, however, that splay trees are not efficiently meldable, whereas leaf correspondence leftist trees may be melded in logarithmic time. For the RD2 data set and $n=100\mathrm{K}$, the run time data of Table 2 is plotted in Figure 9 for the leaf correspondence data structures and for splay trees.

For the RD2 data set and $n=100\mathrm{K}$, the ratio of run time to number of key comparisons is plotted in Figure 10 for the leaf correspondence data structures and for splay trees. The time per comparison performed is highest for leftist trees, then for pairing heaps, next for FD, and least for splay trees.

7. CONCLUSION

We have shown the general applicability of correspondence methods to arrive at double-ended priority queue structures from single-ended priority queue structures. Experimental studies conducted by us indicate that the leaf correspondence version of a priority queue structure is generally faster than the DEPQ structures obtained

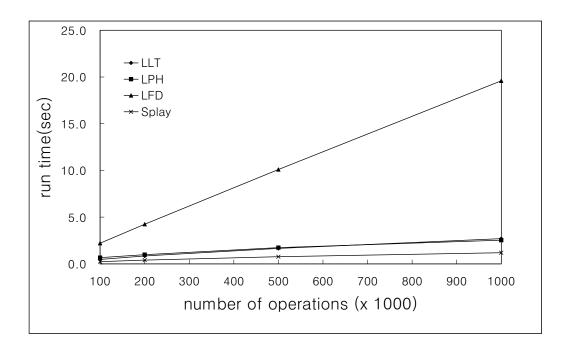


Fig. 9. Run time for the RD2 data set and $n=100\mathrm{K}$

using dual and total correspondence. Furthermore, leaf correspondence leftist trees are superior to the other correspondence structures considered. However, even leaf correspondence leftist trees are unable to outperform splay trees on random data.

REFERENCES

- [1] M. Atkinson, J. Sack, N. Santoro, and T. Strothotte, Min-max heaps and generalized priority queues, *Communications of the ACM*, 29, 996-1000, 1986.
- [2] G. Brodal, Fast meldable priority queues, Workshop on Algorithms and Data Structures,
- [3] S. Carlsson, The deap A double ended heap to implement double ended priority queues, Information Processing Letters, 26, 33-36, 1987.
- [4] S. Chang and M. Du, Diamond deque: A simple data structure for priority deques, Information Processing Letters, 46, 231-237, 1993.
- [5] S. Cho and S. Sahni, Weight biased leftist trees and modified skip lists, ACM Jr. on Experimental Algorithms, Article 2, 1998.
- [6] S. Cho and S. Sahni, Mergeable double ended priority queue, International Journal on Foundation of Computer Sciences, 10, 1, 1999, 1-18.
- [7] C. Crane, Linear lists and priority queues as balanced binary trees, Technical Report CS-72-259, Computer Science Department, Stanford University,
- [8] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan, The paring heap: A new form of self-adjusting heap, Algorithmica, 1:111-129, 1986.

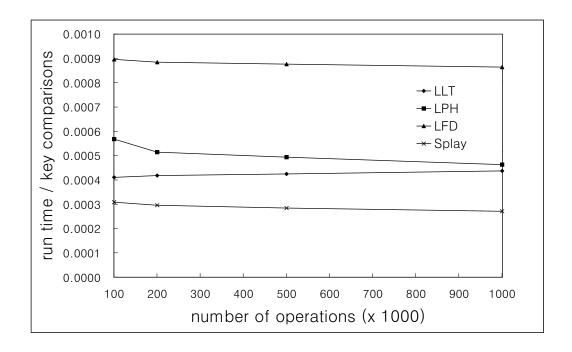


Fig. 10. Ratio of run time to number of key comparisons for the RD2 data set and $n=100\mathrm{K}$

- [9] M. Fredman and R. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, JACM, 34:3, 596-615, 1987.
- [10] E. Horowitz, S. Sahni, D. Mehta, Fundamentals of Data Structures in C++, Computer Science Press, NY, 1995.
- [11] D. Jones, An empirical comparison of priority-queue and event-set implementations, Communications of the ACM, 29, 4, pp. 300-311, 1986.
- [12] J. van Leeuwen and D. Wood, Interval heaps, The Computer Journal, 36, 3, 209-216, 1993.
- [13] A. Liao, Three priority queue applications revisited, Algorithmica, 7, 415-427, 1992.
- [14] B. Moret and H. Shapiro, An empirical assessment of algorithms for constructing a minimum spanning tree, DIMACS Series on Discrete Mathematics and Theoretical Computer Science, 15, pp. 99-117, 1994.
- [15] S. Olariu, C. Overstreet, and Z. Wen, A mergeable double-ended priority queue, The Computer Journal, 34, 5, 423-427, 1991.
- [16] D. Sleator and R. Tarjan, Self-adjusting binary search trees, JACM, 32:3, 652-686, 1985.
- [17] D. Sleator and R. Tarjan, Self-adjusting heaps, SIAM Journal on Computing, 15,1, 52-69, 1986.
- [18] J. T. Stasko and J. S. Vitter, Pairing heaps: Experiments and Analysis, Communication of the ACM, 30:3, 234-249, 1987.
- [19] R. Tarjan, Data structures and network algorithms, SIAM, Philadelphia, PA, 1983.
- [20] J. Williams, Algorithm 232, Communications of the ACM, 7, 347-348, 1964.