Cache and Energy Efficient Alignment
of Very Long Sequences

Chunchun Zhao
Department of Computer and Information
Science and Engineering
University of Florida
Email: czhao@cise.ufl.edu

Abstract—We develop cache and energy efficient algorithms
to align very long sequences. These algorithms were evaluated
experimentally on a single node of the IBM Blue Gene/Q. We
were able to reduce the run time of the classical Myers and
Miller linear space alignment algorithm by up to 43%; energy
consumption was reduced by up to 45% on our test data.

I. INTRODUCTION

Sequence alignment is a fundamental and well studied
problem in the biological sciences. In this problem, we are
given two sequences A[l : m] = ajas - a,, and B[l : n] =
biby - --b, and we are required to find the score of the best
alignment and possibly also an alignment with this best score.
When aligning two sequences, we may insert gaps into the
sequences. The score of an alignment is determined using
a matching (or scoring) matrix that assigns a score to each
pair of characters from the alphabet in use as well as a gap
penalty model that determines the penalty associate with a gap
sequence. In the linear gap penalty model, the penalty for a
gap sequence of length k£ > 0 is kg, where g is some constant
while in the affine model this penalty i8S gopen + (K — 1) * gegt.
The affine model more accurately reflects the fact that opening
a gap is more expensive than extending one. Two versions
of sequence alignment—global and local-are of interest. In
global alignment the entire A sequence is to be aligned with
the entire B sequence while in local alignment we wish to
find a substring of A and B that have the highest alignment
score. The alphabet for DNA, RNA, and protein sequences is,
respectively, {A, T, G, C}, {A, U, G, C}, and {A, C, D, E, F,
GHILKLMNPQRSTV,WY}

Figure 1 illustrates these concepts using the DNA se-
quences A[l : 8] = {AGTACGCA} and BJ[1 : 5] = {TATGC}.
The symbol °_’ denotes the gap character. The alignment of
Figure 1(a) is a global alignment and that of Figure 1(b)
is a local one. To score the alignments, we have used the
linear penalty model with ¢ = —2 and the scores for pairs of
aligned characters, which are taken from BLOSUMS62 [1], are
T, T) =5, ¢c(A,A) =4, ¢(C,C) =9, ¢(G,G) = 6, and
¢(C,T) = —1. The score for the shown global alignment is
17 while that for the shown local alignment is 23. If we were
using an affine penalty model with goper, = —4 and geqzt = —2,
then the penalty for each of the gaps in positions 1 and 8 of
the global alignment would be —4 and the overall score for
the global alignment would be 13.

Needleman and Wunsch(NW) [2] proposed an O(mn) time

Sartaj Sahni
Department of Computer and Information
Science and Engineering
University of Florida
Email: sahni@cise.ufl.edu

AGTACGCA AGTACGCA
I T O R O I [I |
_ _TATGC_ TATGC

2-254-169-2=17 54-169 =23

Global alignment Local alignment

Fig. 1. Example alignments using the linear gap penalty model

algorithm for global alignment using the linear gap model.
This algorithm requires O(n) space when only the score of
the best alignment is to be determined and O(mn) space when
the best alignment is also to be determined. Smith and Wa-
terman(SW) [3] modified the Needleman-Wunsch algorithm so
as to determine the best local alignment. Gotoh [4] proposed a
dynamic programming algorithm for sequence alignment using
an affine gap penalty model. The asymptotic complexity of the
SW and Gotoh algorithms is the same as that of the Needlman-
Wunsch algorithm.

When mn is large and a best alignment is sought, the space,
O(mn), required by the algorithms of NW, SW and Gotoh
[2], [3], [4] exceeds what is available on most computers.
The best alignment for these large instances can be found us-
ing sequence alignment algorithms derived from Hirschberg’s
linear space divide-and-conquer algorithm [5] for the longest
common subsequence problem. Myers and Miller [6] develop
a linear space O(mn) time version of Hirschberg’s algorithm
for global sequence alignment using an affine gap penalty
model and Huang, Hardison, and Miller [7] do this for local
alignment.

In an effort to speed sequence alignment, fast sequence-
alignment heuristics have been developed. BLAST, FASTA,
and Sim2 [8], [9], [10] are a few examples of software systems
that employ sequence-alignment heuristics. Another direction
of research, also aimed at speeding sequence alignment, has
been the development of parallel algorithms. Parallel algo-
rithms for sequence alignment may be found in [11], [12],
[13], [14], [15], [16], [17], [18], [19], for example.

In this paper, we focus on reducing the cache misses that
occur in the computation of the score of the best alignment
as well as in determining the best alignment. Although we
explicitly consider only the linear gap penalty model, our
methods readily extend to the affine gap penalty model. Our
interest in cache misses stems from two observations—(1)

the time required to service a last-level-cache (LLC) miss is
typically 2 to 3 orders of magnitude more than the time for an
arithmetic operation and (2) the energy required to fetch data
from main memory is typically between 60 to 600 times that
needed when the data is on chip. As a result of observation
(1), cache misses dominate the overall run time of applications
for which the hardware/software cache prefetch modules on
the target computer are ineffective in predicting future cache
misses. The effectiveness of hardware/software cache prefetch
mechanisms varies with application, computer, and compiler.
So, if we are writing code that is to be used on a variety
of computer platforms, it is desirable to write cache-efficient
code rather than to rely exclusively on the cache prefetching of
the target platform. Even when the hardware/software prefetch
mechanism of the target platform is very effective in hiding
memory latency, observation (2) implies excessive energy use
when there are many cache misses.

Our cache efficient scoring algorithm took up to 37% less
time and up to 37% less energy when run on a single node of
the IBM Blue Gene/Q while our cache efficient adaptation of
the Myers and Miller alignment algorithm reduced run time
by up to 43% and reduced energy consumption by up to 45%,
relative to a classical implementation of this algorithm.

The rest of the paper is organized in the following way. In
Section II, we describe our cache model and provide experi-
mental results demonstrating the variability in performance of
hardware/software cache prefetch mechanisms with changes
in application and target computational platform. Our cache-
efficient algorithms for scoring and alignment are developed
and analyzed in Section III and experimental results presented
in Section I'V. Finally, Section V presented conclusion remarks.

II. CACHE MODEL

For simplicity in analysis, we assume a single cache
comprised of s lines of size w words (a word is large enough
to hold a piece of data, typically 4 bytes) each. So, the total
cache capacity is sw words. The main memory is partitioned
into blocks also of size w words each. When the program
needs to read a word that is not in the cache, a cache miss
occurs. To service this cache miss, the block of main memory
that includes the needed word is fetched and stored in a cache
line, which is selected using the LRU (least recently used) rule.
Until this block of main memory is evicted from this cache
line, its words may be read without additional cache misses.
We assume the cache is write back with write allocate. Write
allocate means that when the program needs to write a word
of data, a write miss occurs if the block corresponding to the
main memory is not currently in cache. To service the write
miss, the corresponding block of main memory is fetched and
stored in a cache line. Write back means that the word is
written to the appropriate cache line only. A cache line with
changed content is written back to the main memory when it
is about to be overwritten by a new block from main memory.

Rather than directly assess the number of read and write
misses incurred by an algorithm, we shall count the number
of read and write accesses to main memory. Every read and
write miss makes a read access. A read and write miss also
makes a write access when the data in the replacement cache
line is written to main memory.

Hardware and software cache prefetch mechanisms are
often deployed to hide the latency involved in servicing a
cache miss. These mechanisms may, for example, attempt to
learn the memory access pattern of the current application and
then predict the future need for blocks of main memory. The
predicted blocks are brought into cache before the program
actually tries to read/write from/into those blocks thereby
avoiding (or reducing) the delay involved in servicing a cache
miss.

III. CACHE EFFICIENT ALGORITHMS
A. Scoring Algorithms

1) Needleman-Wunsch and Smith-Waterman Algorithms:
Let H;; be the score of the best global alignment for A[1 : 7]
and B[l : j|]. We wish to determine H,,,. Needleman
and Wunsch [2] derived the following dynamic programming
equations for H using the linear gap penalty model. These
equations may be used to compute H,,,,.

Hio=—ixg Hyj=—j*g, 0<i<m, 0<j<n (1)

When ¢ > 0 and 5 > 0,

H;_1 -1+ c(ai, b))
H; ; = max

i Hij 1+c(b)) =Hij1—g 2

Hi_1j+cla;,_)=Hi—1;—g
where c(a;, b;) is the match score between characters a; and
b; and g is the gap penalty.

For local alignment, H;; denotes the score of the best
local alignment for A[l : 4] and B[l : j]. The Smith and
Waterman [3] equations for local alignment using the linear
gap penalty model are:

H;0=0, Hy;=0,0<i<m, 0<j<n (3)

When ¢ > 0 and j > 0,

0

Hi 1 -1+ c(a;, by) @)
Hij1+c(,bj))=Hij1—g
Hiyj+clay,_)=Hi—1;—g

Hi,j = max

Several authors ([5], [6], for example) have observed that
the score of the best local alignment may be determined using
a single array H[O : n] as in Figure 2.

The scoring algorithm for the Needleman and Wunsch
algorithm is similar. It is easy to see that the time complexity of
the algorithm of Figure 2 is O(mn) and its space complexity
is O(n).

For the (data) cache miss analysis, we focus on read and
write misses of the array H and ignore misses due to the
reads of the sequences A and B as well as of the scoring
matrix ¢ (notice that there are no write misses for A, B,
and c). Figure 3 shows the memory access pattern for H by
algorithm Score. The first row denotes the initialization of
H and subsequent rows denote access for different value of
1 (i.e., different iterations of the for i loop). Although the

Algorithm Score(A[l:m], B[l:n])
for j =0 to n do

H[j] = 0; //Initialize row O
end
for i =1 to m do // Compute row i
diag = 0;

for j =1 to n do
nextdiag = H[j];
H[j] = max(0, diag + c(A[i].B[j]),
H[j—11 — g. H[j1 — g);
diag = nextdiag;
end
end
return H[n];
end Algorithm

Fig. 2. Smith-Waterman scoring algorithm

Fig. 3.

Memory access pattern for Score algorithm (Figure 2)

computation of H;; is done using a single one-dimensional
array HJ[|, following the i’th iteration of the for i loop,
H[j] = H;;. In each iteration of this loop, the elements of
H]] are accessed left-to-right. During the initialization loop,
H is brought into cache in blocks of size w. Assume that
n is sufficiently large so that H[] does not entirely fit into
cache. Hence, at some value of j, the cache capacity is reached
and further progress of the initialization loop causes the least
recently used blocks of HJ[] (i.e., blocks from left to right) to
be evicted from cache. The evicted blocks are written to main
memory as they have been updated. So, the initialization loop
results in n/w read accesses and (approximately) n/w write
accesses (the number of write accesses is actually n/w — s).
Since the left part of H|| has been evicted from cache by the
time we start the computation for row ¢ > 0 (see Figure 3),
each iteration of the for i loop also results in n/w read
accesses and approximately n/w write accesses. So, the total
number of read accesses is (m + 1)n/w ~ mn/w and the
number of write accesses is also &~ mn/w. The number of
read and write accesses is =~ 2mn/w, when n is large.

We note, however, that when n is sufficiently small that
H]] fits into cache, the number of read accesses is n/w (all
occur in the initialization loop) and there are no write accesses.
In practice, especially in the case of local alignment involving
a long sequence, one of the two sequences A and B is small
enough to fit in cache while the other may not fit in cache.
So, in these cases, it is desirable to ensure that A is the longer
sequence and B is the shorter one so that H fits in cache.

Strip Vector
Strip 0 |

Strip Vector Strip Vector
Strip 1 1 Strip 2 l Strip 3

Fig. 4. Memory access pattern for Strip algorithm (Figure 5)

This is accomplished using Algorithm Swap, which swaps A
and B when |A| < |B| and then runs Algorithm Score. When
HJ[1 : m)] fits into cache and H[l : n] does not, Algorithm
Score incurs O(mn/w) read/write accesses while Algorithm
Swap incurs O(m/w) read/write accesses; when m < n and
H[1 : n] fits into cache the number of read/write accesses
is O(m/w) for Algorithm Swap and O(n/w) for Algorithm
Score; both algorithms incur approximately the same number,
~ 2mn/w, of read/write accesses for other values of m and
n.

2) Strip Algorithm: When neither H[1 : m] nor HI[1 : n)
fits into cache, accesses to main memory may be reduced by
computing H;; by strips of width ¢ such that ¢ consecutive
elements of HJ| fit into cache. Specifically, we partition
H[l : n] into n/q strips of size g (except possibly the last
strip whose size may be smaller than ¢) as in Figure 4. First,
all H;; in strip 0 are computed, then those in strip 1, and so
on. When computing the values in a strip, we need those in
the rightmost column of the preceding strip. So, we save these
rightmost values in a one-dimensional array previous[0 : m).
The algorithm is given in Figure 5. We note that sequence
alignment by strips has been considered before. For example,
it is used by Li et al. [12] in their GPU algorithm. Their use
differs from ours in that they compute the strips in pipeline
fashion with each strip assigned to a different pipeline stage
in round robin fashion and within a strip the computation is
done by anti-diagonals in parallel. On the other hand, we do
not pipeline the computation among strips and within a strip
our computation is by rows.

It is easy to see that the time complexity of Algorithm
Strip is O(mn) and that its space complexity is O(m + n).
For the cache misses, we focus on those resulting from the
reads and writes of H[| and previous|]. The initialization of
previous results in m/w read accesses and approximately the
same number of write accesses. The computation of each strip
makes the following accesses to main memory:

1) g/w read accesses for the appropriate set of ¢ entries
of H for the current strip and ¢/w write accesses for
the cache lines whose data are replaced by these H
values. The write accesses are, however, not made for
the first strip.

2) m/w read accesses for previous and m/w write
accesses. The number of write accesses is less by
s for the last strip.

Algorithm Strip (A[l1:m], B[1l:n])

for j =1 to m do
previous[j] = 0 //leftmost strip
end
for t =1 to % do //assume q divides n

for j =txq to txq+qg—1 do
H[j] = 0 //Initialize first row

end

for i =1 to m do //rows of strip
diag = previous[i—1];
H[j] = previous[i];

for j = txq to txq+q—1 do
nextdiag = H[j];
H[j] = max(diag + c(A[i], B[j]).
H[j—-1] — g, H[j] — g);
diag = nextdiag;
end
previous[i] = H[j —1];
end
end
return H[n]
end Algorithm

Fig. 5. Scoring algorithm by strips

So, the overall number of read accesses is m/w + (q/w +
m/w) xn/q = m/w + n/w+ mn/(wq) and the number of
write accesses is approximately the same as this. So, the total
number of main memory accesses is ~ 2mn/(wq) when m
and n are large.

B. Alignment Algorithms

In this section we examine algorithms that compute the
alignment that results in the best score rather than just the
best score. While in Section III-A we explicitly considered
local alignment and remarked that the results readily extend
to global alignment, in this section we explicitly consider
global alignment and remark that the methods extend to local
alignment.

1) Myers and Miller’s Algorithm: When aligning very long
sequences, the O(mn) space requirement of the full-matrix
algorithm (NW [2]) exceeds the available memory on most
computers. For these instances, we need a more memory
efficient alignment algorithm. Myers and Miller [6] have
adapted Hirschberg’s linear space algorithm for the longest
common subsequence problem to find the best global align-
ment in linear space. Its time complexity is O(mn). However,
this linear space adaptation performs about twice as many
operations as does the full-matrix algorithm. Driga et al. [11]
have developed a hybrid algorithm, FastLSA, whose memory
requirement adapts to the amount of memory available on the
target computing platform. We focus here on the adaptation of
Myers and Miller [6].

It is easy to see that an optimal (global) alignment is
comprised of an optimal alignment of A[1 : m/2] and BJ[1 : j]
and an optimal alignment of A{m : m/2 + 1] (Am : i
is the reverse of A[i : m]) and B[n : j + 1] for some j,
1 < j < n. The value of j for which this is true is called
the optimal crossover point. Myers and Miller’s linear space

a) b)
Three alignments Optimal crossover for m /2

i

c)optimal crossover points d)
at m/4 and 3m/4 Best alignment

Fig. 6. An alignment as crossover points

algorithm for alignment determines the optimal alignment
by first determining the optimal crossover point k£ and then
recursively aligning A[l : m/2] and B[l : k] as well as
A[lm : m/2 + 1] and B[n : k + 1]. Equivalently, an optimal
alignment of A[1 : m] and B[l : n] is an optimal alignment
of A[l : m/2] and B[l : k| concatenated with the reverse of
an optimal alignment of A[m : m/2 + 1] and B[n : k + 1].
Hence, an optimal alignment is comprised of a sequence of
optimal crossover points. This is depicted visually in Figure 6.
Figure 6(a) shows alignments using 3 possible crossover points
at row m/2 of H. Figure 6(b) shows the partitioning of the
alignment problem into 2 smaller alignment problems (shaded
rectangles) using the optimal crossover point (meeting point of
the 2 shaded rectangles) at row m /2. Figure 6(c) shows the par-
titioning of each of the 2 subproblems of Figure 6(b) using the
optimal crossover points for these subproblems (note that these
crossovers take place at rows m/4 and 3m/4, respectively).
Figure 6(d) shows the constructed optimal alignment, which
is presently comprised of the 3 determined optimal crossover
points.

The Myers and Miller algorithm, M M, uses a modified
version of the linear space scoring algorithm Score (Figure 2)
to obtain the scores for the best alignments of A[l : 4] and
B[l:4,1<i<m/2, 1< j < mnas well as for the
best alignments of A[m : i) and B[m : j], m/2 < i < m,
1 < j < n. This modified version M Score differs from Score
only in that M Score returns the entire array H rather than just
H{n]. Using the returned H arrays for the forward and reverse
alignments, the optimal crossover point for the best alignment
is computed by evaluating all possible crossover points. Once
the optimal crossover point is known, two recursive calls to
MM are made to optimally align the top and bottom halves
of A.

In each level of recursion, the number of main memory
accesses is dominated by those made in the calls to M Score.

From the analysis for Score (Section III-A), it follows that
when n is large, the number of accesses to main memory is
~2mn/w(l+1/2+1/4+ - = 4dmn/w.

2) Swapped and Striped Myers and Miller Algorithm: Let
M Swap be algorithm Swap with the use of Score replaced
MScore and let M Strip be algorithm Strip (Figure 5)
modified to return the entire H array rather than just H[n].
MM Swap is obtained from MM by replacing the use of
M Score with M Swap. Our striped Myers and Miller algo-
rithm (M M Strip) replaces the use of M Score in M M with
a test that causes M Swap to be used in place of M Score
when one (or both) of m and n is sufficiently small; otherwise,
M Strip is used.

From the analysis for Strip (Section III-A2), it follows
that when n and m are large, the number of accesses to main
memory is ~ 2mn/(wq)(14+1/2+1/4+--- = dmn/(wq).

IV. EXPERIMENTAL RESULTS
A. Experimental Platform and Test Data

We implemented the algorithms of Section III in C and
measured their relative performance on a single node of the
IBM Blue Gene/Q. Each node is a 1.33GHz 64-bit PowerPC
A2 with 32MB LLC cache. The MonEQ software [20], [21]
was used to measure power usage every half second. We
chose the Blue Gene/Q for our experiments because of the
availability of an energy monitor. For our experiments, we ran
each algorithm on every node of the Blue Gene/Q and divided
the total energy consumed by the number of nodes.

All codes were compiled using the gcc compiler with
the O2 option. For test data, we used randomly generated
protein sequences as well as real protein sequences obtained
from the Globin Gene Server[22] and DNA/RNA/protein se-
quences from the National Center for Biotechnology Infor-
mation (NCBI) database [23]. We used the BLOSUMG62[1]
scoring matrix for all our experiments. The results for our
randomly generated protein sequences were similar to those
for the sequences used from the two databases [22] and [23].
So, we present only those for the latter data sets here.

B. Scoring Algorithms

Table I gives the run times, in seconds, and energy, in
joules, consumed by Score and Swap for instances with
|A| << |B|. The run time reduction resulting from Swap
ranged from 9.4% to 9.5% and the energy reduction ranged
from 11.1% to 21.0%.

Figures 7 and 8 graph the run time and energy con-
sumption of Score, Swap and Strip for 5 data sets. The
values of (|A|,|B]|) for these, left to right, are (97,634,
94, 647), (104,267, 103, 004), (200, 000, 200, 000), (200, 000,
398, 273), and (392,981,398,273). On these data sets, Strip
was up to 37% faster than Swap and consumed up to 37%
less energy.

C. Alignment Algorithms

Figure 9 graphs the run time of algorithms MM,
MM Swap and M M Strip and Figure 10 graphs the energy
consumed by each algorithm for the first 4 data sets used

Time Performance

B
ore
vap

5 000,00

1,500.00

1,000.00 II

"6
035, P, Vi,

uuuuu

’ 09245, 0945 14, 246
5%1 195 d9g ‘999

Fig. 7. Run time of scoring algorithms

Energy Performance

14,000.00 ore
12,000.00 s
10,000.00
8,000.00
6,000.00
2,000.00 II II

[1]

g ez,

o, ~0og,
Mo, s w’"ﬂr 514;:,
'“5743 g

Fig. 8. [Energy consumed by scoring algorithms

in Figure 7. M M Swap reduced run time by between 19%
and 33% relative to M M and the energy reduction ranged
between 23% and 38%. M M Strip reduced run time, relative
to M M Swap, by 15% to 20% and reduced energy consump-
tion by between 11% and 17%. Also, M M Strip delivers a
speedup, relative to MM, between 35% and 43% and the
energy reduction is between 35% and 45%.

Time Performance

000
2000
B II |I

L.

MM
= MM Sz
MM Strip

Acgy,
“.aq, 4403 %ﬂ,v 8284,
0

Sog), 004,
24“ 142196 Slag

Fig. 9. Run time of alignment algorithms

B B Score Swap A%
Time(s) Energy(J) Time(s) Energy(J) Time(s) Energy(J)
KQO079794 1,083,068 28.97 103.77 26.24 84.38 9.4 18.7
GL897058 5,000, 004 133.74 454.43 121.09 404.15 9.5 11.1
NW_012187090 | 10,009, 425 267.73 943.57 242.41 791.52 9.5 16.1
JHT98151 50, 600,503 | 1353.40 5,015.51 1225.42 3960.18 9.5 21.0

A is the DNA sequence U51865 whose size is 968.

TABLE 1.

Energy Performance

MM Strip

Fig. 10. Energy consumed by alignment algorithms

V. CONCLUSION

We have developed cache efficient algorithms for scoring
and alignment of sequences. These cache efficient algorithms
were empirically evaluated on a single node of the IBM Blue
Gene/Q. This platform was selected because of the availability
of an energy monitor. On our test platform, reducing cache
misses translated into a significant reduction in both run time
and energy consumption.

ACKNOWLEDGMENT

We are grateful to Argonne Labs for providing access to
their IBM Blue Gene/Q computer and to Dr. Tania Banerjee for
assistance with the energy measurement tools on this computer.
This work was supported, in part, by the National Institutes
of Health and the National Science Foundation under awards
RO1-LMO010101 and NSF 1447711 .

REFERENCES

[1] S. Henikoff and J. G. Henikoff, “Amino acid substitution matrices from
protein blocks,” Proc Natl Acad Sci U S A, vol. 89, pp. 10915-10919,
1992.

[2] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of Molecular Biology, vol. 48, pp. 443-453, 1970.

[3] T.E Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, pp. 195-197,
1981.

[4] O. Gotoh, “An improved algorithm for matching biological sequences,”
Journal of Molecular Biology, vol. 162, pp. 705-708, 1982.

[5]1 D. S. Hirschberg, “A linear space algorithm for computing longest

common subsequences,” Communications of the ACM, vol. 18, pp. 341—
343, 1975.

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

PERFORMANCE OF Score AND Swap

E. Myers and W. Miller, “Optimal alignments in linear space,” Com-
puter Applications in the Biosciences(CABIOS), vol. 4, pp. 11-17, 1988.

X. Huang, R. Hardison, and W. Miller, “A space-efficient algorithm for
local similarities,” Comput Appl Biosci, vol. 6, p. 373381, 1990.

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic
local alignment search tool,” Journal of Molecular Biology, vol. 215,
pp. 403—410, 1990.

W. Pearson and D. Lipman, “Improved tools for biological sequence
comparison,” Proceedings of the National Academy of Sciences USA,
vol. 85, pp. 2444-2448, 1988.

K. Chao, J. Zhang, J. Ostell, and W. Miller, “A local alignment tool for
very long dna sequences,” Comput Appl Biosci, vol. 11, pp. 147-153,
1995.

A. Driga, P. Lu, J. Schaeffer, D. Szafron, K. Charter, and I. Parsons,
“Fastlsa: a fast, linear-space, parallel and sequential algorithm for
sequence alignment,” Algorithmica, vol. 45, p. 337375, 2006.

J. Li, S. Ranka, and S. Sahni, “Pairwise sequence alignment for
very long sequences on gpus,” IEEE 2nd International Conference on
Computational Advances in Bio and Medical Sciences (ICCABS), 2012.

E. O. Sandes and A. C. M. A. Melo, “Smith-waterman alignment
of huge sequences with gpu in linear space,” IEEE International
Symposium on Parallel and Distributed Processing (IPDPS), pp. 1199—
1211, 2011.

S. Aluru and N. Jammula, “A review of hardware acceleration for
computational genomics,” IEEE Design and Test, vol. 31, pp. 19-30,
2014.

S. Rajko and S. Aluru, “Space and time optimal parallel sequence
alignments,” IEEETPDS:IEEE Transactions on Parallel and Distributed
Systems, vol. 15, 2004.

A. Khajeh-Saeed, S. Poole, and J. B. Perot, “Acceleration of the smith-
waterman algorithm using single and multiple graphics processors,”
Journal of Computational Physics, p. 42474258, 2010.

S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway,
C. Antonescu, and S. L. Salzberg, “Versatile and open software for
comparing large genomes,” Genome Biol, vol. 5, 2004.

T. Almeida and N. Roma, “A parallel programming framework for
multi-core dna sequence alignment,” Complex, Intelligent and Software
Intensive Systems (CISIS), 2010 International Conference on, pp. 907
- 912, 2010.

K. Hamidouche, F. M. Mendonca, J. Falcou, A. C. M. A. Melo, and
D. Etiemble, “Parallel smith-waterman comparison on multicore and
manycore computing platforms with bsp++,” International Journal of
Farallel Programming, vol. 41, pp. 1110-136, 2013.

S. Wallace, V. Vishwanath, S. Coghlan, J. Tramm, L. Zhiling, and
M. Papkay, “Application power profiling on ibm blue gene/q,” 2013
IEEE International Conference on Cluster Computing (CLUSTER),
2013.

S. Wallace, V. Vishwanath, S. Coghlan, L. Zhiling, and M. Papkay,
“Measuring power consumption on ibm blue gene/q,” Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2013 IEEE
27th International, 2013.

“Globin gene
examples.html.

server,”’

http://globin.cse.psu.edu/globin/html/pip/

“Ncbi database,” http://www.ncbi.nlm.nih.gov/gquery.

