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Chapter 1

Backprojection algorithms for
multicore and GPU
architectures

1.1 Summary of Backprojection

Backprojection is an algorithmic technique that generates 2-dimensional im-
ages from synthetic aperture radar data. The data input to the Backpro-
jection algorithm are usually collected by airborne sensors circling around
a target area, which emit a series of radar pulses, then receive and record
the reflected temporal response. A single pulse provides information about
the intensity of reflectors at many distances from the pulse location. Re-
flectors far from the pulse emitter will appear later in the received response
than proximal reflectors. The time t at which a reflector’s contribution will
appear in the response can be predicted using the speed of light c and the
distance d from the pulse emitter, as

t =
d

c

The relationship above facilitates the division of each pulse response into
discrete time intervals or range bins, which correspond to the average pulse
in each discretized time interval. For example, consider the diagram of Fig-
ure 1.1, where a pulse is transmitted toward a target area containing a single
point reflector.
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Figure 1.1: Point Reflector in a Target Area
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Figure 1.2: Single Pulse View of Point Reflector
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Figure 1.3: Two Pulse View of Point Reflector

An ideal pulse response for this arrangement would consist of a single
range bin with a high response intensity, where all other bins would have
zero intensity. Note that this type of response contains enough information
to infer that one or more reflectors occur at a known distance from the pulse
location. Thus, the corresponding image of a target area would appear as
shown in Figure 1.2.

The collection of a second pulse at a different sensor location (shown with
respect to Figure 1.2 as the superposition of two pulse returns in Figure 1.3)
can help determine the presence of one or more reflectors at known distances
from both pulse locations. If only one point reflector is known to be present,
then a likely position of the reflector can often be inferred. However, in
the general case of numerous reflectors, such an inference is not necessarily
correct.

The Backprojection algorithm applies this superposition process to nu-
merous pulses, to produce a clear reconstruction of the target area. For each
pixel in the output image, and for each pulse which contributes to that pixel,
the range bin corresponding to the given pixel is computed, then the value
of that range bin is summed to the output image.

This simple Backprojection algorithm presents both data movement and
computational challenges. With respect to data movement, the need for high
resolution output images implies a large number of pulses divided into a large
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number of range bins. In practical implementations, neither the pulse data
nor the output image can be stored in the GPU memory that sits closest
to processing cores, referred to as shared memory or L1 cache. Thus, an
efficient implementation of Backprojection on a GPU must ensure that the
correct subset of pulse data and image data are available in shared memory
when needed.

In addition to data movement overhead, primary computational cost is
incurred by summation of each pulse’s contribution to each pixel of the out-
put image. This accumulation process begins with a range calculation that
determines (1) the distance from the pixel to the pulse location, then (2) the
weighted average of the two range bins that most closely correspond to this
distance. A phase correction step that handles pixels occurring at fractional
multiples of the radar frequency band is applied to this weighted average be-
fore it is summed to the output image. In a Backprojection implementation
we are aware of, these operations require 43 floating point operations per
pixel, per pulse. The high level structure of Backprojection is captured by
the following equation:

image[x][y] =

|p|∑
i=0

(pi[bin(i, x, y)]w0(i, x, y)+

pi[bin(i, x, y) + 1]w1(i, x, y))dphase(i, x, y)

(1.1)

where image is the image data; x and y are the x and y locations of a
pixel; p is the pulse response data; pi is the response from pulse i; bin(i, x, y)
is a function which returns the range bin corresponding to the distance of
pixel x, y from pulse i; w0 and w1 are coefficients used to interpolate the
response for pixels that fall between range bins; and dphase is a function
which produces the phase offset of pixel x, y with respect to pulse i.

1.2 Partitioning Backprojection for Implemen-

tation on a GPU

The key challenge of Backprojection is data size: both the input data (array
of pulses (rows) and range bins (columns)) and the output image are often
too large to fit in the GPU’s shared memory or L1 cache. Consequently, a
partitioning scheme is required that facilitates access locality on both data
structures.
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Figure 1.4: Partitioning Backprojection Along Pulse Data

The most natural approach partitions along the rows (along pulses) of
the echo data matrix. A block of pulses is sent to each multiprocessor, which
produces an output image that corresponds to the contribution of its pulses.
Then, the resulting output images are summed to create a reconstructed
image. This approach, shown schematically in Figure 1.4, exploits Back-
projection’s natural parallelism with respect to pulses, as each pixel can be
thought of as the sum of the contribution of each pulse.

Although having the advantage of simplicity, this approach is confounded
by the size of the output image. Partitioning along the pulse dimension
requires that each partition maintain a copy of the output image, or share
access to a single copy. The former approach is prohibited by the small size
of GPU shared memory, while the latter suffers the performance penalties of
global memory.

A second approach is not inhibited by these complications. Partition-
ing the image into two-dimensional (2-D) tiles allows small parts of both
the output image and pulse data to be cached together in shared memory.
This follows from the fact that the number of pulses required for rendering
an image tile is linearly related to the width and height of the tile. The
partitioning is shown in Figure 1.5.

The key process of selecting a correct tile size is examined in greater detail
in Section 1.4.1.
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Figure 1.5: Tile Partitioning of Backprojection

1.3 Single Core Backprojection

The single-core C code to implement Backprojection is a straightforward im-
plementation of the algorithm shown in the introduction, and is presented
below. Note that a small improvement in performance can be realized by
iterating over the pulses in the outer loop instead of the inner loop. Unfor-
tunately, this does not facilitate block parallelization, so pulses are iterated
inside the main loop for consistency with other code blocks.

The following data structures are input parameters to this algorithm: X
and Y, the real coordinates corresponding to each pixel in the target area;
r0 data, the range of the first bin in the pulse data; f0 data, frequency in-
formation about radar pulse; x obs, y obs, z obs, the real coordinates cor-
responding to each pulse; pulse data, the complex pulse response data; and
c4df, a constant that contains information necessary to compute the bin index
and phase corrector for each pixel. The algorithm produces a single output,
image, which contains the complex response projected onto each pixel.

This code computes a 4096 x 4096 pixel radar image in 1625.7 seconds,
at a throughput of 0.44 Gflop/s on a 6 Core 3.3 GHz Intel(R) CoreTM i7
CPU with a 12 MB Cache.
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for(j=0; j < image_height; j++){ 
   for(k=0; k < image_width; k++){ 
      //get position of pixel 
      pixel0_X = X[k]; //load pixel x­coordinate; 
      pixel0_Y = Y[j]; //load pixel y­coordinate;     
      //these values can be computed outside the   
      //pulse loop
      pre1 = (num_bins­1)/(2.0*c4df); 
      pre2 = 4.0f*pi/sol/2.0f; 
      pre3 = c4df*num_bins/(num_bins­1.0f); 
      // loop through all pulses for each subtile 
      for (i=0;i<num_pulses;i++){ 
         //determine range to pulse location
         r0 = r0_data[i]; //load r0
         Rstart=r0­pre3; 
         //load pulse location x,y,z
         tmpRA = pixel0_X ­ x_obs[i]; 
         R = tmpRA*tmpRA; 
         tmpRA = pixel0_Y­y_obs[i];
         R += tmpRA*tmpRA; 
         tmpRA=z_obs[i];
         R += tmpRA*tmpRA;
         //compute the range
         R=sqrt(R); 
         //compute bin index and coefficients 
         binFloat = (R­Rstart)*pre1; 
         binFloor = (int)binFloat; 
         w2 = binFloat ­ binFloor; 
         w1 = 1.0f­w2; 
         //validate bin index 
         if(binFloor+1 < num_bins && binFloor > 0){ 
            //add pulse offset to memory address 
            binFloor += i*num_bins; 
            //load the frequency                  
            f0 = f0_data[i];
            //retrieve the bins 
            tmpRB=pulse_data[(int)(binFloor)];
            tmpRC=pulse_data[(int)(binFloor+1)];
            //extract components from bins 
            tmpRF=(float)tmpRB.x; //bin1 real 
            tmpRG=(float)tmpRB.y; //bin1 imaginary    
            tmpRD=(float)tmpRC.x; //bin2 real 
            tmpRE=(float)tmpRC.y; //bin2 imaginary 
            //compute the non phase corrected sum 
            tmpRD = w1*tmpRF + w2*tmpRD; 
            tmpRE = w1*tmpRG + w2*tmpRE; 
            //populate the phase corrector (f2) 
            tmpRF = pre2*f0*((float)R); 

            tmpRH = static_cast<int>(tmpRF / pi); 
            tmpRG = tmpRF ­ static_cast<float>(tmpRH) 
               * ((float)pi); 
            tmpRF = tanf((float)tmpRG); 
            tmpRG = tmpRF*tmpRF + 1.0f; 
            f2.x = (2.0f ­ tmpRG) / tmpRG; 
            f2.y = (2.0f * tmpRF) / tmpRG; 
            //sum phase corrected result to the image 
            pixel.x += (tmpRD*f2.x­tmpRE*f2.y); 
            pixel.y += (tmpRE*f2.x+tmpRD*f2.y); 
         } 
      } 
      //write back to the image 
      image_data[(int) 
         (k+j*image_width)].x=(float)pixel.x; 
      image_data[(int)
         (k+j*image_width)].y=(float)pixel.y; 
   } 
}

Figure 1.6: Single Core C Implementation of Backprojection
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for(pb=0; pb < num_pulses; pb += pulse_block_size){   
   for(by=0; by < blockCountY; by++){
      for(bx=0; bx < blockCountX; bx++){ 
         for(j=by*BLOCK_SIZE; j < (by+1)*BLOCK_SIZE; j++){ 
            for(k=bx*BLOCK_SIZE; k < (bx+1)*BLOCK_SIZE; k++){ 

               //The main body of the loop is consistent with Figure 6
               //except for the following change to the inner for loop.

               // loop through a pulse block for each sub tile
               for (i=pb; i < pb+pulse_block_size ; i++){
                  ...
               }
            }
         }
      }
   }
}

Figure 1.7: Single Core Cache Aware Implementation of Backprojection

1.3.1 Single Core Cache-Aware Backprojection

Improvements to the single-core code can be realized by considering the size of
the CPU cache, then implementing a tiled partitioning scheme that ensures
access locality on both pulse data and image data. Each partition in this
scheme is visited sequentially, allowing data required for each partition to be
stored entirely in cache until starting the next partition. This cache-aware
strategy improves the performance of Backprojection by reducing the number
of cache misses and, in turn, the number of system memory accesses.

The implementation of this scheme only requires a modification to the
outer loop of Figure 1.6. In particular, rather than loop through the pixels
in an entire output image first along one dimension (e.g. y-axis), then along
the other dimension (e.g., x-axis), the approach shown in Figure 1.7 visits
the pixels and pulses in blocks.

1.3.2 Multicore Cache-Aware Backprojection

A multithreaded implementation of the code in Figure 1.7 can exploit a
CPU’s ability to hide memory latency by overlapping memory access with
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Table 1.1: Single Core, Cache Aware Backprojection Performance
Pulse Block Size Tile Size (px) Latency (seconds) Throughput (Gflop/s)

1 4 1922.45 0.35
1 8 1933.31 0.35
1 16 1964.24 0.34
1 32 1984.44 0.34
10 4 1536.37 0.44
10 8 1538.51 0.44
10 16 1545.15 0.43
10 32 1553.52 0.43
20 4 1506.62 0.45
20 8 1509.02 0.45
20 16 1512.09 0.44
20 32 1517.19 0.44
30 4 1798.66 0.37
30 8 1803.19 0.37
30 16 1805.68 0.37
30 32 1805.76 0.37
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computation, and can also utilize multiple cores. The corresponding exten-
sion of the code in Figure 1.7 is trivial, as a block partitioning scheme has
already been implemented. Pthreads can be used to launch N instances of
the code, where each instance is provided with a thread ID that can be
used to identify itself. Inside the main block loop, a single line of additional
code could then skip to process each Nth block. This modification is shown
in Figure 1.8, with experimental performance figures listed in Table 1.2. A
speedup of more than the number of processing cores was obtained by launch-
ing more threads than cores, thus allowing the CPU to mask memory access
by overlapping it with computation.

10



for(pb=0; pb < num_pulses; pb += pulse_block_size){   
   for(by=0; by < blockCountY; by++){
      for(bx=0; bx < blockCountX; bx++){ 
         if( (by*blockCountX+bx)%4 != id) continue ;      
         for(j=by*BLOCK_SIZE; j < (by+1)*BLOCK_SIZE; j++){ 
            for(k=bx*BLOCK_SIZE; k < (bx+1)*BLOCK_SIZE; k++){ 

               //The main body of the loop is consistent with Figure 7

            }
         }
      }
   }
}

Figure 1.8: Modification of Code in Figure 7 to Realize Multithreaded Exe-
cution

1.4 GPU Backprojection

1.4.1 Tiled Partitioning

An initial implementation of Backprojection on the GPU is straightforward
using the tiled partitioning scheme described in Section 1.2. Each block
of threads on the GPU corresponds to one image tile, where each thread
corresponds to one pixel. The pulse data, image, and other data structures
are transferred to the GPU using multiple invocations of the Nvidia CUDA
operation cudaMemcpy prior to launching the kernel. The pulse data and
image are stored directly in global memory, while the other data structures
are stored in texture memory to improve memory read performance. These
latter structures are read-only and are comparatively small.

The kernel code for a GPU implementation of Backprojection is given in
Figure 1.9.

The code that invokes this kernel is quite long due to the number of data
structures that must be transferred to device memory. The code illustrated
in Figure 1.10, which has been truncated for compactness, demonstrates the
required steps. Firstly, memory is allocated on the device to hold the data
structures, which are then copied from host to device memory. Pointers to the
pulse data (d pulse data) and image data (d image) are passed as arguments
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Table 1.2: Multithreaded, Cache-Aware Backprojection Performance
Pulse Block Size Tile Size (px) Latency (seconds) Throughput (Gflop/s)

1 4 230.89 2.91
1 8 217.63 3.09
1 16 216.08 3.11
1 32 216.85 3.10
10 4 190.10 3.53
10 8 185.15 3.63
10 16 189.56 3.54
10 32 187.52 3.58
20 4 187.24 3.59
20 8 185.92 3.61
20 16 186.11 3.61
20 32 186.55 3.60
30 4 222.42 3.02
30 8 223.82 3.00
30 16 225.83 2.98
30 32 224.47 2.99
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__global__ void bploop(float2 *pulse_data, float2 
   *image_data,float c4df, int num_pulses,int 
   num_bins,int image_width,int image_height){ 
   
   float r0, f0, pixel0_Y, pixel0_X, w1, w2, 
      binFloat, binFloor, pre1, pre2, pre3, R, 
      Rstart, tmpRA, tmpRD, tmpRE, tmpRF, tmpRG; 
   float2 pixel0, f2, tmpRC, tmpRB; 
   int i, j, k, tmpRH; 
   int2 tmpRI; 

   //the pixel that corresponds to this thread 
   j = (threadIdx.x + blockIdx.x * 
      INTERNAL_BLOCK_SIZE); 
   k = (threadIdx.y + blockIdx.y * 
      INTERNAL_BLOCK_SIZE); 
   
   //load pixel location
   tmpRI=tex1Dfetch(tex_X,j+0);
   pixel0_X=(float) __hiloint2double(tmpRI.y,tmpRI.x);
   tmpRI=tex1Dfetch(tex_Y,k+0);
   pixel0_Y=(float) __hiloint2double(tmpRI.y,tmpRI.x); 
   
   //precompute constants to be used inside the loop
   pre1 = (num_bins­1)/(2.0*c4df); 
   pre2 = 4.0f*pi/sol/2.0f; 
   pre3 = c4df*num_bins/(num_bins­1.0f); 

   // loop through all pulses for each subtile 
   for(i=0; i<num_pulses; i++){ 

      //load r0
      r0=tex1Dfetch(tex_r0_data,i); 
      Rstart=r0­pre3; 
   
      //determine range to pulse location     
      tmpRA = pixel0_X ­ tex1Dfetch(tex_x_obs,i); 
      R = tmpRA * tmpRA; 
      tmpRA = pixel0_Y ­ tex1Dfetch(tex_y_obs,i); 
      R += tmpRA * tmpRA; 
      tmpRA = tex1Dfetch(tex_z_obs,i); 
      R += tmpRA * tmpRA; 
      R = sqrt(R);
      
      //compute bin index 
      binFloat = (R ­ Rstart) * pre1; 
      binFloor = (int) binFloat; 
      w2 = binFloat ­ binFloor; 
      w1 = 1.0 ­ w2; 
      

      //verify the bin is in the subset of the pulse 
      //data this thread can access 
      if(binFloor+1 < num_bins && binFloor > 0){ 
         binFloor += i*EXTERNAL_PHD_CACHE; 
         
         //load f0 for the pulse
         f0=tex1Dfetch(tex_f0_data,i); 
   
         //read the bins 
         tmpRB = pulse_data[(int)(binFloor)]; 
         tmpRC = pulse_data[(int)(binFloor+1.0f)];
         tmpRF = tmpRB.x; //bin1.real 
         tmpRG = tmpRB.y; //bin1.imag 
         tmpRD = tmpRC.x; //bin2.real 
         tmpRE = tmpRC.y; //bin2.imag 

         //compute f1, the non phase corrected sum 
         tmpRD = w1*tmpRF + w2*tmpRD; 
         tmpRE = w1*tmpRG + w2*tmpRE; 

         //populate the phase corrector (f2) 
         tmpRF = pre2 * f0 * R; 
         tmpRH = static_cast<int>(tmpRF / pi); 
         tmpRG = tmpRF­static_cast<float>(tmpRH*pi); 
         tmpRF = __tanf(tmpRG); 
         tmpRG = tmpRF * tmpRF + 1.0f; 
         f2.x = (2.0f ­ tmpRG) / tmpRG; 
         f2.y = (2.0f * tmpRF) / tmpRG; 
         
         //sum phase corrected result to the image 
         pixel0.x += tmpRD*f2.x ­ tmpRE*f2.y; 
         pixel0.y += tmpRE*f2.x + tmpRD*f2.y; 
      } 
   } 

   //write back to global memory for pixel 
   image_data[(int)(k+j*image_height)].x=pixel0.x; 
   image_data[(int)(k+j*image_height)].y=pixel0.y;   
} 

Figure 1.9: GPU Implementation of Backprojection Kernel
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float2* d_pulse_data; 
float* d_image; 
float* d_r0; 
...
cudaMalloc((void**) &d_pulse_data, 2*sizeof(float)*num_pulses*num_bins); 
cudaMalloc((void**) &d_image, 2*sizeof(float)*BLOCK_SIZE*BLOCK_SIZE); 
cudaMalloc((void**) &d_r0, sizeof(float)*num_pulses); 
..
cudaMalloc((void**) &d_r0, sizeof(float)*num_pulses); 
cudaMemcpy(d_image, &(image[startImageAddress]), 
   2*sizeof(float)*BLOCK_SIZE*BLOCK_SIZE,cudaMemcpyHostToDevice); 
cudaMemcpyAsync(d_r0, r0, sizeof(float)*BLOCK_SIZE, 
   cudaMemcpyHostToDevice); 

cudaBindTexture(0, tex_r0, d_r0, sizeof(float)*PULSE_BLOCK_SIZE);

dim3 threads(BLOCK_SIZE, BLOCK_SIZE); 
dim3 grid(image_width / threads.x, image_height / threads.y); 

bploop<<<grid, threads, 0>>>((float2 *)d_pulse_data, (float *)d_image,   
   c4df, num_pulses, num_bins, image_width, image_height); 

cudaMemcpy(&(image[0]), d_image, 2*sizeof(float)*BLOCK_SIZE*BLOCK_SIZE, 
   cudaMemcpyDeviceToHost);

Figure 1.10: GPU Implementation of Backprojection Host

to the kernel, while the remaining structures are passed as textures.
The kernel code in Figure 1.10 contains several optimizations that are

instrumental in achieving high performance, which are listed as follows.

1. Utilization of L1 Cache Rather than Shared Memory

The code in Figure 1.10 was developed for use on an Nvidia Tesla
C2050, which was the first Nvidia GPU to provide developers with a
traditional L1 and L2 cache hierarchy for reducing global memory ac-
cess costs. Previous GPUs included only a shared memory which had to
be manually controlled by the code developer. Operating this memory
structure required the addition of code into the kernel that populated
and maintained the state of the cache, which incurred additional costs
in clock cycles and registers. Because the Tesla C2050’s L1 and L2
caches are managed transparently by hardware, they do not incur a
performance penalty to initiate or maintain. The effective utilization
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of this cache hierarchy is achieved by the same technique traditionally
applied to other processing architectures. For all thread blocks that are
active on each multiprocessor, memory accesses are ordered in such a
way to ensure that proximal reads and writes are localized to a region
of memory that is smaller than the cache size divided by the number
of active blocks. This achieves a high cache hit ratio. In Backprojec-
tion, access locality is attained by implementing the tiled partitioning
scheme described in Section 1.2, where the tile size is sufficiently small
to permit all pulse data and all image data for each tile to fit inside
the L1 cache.

2. Reuse of Variable Names

Minimizing the number of registers allocated per thread is essential to
achieving high occupancy, a condition where many thread blocks are
scheduled for execution on each streaming multiprocessor at the same
time. In most instances, the CUDA register allocator is effective at
analyzing the kernel and determining the lowest number of registers
required by the program. However, in some instances, the CUDA com-
piler is not able to detect when it is safe to reuse a register that is
storing old data. Explicit overwriting of the variable with new data
ensures that its register will be used to hold the new value.

3. Computation of Values Outside Loops

This optimization is not specific to the GPU, but is useful because
moving expensive operations outside loops often has a positive impact
on performance. In the code above, this was done for the variables
pre1, pre2, and pre3. On a GPU, the cost of this optimization is seen
in register utilization. Values computed outside a loop must be main-
tained in register memory, and their registers cannot be released until
the loop has completed. It is always useful to weight the spatial cost
of a single register against the temporal cost of recomputing the value
inside the loop.

Recall that the success of a GPU implementation of Backprojection de-
pends on the data partitioning strategy. From the principle of locality, within
a group of neighboring pixels, the collection of range bins the pixels corre-
spond to are neighbors or near-neighbors. This access locality permits a
subregion of the image and a subregion of the pulse data to be transferred
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Range Bin

Output Image

Figure 1.11: Pulse Data Reuse Increases with Tile Size

to shared memory or L1 cache to facilitate complete rendering of the pixel
with the given set of pulses.

This technique is advantageous because it allows a GPU to transfer large
blocks of pulse data memory at one time, rather than requiring transfer of
a single bin each time it is needed. More importantly, this approach also
permits frequently-accessed values to be loaded from global memory once,
then read from cache for all subsequent read operations (called load-once
read-many).

Figure 1.11 helps the reader understand this notion of range bin reuse.
For example, let a target area be partitioned into nine tiles or blocks. The
bin corresponding to the illustrated pulse location is used by five blocks a
total of 12 times. If blocking was not used, this bin would be to be loaded
from global memory each of the 12 times it was used, yielding 12 memory
accesses. In contrast, the load-once read-many blocking strategy permits the
same image to be reconstructed using only five global memory accesses, with
the remaining 7 read operations resulting in a cache hit.

In the general case, where blocking is used on high-resolution images
having many blocks, the amount of data transfer required to render an image
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Data Transfer as a Function of Tile Size
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Figure 1.12: Data Transfer Cost Decreases with Tile Size
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Table 1.3: Performance of Tiled Backprojection
Tile Size (px) Latency (seconds) Throughput (Gflop/s)

4 x 4 14.9 44.1
8 x 8 4.79 131.8

16 x 16 3.71 181.1
32 x 32 3.68 182.4

can be modeled as function of tile size. A smaller block size results in less
block reuse, thus increasing communication cost. This effect is shown in
Figure 1.12, using simulated low resolution image data (500 x 500 pixels)
with 4096 range bins. The two graphs in Figure 1.12 denote upper and
lower bounds on the memory access requirements for a given block (tile)
size. The bounds differ because pulse look angle can vary with respect to
block orientation.

Similar to the preceding discussion, a larger block size reduces communi-
cation cost but decreases the number of blocks and the degree of parallelism.
Large block sizes can cause low occupancy if register utilization is high, or if
pulse data and image data exceed available storage in a block’s region of L1
cache and shared memory.

Performance results are shown in Table 1.3, as a function of tile size
varying from 4 x 4 pixels to 32 x 32 pixels, for a 4096 x 4096 pixel output
image. These results are consistent with the observation that higher tile sizes
lead to lower latencies, subject to the constraints of register availability and
memory. There does not seem to be a substantial benefit going from 16 x 16
to 32 x 32, suggesting that memory access due to tile size is not significantly
limiting performance at these sizes.

1.4.2 Overlapping Host - Device Communication with
Computation

While improvements presented in the previous section are impressive when
compared to the CPU implementation, one can further increase performance
by reducing the latency incurred by transferring the pulse data from host
to device before launching the kernel. Since pulse data is a large structure,
this transfer latency can account for a significant portion of the application
runtime. Fortunately, the Backprojection algorithm sequentially uses each
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pulse from the response, without needing to revisit previous pulses or look
ahead to subsequent pulses. This permits the pulse data to be treated as
a datastream, so pulses can be copied into device global memory while the
kernel is running. This overlap allows masking of nearly all the pulse data
transfer latency.

Modern GPU devices support the overlap of communication and compu-
tation via a CUDA structure called a stream that is a set of GPU instruc-
tions, including kernel invocations and memory transfer requests, which is
executed sequentially. Such CUDA operation streams should not be con-
fused with datastreams mentioned in the previous section. Within a CUDA
stream, operations cannot be overlapped, so must be executed in the order
they were placed in the stream. However, between different streams, oper-
ations may overlap. For example, a kernel from one stream can be running
while an asynchronous memory transfer in another stream is running.

The approach used to achieve this overlap with Backprojection (1) trans-
mits a block of pulses to global memory; (2) launches a kernel that generates
an output image from these pulses while a second block of pulses is being
copied to another location in global memory; (3) leaves the image in global
memory, and (4) launches a kernel on a new block of pulses.

The implementation of CUDA stream-based processing requires only one
change to the kernel code shown in Figure 1.9. Previously, a single kernel
call processed all pulses in the response, so there was no need to read in the
pixel value currently being computed before beginning execution; it was safe
to assume the pixel’s value was 0. In the CUDA stream implementation,
each kernel must read the current pixel value from global memory before
entering the main pulse loop. This modification is shown in Figure 1.13.
The corresponding modifications to the host code are given in Figure 1.14.

In this code, the host begins by allocating two blocks of memory in the
device for pulse data, denoted by d phd0 and d phd1, and one block of
memory for the output image. Additional memory is allocated for smaller
supporting data structures that will later be assigned to textures. CUDA
streams are created to hold each memory transfer and kernel invocation pair.
The primary loop iterates through the pulse blocks, starting at an index value
of -1 and stopping at the block count. During the first pass through the loop,
the first block of pulses is transferred to the device. During the second pass,
the pulse data for the second block is sent and a kernel is invoked on the
first block. Execution continues in this manner until the last iteration, when
a kernel is launched on the last block and no data is sent to the device.
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__global__ void bploop(float2 *pulse_data, float2 *image_data,float c4df, 
   int num_pulses,int num_bins,int image_width,int image_height){ 
   float r0, f0, pixel0_Y, pixel0_X, w1, w2, binFloat, binFloor, pre1, 
   pre2, pre3, R, Rstart, tmpRA, tmpRD, tmpRE, tmpRF, tmpRG; 
   float2 pixel0, f2, tmpRC, tmpRB; 
   int i, j, k, tmpRH; 
   int2 tmpRI; 
   
   //determine the pixel that corresponds to this thread 
   j = (threadIdx.x+blockIdx.x*INTERNAL_BLOCK_SIZE); 
   k = (threadIdx.y+blockIdx.y*INTERNAL_BLOCK_SIZE); 
   
   //read the image from global memory
   pixel0.x = image_data[(int)(k+0+j*image_height)].x; 
   pixel0.y = image_data[(int)(k+0+j*image_height)].y;   
   
   for (i=0;i<num_pulses;i++){       
      //compute the contribution of each pulse in the block
      //(No changes to the loop body from Figure 8.)
   } 

   //write back to global memory for pixel 
   image_data[(int)(k+j*image_height)].x=(float)pixel0.x; 
   image_data[(int)(k+j*image_height)].y=(float)pixel0.y;   
}

Figure 1.13: Tiled Backprojection Kernel with Overlapped Communication
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// allocate device memory for 2 copies of pulse array
float2* d_pulse_data0;
cudaMalloc((void**) &d_pulse_data0,2*sizeof(float)*
   PULSE_BLOCK_SIZE*EXTERNAL_PHD_CACHE);
float2* d_pulse_data1;
cutilSafeCall(cudaMalloc((void**) &d_pulse_data1, 2* 
  sizeof(float)*PULSE_BLOCK_SIZE*EXTERNAL_PHD_CACHE)); 
 
//allocate memory for other structures used to store 
data about the pulses
float* d_x_obs;
cudaMalloc((void**) &d_x_obs, sizeof(float)*
   PULSE_BLOCK_SIZE); 
... 

//allocate image memory
float* d_image;
cudaMalloc((void**) &d_image, 2*sizeof(float)*
   image_width*image_width); 

//zero the image
cudaMemset(d_image, 0, 2*sizeof(float)*
   image_width*image_width); 

//make a stream for each block of pulses. The stream 
//will later include a memory transfer instruction and 
//a kernel invocation.
streams = (cudaStream_t*) malloc(sizeof(cudaStream_t)*
   num_pulses/PULSE_BLOCK_SIZE);

for(k=0; k < num_pulses/PULSE_BLOCK_SIZE; k++)
   cudaStreamCreate(&(streams[k])); 

//set up the kernel image partitioning
dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
dim3 grid(image_width / threads.x, image_width / 
   threads.y); 

// loop through all pulse blocks
for(k=­1; k<render_num_pulses/PULSE_BLOCK_SIZE; k++){
   //determine if this is an even or odd block index
   pm = ((k+1) % 2 == 0); 
   //launch a kernel if this is not the first 
   //iteration of the loop
   if(k >= 0){ 
      // copy small host data structures to device
      cudaMemcpyAsync(d_x_obs,&(x_obs[PULSE_BLOCK_SIZE
          *k]), sizeof(float)*PULSE_BLOCK_SIZE,
          cudaMemcpyHostToDevice,streams[k]); 
      ... 

      // bind the data to textures
      cudaBindTexture(0, tex_x_obs, d_x_obs, 
         sizeof(float)*PULSE_BLOCK_SIZE); 
      ... 
      // execute the kernel
      bploop<<< grid, threads, 0, streams[k]>>>
         ((float2 *)(pm?d_pulse_data1:d_pulse_data0),
         (float *)d_image,c4df, PULSE_BLOCK_SIZE, 
         num_bins,image_width, image_height); 
   } 

   //send data for the next pulse block if we are not 
   //on the last pulse block  
   if(k < num_pulses/PULSE_BLOCK_SIZE­1){
      int kplus1 = k+1;
      //send the buffer to the device 
      cudaMemcpyAsync( pm ? &(d_pulse_data0[0]): 
         &(d_pulse_data1[0]), 
         &(pulse_data[num_bins*kplus1*
         PULSE_BLOCK_SIZE*sizeof(float2)]), 
         num_bins*PULSE_BLOCK_SIZE*sizeof(float2),
         cudaMemcpyHostToDevice,streams[kplus1]);
   } 
   // wait to start the next iteration of the loop 
   // until both the kernel and memory transfer are   
   // complete 
   cudaThreadSynchronize();
} 

// copy image from device to host
cudaMemcpy(&(image[startImageAddress]), d_image, 
   2*sizeof(float)*image_width*image_width, 
   cudaMemcpyDeviceToHost);

Figure 1.14: Tiled Backprojection Host Code with Overlapped Communica-
tion
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Table 1.4: Tiled Backprojection Kernel with Overlapped Communication
Performance
Pulse Block Size (px) Latency (seconds) Throughput (Gflop/s)

10 3.865 173.8
20 3.547 189.4
50 3.369 199.4
100 3.324 202.1
125 3.327 201.9
200 3.346 200.8
500 3.483 192.9

This technique allows all but the transfer of the first block to be masked by
computation time. This fact encourages the selection of small block sizes.
However, extremely small block sizes are disadvantageous when the latency
associated with launching a kernel exceeds the latency for transferring a single
block. This break-even point is hardware dependent.

Performance results are shown in Table 1.4 as a function of pulse block
size varying from 10 to 200, for a 4096 x 4096 pixel output image. The image
tile size is held constant at 32 x 32 pixels, which was the best-performing tile
size from previous tests (Table 1.3), yielding 182.4 Gflop/s. These results
demonstrate the observation that, at very low pulse block sizes, latency is
high due to communication overhead associated with launching a large num-
ber of kernels. At large block sizes, transfer cost for the first pulse block
reduces the amount of feasible overlapping. The highest performance was
observed at a pulse block size of 100, which increased throughput from 182.4
Gflop/s to 202.1 Gflop/s, an improvement of 10.8%.

1.4.3 Improving Register Usage

The partitioning scheme described in Section 1.4.1 dictates that each kernel
should process one pixel. It was subsequently determined that optimum tile
size is 32 x 32 pixels, for a total of 1024 kernels per block. In Section 1.4.2,
we used streams to overlap computation and communication to attain an im-
provement in performance. This decreased total latency, but did not impact
kernel performance.

Additional improvement can be realized by increasing occupancy attained
by our current scheme. In particular, decreasing the resource utilization of

22



a single thread block allows more thread blocks to be active on a streaming
multiprocessor, thus supporting reduction of global memory access times.

Compiling the CUDA code using –ptx-options=-v provides information
about the resources being used by each thread, for example:

ptxas info: Compiling entry function ’...’ for ’sm_20’

ptxas info: Used 21 registers, 68 bytes cmem[0], 8 bytes cmem[16]

Here, Line 2 indicates that each thread uses 21 registers. Recalling that
there are 1024 registers per block, each block thus requires 21,504 registers
on a streaming multiprocessor, which is more than half of the 32,768 registers
available per streaming multiprocessor. For this reason, only one block can
be active at a time, and global memory access cannot be masked.

Although it is possible to reduce the number of registers per block by
reducing block size, Table 1.4 illustrates that optimal block size is 32 x 32
pixels. This implies that any benefits from higher occupancy are overcome
by the higher communication costs associated with dividing the image into
smaller tiles. Fortunately, it is possible to maintain a large tile size while
decreasing the number of registers per block, which is accomplished by in-
creasing the number of pixels per thread.

The success of this scheme depends on the notion that, although each
thread uses 21 registers, many of those registers are not storing information
about the pixel, but about the state of the thread. This includes values com-
puted outside the body of the primary loop (to reduce computation latency),
as well as index variables and other intermediate values associated with run-
ning the algorithm. One could infer that if each thread processed two pixels,
the tile size would double, but the number of registers per thread would in-
crease by a smaller factor. This would allow tile size to be maintained at a
large value while also increasing occupancy.

To implement this modification, the kernel must be modified to compute
two pixels concurrently. This involves declaring an extra variable pixel 01 to
store pixel state, and adding code anywhere image data is accessed or used,
to ensure the computation runs twice. It is tempting to wrap the entire
application in a large loop where the index is varied from 0 to 1, but this
is not an acceptable solution. GPU registers are non-addressable from the
perspective of the developer, meaning there is no way to access a different
register based on the value of the loop variable, except by using conditional
logic. This would deteriorate performance, as it would violate the single

23



Table 1.5: Tiled Backprojection with Multiple Pixels Per Thread Perfor-
mance

Pixels Per
Thread

Registers Per
Thread

Tile Size
Latency
(seconds)

Throughput
(Gflop/s)

2 25 16 x 32 2.98 221.3

4 32 32 x 32 3.01 219.5

instruction multiple data principle. Such a loop would also require an extra
register to maintain the value of the loop variable.

Figure 1.15 illustrates kernel modification for processing two pixels per
thread. Implementing this strategy requires few modifications to the host
code. Only the grid needs to be corrected, since each block now computes
twice as many pixels as it has threads. The modified code is given in Fig-
ure 1.16.

Performance results are shown in Table 1.5 for a 4096 x 4096 pixel output
image. Pulse block size is fixed at 100, and block size is fixed at 16 x 16 pixels,
with the number of pixels per thread being varied from 2 to 4 in steps of 2.

These results show that increasing the number of pixels per thread and
increasing occupancy significantly improves performance. For the case of two
pixels per thread, each block used 6400 registers, permitting five blocks to be
active at a time. When the number of pixels was increased to four, register
usage increased to 8192, supporting only four active blocks. This resulted in
a small performance decrease, as the smaller number of blocks available for
scheduling per multiprocessor offset the decrease in communication cost.

1.5 Conclusion

Given a single Nvidia Tesla C2050 GPU, it is possible to obtain significant
performance improvements over traditional CPU-based cache-aware imple-
mentations of Backprojection coded in C. A tiled partitioning scheme ensures
locality of access for input and output data within each partition. This fa-
cilitates an efficient, straightforward parallelization of Backprojection, where
each kernel is responsible for each pixel, and each thread block is responsible
for each image tile. Such an implementation is capable of attaiting 182.4
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__global__ void bploop(float2 *pulse_data, float2 
   *image_data, float c4df, int num_pulses, int 
   num_bins,int image_width,int image_height){ 
   float r0,f0, pixel0_Y, pixel0_X, pixel1_Y, w1, w2, 
   tmpRF,tmpRG, f1, f2, binFloat, binFloor, pre2, 
   pre3, tmpRA, pre1, R, Rstart; 
   float2 tmpRC, tmpRB, pixel0, pixel1; 
   int i,j,k,tmpRH; 
   int2 tmpRI; 
   //the pixel that corresponds to this thread 
   j = (threadIdx.x+blockIdx.x*INTERNAL_BLOCK_SIZE); 
   k = (threadIdx.y+blockIdx.y*INTERNAL_BLOCK_SIZE); 
   //multiply the pixel y index number by 2
   k *= 2;
   //Get the current pixel value from global memory. 
   //Necessary because we stream the pulse blocks to 
   //the kernel.
   image_00.x=image_data[(int)(k+0+j*nyout)].x;
   image_00.y=image_data[(int)(k+0+j*nyout)].y;
   image_01.x=image_data[(int)(k+1+(j+0)*nyout)].x;
   image_01.y=image_data[(int)(k+1+(j+0)*nyout)].y;
   //read the pixels location
   tmpRI=tex1Dfetch(tex_X1,j+0);
   pixel0_X=(float) __hiloint2double(tmpRI.y, 
      tmpRI.x); 
   tmpRI=tex1Dfetch(tex_Y1,k+0);
   pixel0_Y=(float) __hiloint2double(tmpRI.y, 
      tmpRI.x); 
   tmpRI=tex1Dfetch(tex_Y1,k+1);
   pixel1_Y=(float) __hiloint2double(tmpRI.y, 
      tmpRI.x); 
   // precompute constants for use in the main loop
   pre1 = (num_bins­1)/(2.0*c4df); 
   pre2 = 4.0f*pi/sol/2.0f; 
   pre3 = c4df*num_bins/(num_bins­1.0f); 
   // loop through all pulses for each subtile 
   for (i=0;i<num_pulses;i++){ 
      //load r0
      r0=tex1Dfetch(tex_r0_data,i); 
      Rstart=r0­pre3; 
      //determine range to pulse location     
      tmpRA = pixel0_X­tex1Dfetch(tex_x_obs,i); 
      R = tmpRA*tmpRA; 
      tmpRA = pixel0_Y­tex1Dfetch(tex_y_obs,i); 
      R += tmpRA*tmpRA; 
      tmpRA=tex1Dfetch(tex_z_obs,i); 
      R += tmpRA*tmpRA; 
      R=sqrt(R); 
      //compute bin index 
      binFloat = (R­Rstart)*pre1; 
      binFloor=(int)binFloat; 
      w2=binFloat­binFloor; 
      w1=1.0f­w2; 
      //verify the bin is in the subset of the pulse 
      //data this thread can access 
      if(binFloor+1 < num_bins && binFloor > 0){ 
         binFloor += i*EXTERNAL_PHD_CACHE; 
         f0=tex1Dfetch(tex_f0_data,i); 
         //read the bins 
         tmpRB=pulse_data[(int)(binFloor)]; 
         tmpRC=pulse_data[(int)(binFloor+1.0f)];
         tmpRF=(float)tmpRB.x; //bin1.real 
         tmpRG=(float)tmpRB.y; //bin1.imag 
         tmpRD=(float)tmpRC.x; //bin2.real 
         tmpRE=(float)tmpRC.y; //bin2.imag 

         //compute f1, the non phase corrected sum 
         tmpRD = w1*tmpRF + w2*tmpRD; 
         tmpRE = w1*tmpRG + w2*tmpRE;

         //populate the phase corrector (f2) 
         tmpRF = pre2*f0*((float)R); 
         tmpRH = static_cast<int>(tmpRF / 
            ((float)pi)); 
         tmpRG = tmpRF ­ static_cast<float>(tmpRH) *  
            ((float)pi); 
         tmpRF = __tanf((float)tmpRG); 
         tmpRG = tmpRF*tmpRF + 1.0f; 
         f2.x = (2.0f ­ tmpRG) / tmpRG; 
         f2.y = (2.0f * tmpRF) / tmpRG; 
         //sum phase corrected result to the image 
         pixel0.x += (tmpRD*f2.x­tmpRE*f2.y); 
         pixel0.y += (tmpRE*f2.x+tmpRD*f2.y); 
      } 

      /*** Begin Second Pixel Computation***/

      //determine range to pulse location     
      tmpRA = pixel1_X­tex1Dfetch(tex_x_obs,i); 
      R = tmpRA*tmpRA; 
      tmpRA = pixel1_Y­tex1Dfetch(tex_y_obs,i); 
      R += tmpRA*tmpRA; 
      tmpRA=tex1Dfetch(tex_z_obs,i); 
      R += tmpRA*tmpRA; 
      R=sqrt(R); 
      //compute bin index 
      binFloat = (R­Rstart)*pre1; 
      binFloor=(int)binFloat; 
      w2=binFloat­binFloor; 
      w1=1.0­w2; 
      //verify the bin is in the subset of the pulse 
      //data this thread can access 
      if(binFloor+1 < num_bins && binFloor > 0){ 
         binFloor += i*EXTERNAL_PHD_CACHE; 
         f0=tex1Dfetch(tex_f0,i); 
         //read the bins 
         tmpRB=pulse_data[(int)(binFloor)]; 
         tmpRC=pulse_data[(int)(binFloor+1.0f)];
         tmpRF=(float)tmpRB.x; //bin1.real 
         tmpRG=(float)tmpRB.y; //bin1.imag 
         tmpRD=(float)tmpRC.x; //bin2.real 
         tmpRE=(float)tmpRC.y; //bin2.imag 
         //compute f1, the non phase corrected sum 
         tmpRD = w1*tmpRF + w2*tmpRD; 
         tmpRE = w1*tmpRG + w2*tmpRE; 
         //populate the phase corrector (f2) 
         tmpRF = pre2*f0*(R); 
         tmpRH = static_cast<int>(tmpRF / pi); 
         tmpRG = tmpRF ­ static_cast<float>(tmpRH) * 
            pi; 
         tmpRF = __tanf(tmpRG); 
         tmpRG = tmpRfloat*tmpRF + 1.0f; 
         f2.x = (2.0f ­ tmpRG) / tmpRG; 
         f2.y = (2.0f * tmpRF) / tmpRG; 
         //sum phase corrected result to the image 
         pixel0.x += tmpRD*f2.x­tmpRE*f2.y; 
         pixel0.y += tmpRE*f2.x+tmpRD*f2.y; 
      } 
      /*** End Second Pixel Computation***/
   } 
   //write back to global memory for pixel 
   image_data[(int)(k+0+j*image_height)].x
      =(float)pixel0.x; 
   image_data[(int)(k+0+j*image_height)].y
      =(float)pixel0.y;   
   image_data[(int)(k+1+j*image_height)].x
      =(float)pixel1.x; 
   image_data[(int)(k+1+j*image_height)].y
      =(float)pixel1.y; 
}

Figure 1.15: Tiled Backprojection Kernel with Two Pixels Per Thread, Ker-
nel Code
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dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
dim3 grid(image_width / threads.x, image_width / threads.y);
grid.y /= 2;

Figure 1.16: Tiled Backprojection Kernel with Multiple Pixels Per Thread,
Host Code

Gflop/s. Additional performance is obtained by noting that the latency re-
quired to transfer pulse data from host to device can be largely overlapped
with the processing of that data. This increases the throughput to 202.1
Gflop/s. Revisiting the parallelization scheme and increasing the number of
pixels per thread permits the tile size to be increased without increasing the
size of the thread block. This results in register usage that increases as a
sublinear function of tile size, and additional active blocks to be scheduled
on each streaming multiprocessor at a time. This occupancy increase the
throughput to 221.3 Gflop/s.
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