Highly Compressed Aho-Corasick Automata For
Efficient Intrusion Detection *

Xinyan Zha & Sartaj Sahni
Computer and Information Science and Engineering
University of Florida
Gainesville, FL 32611
{xzha,sahni}@cise.ufl.edu

Abstract

We develop a method to compress the unoptimized Aho-Corasick automaton that
is used widely in intrusion detection systems. Our method uses bitmaps with multiple
levels of summaries as well as aggressive path compaction. By using multiple levels of
summaries, we are able to determine a popcount with as few as 1 addition. On Snort
string databases, our compressed automata take 24% to 31% less memory than taken
by the compressed automata of Tuck et al. [32]. and the number of additions required
to compute popcounts is reduced by about 90%.

Keywords: Intrusion detection, Aho-Corasick trees, compression, efficient popcount
computation, performance.

1 Introduction

Intrusion detection systems (IDS) monitor events within a network or computer system with
the objective of detecting “attempts to compromise the confidentiality, integrity, availability,
or to bypass the security mechanisms of a computer or network” [4]. The intrusion detected
by an IDS may manifest itself as a denial of service, unauthorized login, a user performing
tasks that he/she is not authorized to do (e.g., access secure files, create new accounts,
etc), execution of malware such as viruses and worms, and so on. An IDS accomplishes

its objective by analyzing data gathered from the network, host computer, or application

*This research was supported, in part, by the National Science Foundation under grant ITR-0326155

that is being monitored. The analysis usually takes one of two forms—misuse (or signature)
detection and anomaly detection. In misuse detection, the IDS maintains a database of
signatures (patterns of events) that correspond to known attacks and searches the gathered
data for these signatures. In anomaly detection the IDS maintains statistics that describe
normal usage and checks for deviations from these statistics in the monitored data. While
misuse detection usually has a low rate of false positives, it is able to detect only known
attacks. Anomaly detection usually has a higher rate of false positives (because users keep
changing their usage pattern thereby invalidating the stored statistics) but is able to detect
new attacks never seen before.

Several types network, host, application, protocol and hybrid of IDSs are available com-
mercially. Network intrusion detection systems (NIDS) examine network traffic (both in-
and out-bound packets) looking for traffic patterns that indicate attempts to break into a
target computer, port scans, denial of service attacks, and other malicious behavior. Host
intrusion detection systems (HIDS) monitor the activity within a computing system looking
for activity that violates the computing systems internal security policy (e.g., a program
attempting to access an unauthorized resource). Application intrusion detection systems
(AIDS) monitor the activity of a specific application while protocol intrusion detection sys-
tems (PIDS) ensure that specific protocols such as HT'TP behave as they should. Each type
of IDS has its capabilities and limitations and attempts have been made to put together
hybrid IDSs that combine the capabilities of the described base IDSs.

Bro [22, 8, 11, 27, 7] and Snort [25] are two of the more popular public-domain NIDSs.
Both maintain a database of signatures (or rules) that include a string as a component.
These intrusion detection systems examine the payload of each packet that is matched by
a rule and reports all occurrences of the string associated with that rule. It is estimated
that about 70% of the time it takes Snort, for example, to process packets is spent in its
string matching code and this code accounts for about 80% of the instructions executed
[2]. Consequently, much research has been done recently to improve the efficiency of string
matching ([6, 13, 32], for example). The focus of this paper is to improve the storage and

search cost of NIDS string matching using Aho-Corasick trees [1].

In Section 2, we review related work. The Aho-Corasick automaton, which is central to
our work, is described in Section 3. The compression method of Tuck et al. [32] is described
in Section 4. In Section 5 we describe the method of Munro [20, 21] to compute popcounts
with 2 additions and we propose three designs to compute popcounts efficiently in 256-bit
bitmaps. These designs make it possible to use popcounts efficiently without any hardware
support whatsoever! Our method to compress the Aho-Corasick automaton is described in
Section 6 and experimental results comparing our method with that of Tuck et al. [32] are

presented in Section 7.

2 Related Work

The development of high-speed intrusion detection systems and components has been the
focus of significant recent research. Although there are many components in a NIDS that
need to be optimized to achieve line-rate processing, we focus our discussion here to the string
matching component, which is the most time consuming and which has been the focus of
much of the prior work on NIDS optimization. String matching requires the examination of
the network traffic to determine all matches with the strings in the string database. Although
through pre-filtering [22, 29] we can reduce the effective workload on the NIDS considerably,
there remains a need for powerful and compact data structures for string matching.

Snort [25] and Bro [22, 8, 11, 27, 7] are two of the more popular public domain NIDSs.
Both are software solutions to intrusion detection. The current implementation of Snort
uses the optimized version of the Aho-Corasick automaton [1]. Snort also uses SFK search
and the Wu-Manber [34] multi-string search algorithm. The memory required to store the
optimized Aho-Corasick and Wu-Manber data structures is excessive [32]. To reduce the
memory requirement of the Aho-Corasick automaton, Tuck et al. [32] have proposed starting
with the unoptimized Aho-Corasick automaton and using bitmaps and path compression.
We note that the use of bitmaps to obtain compact representations was proposed first by
Jacobson [21]. In the network algorithms area, bitmaps have been used also in the tree bitmap
scheme [9] and in shape shifting and hybrid shape shifting tries [28, 17]; path compression

has been used in several IP lookup structures including tree bitmap [9] and hybrid shape

shifting tries [17]. With these compression methods, the memory required by the compressed
unoptimized Aho-Corasick automaton becomes about 1/50 to 1/30 of that required by the
optimized automaton and the Wu-Manber structure and is slightly less than that required
by SFK search [32]. However, a search requires us to perform a large number of additions at
each node and so requires hardware support for efficient implementation. String matching
using a purely software implementation of the bitmap and path-compressed Aho-Corasick
automaton takes about 10% to 20% more time, on average, than when an optimized Aho-
Corasick automaton is used.

Hardware and hardware assisted solutions also have been proposed. Song and Lock-
wood [30], Fang et al. [10], and Yu and Katz [36], for example, propose the use of TCAMs
(in the case of [30], the TCAM is supplemented with bit-vector hardware) for NIDS appli-
cations. Yazadani et al. [35] propose a two-level state machine architecture that employs a
TCAM for packet content examination. Dharmapurikar and Lockwood [6] have proposed a
hardware implementation of the Aho-Corasick [1] string matching algorithm for NIDS ap-
plications. They assert that their hardware design is more scalable than FPGA and TCAM
based designs because of its reliance on “embedded on-chip memory blocks in VLSI hard-
ware.” Song et al. [29] propose the use of an FPGA pre-filter to reduce the network traffic
actually examined by a NIDS and Lockwood et al. [13] propose an extensible system-on-
programmable-chip design for content-aware filtering. Their design employs TCAMs and
FPGAs. Tuck et al. [32] propose a way to represent unoptimized Aho-Corasick automata in
a compact format. They predict a processing rate of about 8 Gbps for an ASIC design. Lun-
teran [19] has proposed a B-FSM (Bart Finite State Machine) for NIDS applications. The
proposed B-FSM employs a finite state machine similar to that used in the Aho-Corasick
string matching algorithm and the packet classification scheme Bart developed earlier by
Lunteran [18]. It is estimated that an FPGA version of the B-FSM will process at 10Gbps
and an ASIC version at 20Gbps.

3 The Aho-Corasick Automaton

The Aho-Corasick automaton [1] for multi-string matching is widely used in IDSs. There
are two versions of this automaton unoptimized and optimized. While both versions are
finite state machines, the unoptimized version has a failure pointer for each state while in
the optimized version, no state has a failure pointer. In both versions, each state has success
pointers and each success pointer has a label, which is a character from the string alphabet,
associated with it. Also, each state has a list of strings/rules (from the string database) that
are matched when that state is reached by following a success pointer. This is the list of
matched rules. In the unoptimized version, the search starts with the automaton start state
designated as the current state and the first character in the text string, S, that is being
searched designated as the current character. At each step, a state transition is made by
examining the current character of S. If the current state has a success pointer labeled by
the current character, a transition to the state pointed at by this success pointer is made
and the next character of S becomes the current character. When there is no corresponding
success pointer, a transition to the state pointed at by the failure pointer is made and the
current character is not changed. Whenever a state is reached by following a success pointer,
the rules in the list of matched rules for the reached state are output along with the position
in S of the current character. This output is sufficient to identify all occurrences, in .S, of all
database strings. Aho and Corasick [1] have shown that when their unoptimized automaton
is used, the number of state transitions is 2n, where n is the length of S.

In the optimized version, each state has a success pointer for every character in the
alphabet and so, there is no failure pointer. Aho and Corasick [1] show how to compute the
success pointer for pairs of states and characters for which there is no success pointer in the
unoptimized automaton thereby transforming a unoptimized automaton into an optimized
one. The number of state transitions made by an optimized automaton when searching for
matches in a string of length n is n.

Figure 1 shows an example string set drawn from the 3-letter alphabet {a,b,c}. Figures 2

and 3, respectively, show its unoptimized and optimized Aho-Corasick automata. For this

abcaabb
abcaabbcce
ach
acbccabb
ccabb
becabe
bbccabca

Figure 1: An example string set

example, we assume that the string alphabet is {A, B, C}.

It is important to note that when we remove the failure pointers from an uncompressed
Aho-Corasick automaton, the resulting structure is a trie [23] rooted at the automaton start
node. However, an optimized automaton has the structure of a graph that may not be a
trie. This difference in the structure defined by the success pointers has a profound impact

on our ability to compress unoptimized automata versus optimized automata.

4 The Method of Tuck et al. [32] To Compress Non-
Optimized Automaton

Assume that the alphabet size is 256 (e.g., ASCII characters). Although the development is
generalized readily to any alphabet size, it is more convenient to do the development using
a fixed and realistic alphabet size. A natural way to store the Aho-Corasick automaton, for
a given database D of strings, in a computer is to represent each state of the unoptimized

automaton by a node that has the following fields:

1. Success|0 : 255], where Success|i] gives the state to transition to when the ASCII code
for the current character is i (Success[i] is null in case there is no success pointer for

the current state when the current character is 7).

2. RuleList ... a list of rules that are matched when this state is reached via a success

pointer.

3. Failure ... the transition to make when there is no success transition, for the current

character, from the current state.

Figure 2: Unoptimized Aho-Corasick automata for strings of Figure 1

Assume that each pointer requires 4 bytes. So, each node requires 1024 bytes for the
Success array and 4 bytes for the failure pointer. In keeping with Tuck et al. [32], when
accounting for the memory required for Rulelist, we shall assume that only a 4-byte pointer
to this list is stored in the node and ignore the memory required by the list itself. Hence, the
size of a state node for an unoptimized automaton is 1032 bytes. In the optimized version,

the Failure field is omitted and the memory required by a node is 1028 bytes. While each

C
—0)
b
g O
b
b

Figure 3: Optimized Aho-Corasick automata for strings of Figure 1

node of the optimized automaton requires 4 bytes less than required by each node of the
unoptimized automaton, there is little opportunity to compress an optimized node as each
of its 256 success pointers is non-null and the automaton does not have a tree structure.
However, many of the success pointers in the nodes of a unoptimized automaton are null
and the structure defined by the success pointers is a trie. Therefore, there is significant
opportunity to compress these nodes. Following up on this observation, Tuck et al. [32]

propose two transformations to compress the nodes in an unoptimized automaton:

1. Bitmap Compression. In its simplest form, bitmap compression replaces each 1032-
byte node of an unoptimized automaton with a 44-byte node. Of these 44 bytes, 8 are
used for the failure and rule list pointers. Another 32 bytes are used to maintain a
256-bit bitmap with the property that bit i of this map is 1 iff Success|i] # null. The
nodes corresponding to the non-null success pointers are stored in contiguous memory
and a pointer (firstChild) to the first of these stored in the 44-byte node. To make a
state transition when the ASCII code for the current character is i, we first determine
whether Success[i] is null by examining bit ¢ of the map. In case this bit is null, the
failure pointer is used. When this bit is not null, we determine the number of bits
(popcount or rank) in bitmap positions less than i that are 1 and using this count, the
size of a node (44-bytes), and the value of the first child pointer, determine the location
of the node to transition to. Since, determining the popcount involves examining up
to 255 bits, this operation is quite expensive (at least in software). To reduce the cost
of determining the popcount, Tuck et al. [32] propose the use of summaries that give
the popcount for the first 32 % j, 1 < 7 < 8 bits of the bitmap. Using these summaries
the popcount for any ¢ may be determined by adding together a summary popcount
and up to 31 bit values. Each summary needs to be 8 bits long (the maximum value is
255) and 7 summaries are needed. The size of a bit compressed node with summaries
is, therefore, 51 bytes. We note that the notion of using bitmaps and summaries for
the compact representation of data structures (in particular, trees) was first advanced
by Jacobson [12, 21] and has been used frequently in the context of data structures
for network applications (see [5, 9, 17, 28|, for example). While Jacobson [12, 21]
suggests using several levels of summaries, [5, 32] use a single level. Also, Munro [21]
has proposed a scheme that uses 3 levels of summaries, requires O(m) space, where m
is the size of the bitmap, and enables the computation of the popcount by adding three
summaries, one from each level. The size of a bitmap node becomes 52 bytes when we
add in the node type and failure pointer offset fields that are needed to support path

compression (Figure 4).

node failptr L1 (S1,S2,...S7)

type offset 8bits*7=56bits
1bit 3bits
) . failure rule ptr firstchild
bitmap 256bits ptr 32bits ptr
32bits 32bhite

Figure 4: A bitmap node of [32]

2. Path Compression. Path compression is similar to end-node optimization [9, 17]. An
end-node sequence is a sequence of states at the bottom of the automaton (the start
state is at the top of the automaton) that are comprised of states that have a single
non-null success transition (except the last state in the sequence, which has no non-null
success transition). States in the same end-node sequence are packed together into one
or more path compressed nodes. The number of these states that may be packed into a
compressed node is limited by the capacity of a path compressed node. So, for example,
if there is an end-node sequence s;, sg, ..., s¢ and if the capacity of a path compressed
node is 4 states, then si,....s; are packed into one node (say A) and s; and sg into
another (say B). For each s; packed into a path compressed node in this way, we need
to store the 1-byte character for the transition plus the failure and rule list pointers for
s;. Since several automaton states are packed into a single compressed node, a 4-byte
failure pointer that points to a compressed node isn’t sufficient. In addition, we need an
offset value that tells us which state within the compressed node we need to transition
to. Using 3 bits for the offset, we can handle nodes with capacity ¢ < 8. Note that
now, [3¢/8] bytes are needed for the offsets. Hence, a path compressed node whose
capacity is ¢ < 8 needs 9c+ [3¢/8] bytes for the state information. Another 4 bytes are
needed for a pointer to the next node (if any) in the sequence of path compressed nodes
(i.e., a pointer from A to B). An additional byte is required to identify the node type
(bitmap and compressed) and the size (number of states packed into this compressed

node). So, the size of a compressed node is 9¢+ [3¢/8] + 5 bytes. The node type bit is

10

node capacity firstchild charl ruleptr failptr failptroff
type 3bits ptr 32bits 8bits 32bits 32bits 3bits
1bit
char5 rule ptr failptr failptroff
8bits 32bits 32bits 3bits

required now in bitmap nodes as well as is an offset for the failure pointer. Accounting
for these fields, the size of a bitmap node becomes 52 bytes. Since a compressed node
may be a sibling (states/nodes reachable by following a single success pointer from
any given state/node are siblings) of a bitmap node, we need to keep the size of both
bitmap and path compressed nodes the same so that we can access easily the jth child
of a bitmap node by performing arithmetic on the first child pointer. This requirement

limits us to ¢ = 5 and a path compressed node size that is 52 bytes. Figure 5 shows a

path compressed node.

On the 1533-string Snort database of 2003, the memory required by the bitmapped-
path compressed automaton using 1 level of summaries is about 1/50 that required by the
optimized automaton, about 1/27 that required by the Wu-Manber data structure, and about
10% less than that required by the SFK search data structure [32]. However, the average
search time, using a software implementation, is increased by between 10% and 20% relative
to that for the optimized automaton, by between 30% and 100% relative to the Wu-Manber
algorithm, and is about the same as for SFK search. The real payoff from the Aho-Corasick
automaton comes with respect to worst-case search time. The worst-case search time using
the Aho-Corasick automaton is between 1/4 and 1/3 that when the Wu-Manber or SFK
search algorithms are used. The worst-case search time for the bitmapped-path compressed

unoptimized automaton is between 50% and 100% more than for the optimized automaton

[32].

11

Figure 5: A path compressed node of [32]

5 Popcounts With Fewer Additions

A serious deficiency of the compression method of [32] is the need to perform up to 31
additions at each bitmap node. This seriously degrades worst-case performance and increases
the clamor for hardware support for a popcount in network processors [32]. Since popcounts
are used in a variety of network algorithms ([5, 9, 17, 28], for example) in addition to
those for intrusion detection, we consider, in this section, the problem of determining the
popcount independent of the application. This problem has been studied extensively by
the algorithms community ([12, 20, 21|, for example). In the algorithms community, the
popcount problem is referred to as the bit-vector-rank problem, where the terms bitmap and
bit vector are synonyms and popcount and rank are synonyms. We recast the best result for
the bit-vector-rank problem using the bitmap-popcount terminology.

Munro [20, 21] has proposed a method to determine the popcount for m-bit bitmap using
3 levels of summaries that together take o(m) bits of space. The popcount is determined
by adding together 3 O(logm)-bit numbers, one from each of the 3 levels of summaries.

Munro’s method is described below:

e Level 1 Summaries Partition the bitmap into blocks of s1 = [log; m] bits. The number
of such blocks is n1 = [m/s1]. Compute the level 1 summaries S1(1 : nl), where S1(7)

is the number of 1s in blocks 0 through i —1, 1 <7 < nl.

e Level 2 Summaries Each level 1 block j is partitioned into subblocks of s2 = [log, m]
bits. The number of such subblocks is n2 = [s1/s2]. S2(j,4) is the number of 1s in
subblocks 0 through ¢ — 1 of block j, 0 < j < nl, 1 <i < n2.

o Level 3 Summaries For the level 3 summaries, a lookup table T's2 that gives the pop-
count for every possible position in every possible subblock is computed. The number
of possible subblocks is 2°2 = O(y/m) and there are s2 possible positions in a subblock.
Also, each entry of the table has O(logs2) = O(loglogm) bits. So, the size of the
lookup table is O(y/mlogmloglogm) bits. Figure 6 gives the lookup table T4, which

is for the case s2 = 4. T'4(i, 7) is the number of 1s in positions 0 through 7 — 1 in the

12

i [in binary | T4(i,0) | T4(i, 1) | T4(i,2) | T4(i, 3)
0 [0000 0 0 0 0
1 | 0001 0 0 0 0
2 || 0010 0 0 0 1
3| 0011 0 0 0 1
4 || 0100 0 0 1 1
5| 0101 0 0 1 1
6 || 0110 0 0 1 2
7| o111 0 0 1 2
8 || 1000 0 1 1 1
9 || 1001 0 1 1 1
10 || 1010 0 1 1 2
11 | 1011 0 1 1 2
12 || 1100 0 1 2 2
13 || 1101 0 1 2 2
14 || 1110 0 1 2 3
15 || 1110 0 1 2 3

Figure 6: Lookup table for 4-bit blocks

binary representation of i; positions are numbered left to right beginning with 0 and a

4-bit representation of ¢ is used.

One may verify that the total space required by the summaries is o(m) bits and that a
popcount may be determined by adding one summary from each of the three levels. For a
256-bit bitmap, using Munro’s method [20, 21], the level-1 blocks are s1 = 64 bits long and
there are nl = 4 of these; each level-1 block is partitioned into n2 = 16 subblocks of size
s2 = 4; and the lookup table T's2 is T'4.

Motivated by the work of Munro [20, 21], we propose 3 designs for summaries for a 256-bit

bitmap. The first two of these use 3 levels of summaries and the third uses 2 levels.
1. Type I Summaries

o Level 1 Summaries For the level 1 summaries, the 256-bit bitmap is partitioned
into 4 blocks of 64 bits each. S1(i) is the number of 1s in blocks 0 through ¢ — 1,
1< <3,

e Level 2 Summaries For each block j of 64 bits, we keep a collection of level 2 sum-

13

256 bit

> >
BO B1 B2 B3
—
64 bit
SBO SB1 SB2 . SB14 SB15
<«
4bit
SSBO SSB1
<+—>
2bit

Figure 7: Type I summaries

maries. For this purpose, the 64-bit block is partitioned into 16 4-bit subblocks.
S2(j,1) is the number of 1s in subblocks 0 through ¢ — 1 of block j, 0 < j < 3,
1<i<15.

e Level 3 Summaries Each 4-bit subblock is partitioned into 2 2-bit subsubblocks.

S3(j,4,1) is the number of 1s in subsubblock 0 of the ith 4-bit subblock of the
jth 64-bit block, 0 < j < 3,0 <17 < 15.

Figure 7 shows the setup for Type I summaries. When Type I summaries are used,
the popcount for position ¢ (i.e., the number of 1s preceding position ¢), 0 < ¢ < 256,

of the bitmap is obtained as follows:

Step 1: Position ¢ is in subblock sb = |(¢ mod 64)/4] of block b = |¢/64]. The

subsubblock ssb is 0 when ¢ mod 4 < 2 and 1 otherwise.

Step 2: The popcount for position ¢ is S1(b) + S2(b, sb) + S3(b, sb, ssb) + bit(q — 1),

where bit(q — 1) is 0 if ¢ mod 2 = 0 and is bit ¢ — 1 of the bitmap otherwise;

14

S1(0), S2(b,0) and S3(b, sb,0) are all 0.

As an example, consider the case ¢ = 203. This bit is in subblock sb = | (203 mod 64) /4|
= |11/4| = 2 of block b = |203/64| = 3. Since 203 mod 4 = 3, the subsubblock ssb is
1. The popcount for bit 203 is the number of 1s in positions 0 through 191 + the num-
ber in positions 192 through 199 + those in positions 200 through 201 + the number
in position 202 = S1(3) + 52(3,2) + S3(3,2,1) + bit(202).

Since we do not store summaries for b, sb, and ssb equal to zero, the code to compute

the popcount takes the form

if (b) popcount = S1(b)

else popcount = O;

if (sb) popcount += S2(b,sb);

if (ssb) popcount += S3(b,sb,ssb);

if (q) popcount += bit(q-1);

So, using Type I summaries, we can determine a popcount with at most 3 additions
whereas using only 1 level of summaries as in [32], up to 31 additions are required.
This reduction in the number of additions comes at the expense of memory. An S1(x)
value lies between 0 and 192 and so requires 8 bits; an S2 value requires 6 bits and
an S3 value requires 2 bits. So, we need 8 x 3 = 24 bits for the level-1 summaries,
6 % 15 % 4 = 360 bits for the level-2 summaries, and 2 x 1 x 16 x 4 = 128 bits for the
level-3 summaries. Therefore, 512 bits (or 64 bytes) are needed for the summaries. In

contrast, the summaries of the 1-level scheme of [32] require only 56 bits (or 7 bytes).

. Type II Summaries These are exactly what is prescribed by Munro [20, 21]. S1 and S2
are as for Type I summaries. However, the S3 summaries are replaced by a summary
table (Figure 6) 74(0 : 15,0 : 3) such that T'4(7, j) is the number of 1s in positions 0
through j —1 of the binary representation of i. The popcount for position ¢ of a bitmap
is S1(b) + S2(b, sb) + T4(d, e), where d is the integer whose binary representation is

15

the bits in subblock sb of block b of the bitmap and e is the position of ¢ within this
subblock; S1 and SB are for the current state/bitmap.

Since T'4(i,j) < 3, we need 2 bits for each entry of T4 for a total of 128 bits for the
entire table. Recognizing that rows 2j and 2741 are the same for every j, we may store
only the even rows and reduce storage cost to 64 bits. A further reduction in storage
cost for T'4 is possible by noticing that all values in column 0 of this array are 0 and
so we need not store this column explicitly. Actually, since only 1 copy of this table is
needed, there seems to be little value (for our intrusion detection system application)

to the suggested optimizations and we may store the entire table at a storage cost of

128 bits.

The memory required for the level 1 and 2 summaries is 24 + 360 = 384 bits (48 bytes),
a reduction of 16 bytes compared to Type I summaries. When Type Il summaries are
used, a popcount is determined with 2 additions rather than 3 using Type I summaries

and 31 using the 1-level summaries of [32].

. Type III Summaries These are 2 level summaries and using these, the number of addi-
tions needed to compute a popcount is reduced to 1. Level-1 summaries are kept for
the bitmap and a lookup table is used for the second level. For the level-1 summaries,
we partition the bitmap into 16 blocks of 16 bits each. S1(i) is the number of 1s in
blocks 0 through 7 — 1, 1 < i < 15. The lookup table T'16(z, j) gives the number of 1s
in positions 0 through j — 1 of the binary representation of 7, 0 < i < 65,536 = 2'¢,
0 < j < 16. The popcount for position g of the bitmap is S1(|q/16]) + T'16(d, e),
where d is the integer whose binary representation is the bits in block [¢/16] of the
bitmap and e is the position of ¢ within this subblock; S1 and SB are for the current

state/bitmap.

8 % 15 = 120 bits (or 15 bytes) of memory are required for the level-1 summaries of a
bitmap compared to 7 bytes in [32]. The lookup table T'16 requires 2'% x 16 * 4 bits
as each table entry lies between 0 and 15 and so requires 4 bits. The total memory

for T'16 is 512KB. For a table of this size, it is worth considering the optimizations

16

mentioned earlier in connection with 74. Since rows 25 and 2j + 1 are the same for all
j, we may reduce table size to 256KB by storing explicitly only the even rows of T16.
Another 16KB may be saved by not storing column 0 explicitly. Yet another 16KB
reduction is achieved by splitting the optimized table into 2. Now, column 0 of one of
them is all 0 and is all 1 in the other. So, column 0 may be eliminated. We note that
optimization below 256 KB may not be of much value as the increased complexity of

using the table will outweigh the small reduction is storage.

6 Our Method To Compress The Non-Optimized Aho-
Corasick Automaton

6.1 Classification of Automaton States

The Snort database had 3,578 strings in April, 2006. Figure 8 profiles the states in the
corresponding unoptimized Aho-Corasick automaton by degree (i.e., number of non-null
success pointers in a state). As can be seen, there are only 36 states whose degree is more
than 8 and the number of states whose degree is between 2 and 8 is 869. An overwhelming
number of states (24,417) have a degree that is less than 2. However, 1639 of these 24,417
states are not in end-node sequences. These observations motivated us to classify the states
into 3 categories B (states whose degree is more than 8), L (states whose degree is between 2
and 8) and O (all other states). B states are those that will be represented using a bitmap, L
states are low degree states, and O states are states whose degree is one or zero. In case the
distribution of states in future string databases changes significantly, we can use a different
classification of states.

Next, a finer (2 letter) state classification is done as below and in the stated order.
BB All B states are reclassified as BB states.
BL All L states that have a sibling BB state are reclassified as a BL states.
BO All O states that have a BB sibling are reclassified as BO states.
LL All remaining L states are reclassified as LL states.

17

degree number of nodes | percentage
0 1964 7.75
1 22453 88.6
2 591 2.33
3 149 0.58
4 43 0.17
Y 35 0.14
6 14 0.055
7 23 0.090
8 14 0.055
9 8 0.031
10 6 < 0.03
11 3 < 0.03
12 4 < 0.03
13 5t < 0.03
14 3 < 0.03
15 2 < 0.03
17,18,21,51,78 | 1 < 0.03

Figure 8: Distribution of states in a 3000 string Snort database

LO All remaining O states that have an LL sibling are reclassified as LO states.

OO All remaining O states are reclassified as OO states.

6.2 Node Types

Our compressed representation uses three node types bitmap, low degree, and path com-

pressed. These are described below.
Bitmap

A bitmap node has a 256-bit bitmap together with summaries; any of the three summary
types described in Section 5 may be used. We note that when Type II or Type I1I summaries
are used, only one copy of the lookup table (74 or 7'16) is needed for the entire automaton.
All bitmap nodes may share this single copy of the lookup table. When Type Il summaries
are used, the 128 bits needed by the unoptimized T4 are insignificant compared to the

storage required by the remainder of the automaton. For Type IIl summaries, however,

18

node | firstchild | | 1(go,.. B2) L2(SBO,...SB14) L3(SSBO)
type | type 8bits*3=24bits | 6bits*4*15=360bits 2bits*16*4*1=128bits
3bits 3hbits
failptroff I failure | ryleptr | firstchild
8bits 256 bits bitmap ptr 32bits ptr
32bits 32bits

Figure 9: Our bitmap node

using a 512KB unoptimized 716 is quite wasteful of memory and it is desirable to go down
to at least the 256 KB version.

The memory required for a bitmap node depends on the summary type that is used.
When Type I summaries are used, each bitmap node (Figure 9) is 110 bytes (we need 57
extra bytes compared to the 52-byte nodes of [32] for the larger summaries and an additional
extra byte because we use larger failure pointer offsets). When Type II summaries are used,
each bitmap node is 94 bytes and the node size is 61 bytes when Type III summaries are

used.

Low Degree Node

Low degree nodes are used for states that have between 2 and 8 success transitions. Figure 10
shows the format of such a node. In addition to fields for the node type, failure pointer,
failure pointer offset, rule list pointer, and first child pointer, a low degree node has the
fields charl, ..., char8 for the up to 8 characters for which the state has a non-null success
transition and size, which gives us the number of these characters stored in the node. Since
this number is between 2 and 8, 3 bits are sufficient for the size field. Although it is sufficient
to allocate 22 bytes to a low degree node, we allocate 25 bytes as this allows us to pack a
path compressed node with up to 2 characters (i.e., an O2 node as described later) into a

low degree node.

19

node firstchild failptroff charl char8 | size failptr | rule ptt | firstchild
type type 8hits 8bits 8bits | 3bits | 32bits| 32bits | ptr 32bits
3bits 3bits
Figure 10: Our low degree node

node firstchild firstchild charl ruleptr failptr failptroff
type type ptr 32bits 8bits 32bits 32bits 8bits
3bits 3bits
capacity charc rule ptr failptr failptroff

8bits 8bits 32bits 32bits 8hits

Figure 11: Our path compressed node

Path Compressed Node

Unlike [32], we do not limit path compression to end-node sequences. Instead, we path
compress any sequence of states whose degree is either 1 or 0. Further, we use variable-size
path compressed nodes so that both short and long sequences may be compressed into a
single node with no waste. In the path compression scheme of [32] an end-node sequence
with 31 states will use 7 nodes and in one of these the capacity utilization is only 20% (only
one of the available 5 slots is used). Additionally, the overhead of the type, next node, and
size fields is incurred for each of the path compressed nodes. By using variable-size path
compressed nodes, all the space in such a node is utilized and the node overhead is paid
just once. In our implementation, we limit the capacity of a path compressed node to 256
states. This requires that the failure pointer offsets in all nodes be at least 8 bits. A path
compressed node whose capacity is ¢, ¢ < 256, has ¢ character fields, ¢ failure pointers, ¢
failure pointer offsets, ¢ rule list pointers, 1 type field, 1 size field, and 1 next node field
(Figure 11).

We refer to the path compressed node of Figure 11 as an O node. Five special types of
O nodes O1 through O5 also are used by us. An Ol node, 1 <[< 5, is simply an O node

20

whose capacity is exactly [characters. For these special O-node types, we may dispense with
the capacity field as the capacity may be inferred from the node type.

The type fields (node type and first child type) are 3 bits. We use Type = 000 for a bitmap
node, Type = 111 for a low degree node and Type = 110 for an O node. The remaining 5
values for Type are assigned to Ol nodes. Since the capacity of an O node must be at least
6, we actually store the node’s true capacity minus 6 in its capacity field. As a result, an
8-bit capacity field suffices for capacities up to 261. However, since failure pointer offsets are
8 bits, using an O node with capacity between 257 and 261 isn’t possible. So, the limit on
O node capacity is 256. The total size of a path compressed node O is 10c + 6 bytes, where
¢ is the capacity of the O node. The size of an Ol node is 10l + 5 as we do not need the

capacity field in such a node.

6.3 Memory Accesses

The number of memory accesses needed to process a node depends on the memory bandwidth
W, how the node’s fields are mapped to memory, and whether or not we get a match at the

node. We provide the access analysis primarily for the case W = 32 bits.

Bitmap Node With Type I Summaries, W = 32

We map our bitmap node into memory by packing the node type, first child type, failure
pointer offset fields as well as 2 of the 3 L1 summaries into a 32-bit block; 2 bits of this
block are unused. The remaining L1 summary (S1(3)) together with S2(0, %) are placed
into another 32-bit block. The remaining L2 summaries are packed into 32-bit blocks; 5
summaries per block; 2 bits per block are unused. The L3 summaries occupy 4 memory
blocks; the bitmap takes 8 blocks; and each of the 3 pointers takes a block.

When a bitmap node is reached, the memory block with type fields is accessed to determine
the node’s actual type. The rule pointer is accessed so we can list all matching rules.
A bitmap block is accessed to determine whether we have a match with the input string
character. If the examined bit is 0, the failure pointer is accessed and we proceed to the

node pointed by this pointer; the failure pointer offset, which was retrieved from memory

21

when the block with type fields was accessed, is used to position us at the proper place in
the node pointed at by the failure pointer in case this node is a path compressed node. So,
the total number of memory accesses when we do not have a match is 4. When the examined
bit of the bitmap is 1, we compute a popcount. This may require between 0 and 3 memory
accesses (for example, 0 are needed when bit 0 of the bitmap is examined or when the only
summary required is S1(1) or S1(2)). Using the computed popcount, the first child pointer
(another memory access) and the first child type (cannot be that of an O node), we move

to the next node in our data structure. A total of 4 to 7 memory accesses are made.

Low Degree Node, W = 32

Next consider the case of a low degree node. We pack the type fields, size field, failure pointer
offset field, and the char 1 field into a memory block; 7 bits are unused. The remaining 7
char fields are packed into 2 blocks leaving 8 bits unused. Each of the pointer fields occupies
a memory block. When a low degree node is reached, we must access the memory block with
type fields as well as the rule pointer. To determine whether we have a match at this node,
we do an ordered sequential search of the up to 8 characters stored in the node. Let 7 denote
the number of characters examined. For ¢ = 1, no additional memory access is required, one
additional access is required when 2 < i < 5, and 2 accesses are required when 6 < ¢ < 8. In
case of no match we need to access also the failure pointer; the first child pointer is retrieved
in case of a match. The total number of memory accesses to process a low degree node is 3

to 5 regardless of whether there is a match.

Ol,1<1<5, Nodes, W = 32

For an O1 node, we place the type, failure pointer offset, and char 1 fields into a memory
block; the rule, failure and first child pointers are placed into individual memory block.
To process an O1 node, we first retrieve the type block and then the rule pointer. The rule
pointer is used to list the matching rules. Then, we compare with char 1 that is the retrieved
type block. If there is a match, we retrieve the first child pointer and proceed to the node

pointed at. In case of no match, we retrieve the failure pointer, which together with the

22

offset in the type block leads us to the next node. So, 3 accesses are needed when an O1
node is reached.

The mapping for an 02 is similar to that used for an O1 node. This time, the type block
contains char 1 and char 2, the additional rule pointer and failure offset pointers are placed
in separate blocks. The number of memory accesses needed to process such a node is 3 when
only char 1 is examined (this happens when there is a mismatch at char 1). When char 2
also is examined an additional rule pointer is retrieved. For a mismatch, we must retrieve
the second failure pointer as well as its failure pointer offset. So, 5 accesses are needed. For
a match, 4 accesses are required. So, in case of a mismatch in an O2 node, 3 or 5 accesses
are needed; otherwise, 4 are needed.

For O3 nodes, we place char 3 and its associated failure pointer offset into the memory
block of O2 that contains the second failure pointer offset. The associated rule and failure
pointers are placed in separate memory blocks. When all 3 characters are matched, we need
6 memory accesses. When a mismatch occurs at char 1, there are 3 accesses; at char 2, there
are b accesses; and at char 3, there are 6 accesses.

An alternative mapping for an O3 node places the data fields into memory in the following
order: node and first child type fields (1 byte total), pairs of character and rule pointer fields
((char j, rule pointer j), 5 bytes per pair), first child pointer (4 bytes), pairs of failure pointer
and failure pointer offsets (5 bytes per pair). When i characters are examined, we retrieve
[(1 + 5i)/4] blocks to process the characters and their rule pointers. In case of a mismatch
at character ¢, 2 additional accesses are needed to retrieve the corresponding failure pointer
and its offset. In case of a match, a single additional memory access gets us the first child
pointer. So, the total number of memory accesses is [(1+5¢)/4]+2 when there is a mismatch
and [(1 4 57)/4] + 1 when all characters in the nodes are matched. When this alternative
matching is used, a mismatch at character 7, 1 < ¢ < 3 takes 4, 5, and 6 memory accesses,
respectively. When there is no mismatch, 5 memory accesses are required.

For an O4 node, we extend the original O3 mapping by placing char 3, char 4, and offset
pointers 3 and 4 in one memory block; and offset pointer 2 in another. Rule and failure

pointers occupy one block each. When all 4 characters are matched, we need 7 memory

23

accesses. A mismatch at character i, 1 <7 < 4, results in 3, 5, 6, and 7 accesses, respectively.

An O5 node is mapped with chars 3, 4, 5 and offset pointer 3 in a memory block and offset
pointers 2, 4, and 5 in another. When all 5 characters in an O5 node are matched, there
are 8 memory accesses. When there is a mismatch at character 7, 1 <14 < 5, the number of

memory accesses is 3, 5, 6, 8, and 9, respectively.

O Nodes, W = 32 and 1024

For simplicity, we extend the alternative mapping described above for O3 nodes. Fields are
mapped to memory in the order: node type, first child type, and capacity fields (2 bytes
total), pairs of character and rule pointer fields ((char 7, rule pointer j), 5 bytes per pair), first
child pointer (4 bytes), pairs of failure pointer and failure pointer offsets (5 bytes per pair).
The memory access analysis is similar to that for O3 nodes and the total number of memory
accesses, when W = 32, is [(2 + 57)/4] + 2 when there is a mismatch and [(2 + 5i)/4] + 1
when all characters in the nodes are matched.

When W = 1024, an O node fits into a single memory block provided its capacity, ¢, is no
more than 12. Hence, for ¢ < 12, a single memory access suffices to process this node. When
¢ > 12, the memory access count using the above mapping is is [(2 4 57)/128] + 1. Since

1 < ¢ < 256, at most 12 memory access are need to process an O node when W = 1024.

Path Compressed Node of [32], W = 32 and 1024

When W = 32, the type, size, failure offset 1, and char 1 through 3 fields of the path
compressed node of [32] may be mapped into a single memory block. The char 4 and 5
fields together with the 4 remaining failure pointer offset fields may be mapped into another
memory block. For a mismatch at char 1, we need to access block 1, rule pointer 1, and
failure pointer 1 for a total of 3 memory accesses. For a failure at char 7, 2 <1 < size, we
must access also block 2 and an additional 7 — 1 rule pointers. The memory access count is
3+ 1.

Notice that since [32] path compresses end-node sequences only, a failure must occur

whenever we process a path compressed node whose size is less than 5 as the last state in

24

such a node has no success transition (i.e., its degree is 0 in the Aho-Corasick automaton).
Hence, for a match at this node, we may assume that the size is 5. The two blocks, 5 rule
pointers, and the first child pointer are accessed. The total number of memory accesses is 8.

When W = 1024, all 52 bytes of the path compressed node fit in a memory block. So,
only 1 memory access is needed to process the node. Note that for an end-node sequence
with 256 states, 53 path compressed nodes are used. The worst-case accesses to go through
this end-node sequence is 53. Using our O node, 12 memory accesses are made in the worst

case.

Summary

Using a similar analysis, we can derive the memory access counts for different values of the
memory bandwidth W, other summary types, and other node types. Figures 12 and 13 give
the access counts for the different node and summary types for a few sample values of W.
The rows labeled B (bitmap), L (low degree), Ol (O1 through O5), and O refer to node
types for our structure while those labeled T'B (bitmap) and TO (one degree) refer to node
types in the structure of Tuck et al. [32]. We note that the counts of Figures 12 and 13 are
specific to a certain mapping of the fields of a node to memory. Using a different mapping
will change the memory access count. However, we believe that the mappings used in our
analysis are quite reasonable and that using alternative mappings will not improve these

counts in any significant manner.
6.4 Mapping States to Nodes
We map states to nodes as follows and in the stated order.

1. Category BX, X € {B, L, O}, states are mapped to 1 bitmap node each; sibling states
are mapped to nodes that are contiguous in memory. Note that in the case of BL and

BO states, only a portion of a bitmap node is used.

2. Maximal sets of LX, X € {L, O}, states that are siblings are packed into unused space
in a bitmap node created in (1) using 25 bytes per LX state and the low degree

25

W=32 W =64
match ‘ mismatch match ‘ mismatch
B (Type I) 4to7 4 3t06 3
B (TypeIl) || 4to6 4 3tobH 3
B (Type III) | 4 to 5 4 3to4 3
L 3tob 3toh 2to 3 2to3
01 3 3 2 2
02 4 3orh 2 2or3
03 6 3,5,0r6 3 20r3
04 7 Jorb5to7 4 2to4
05 8 3,5,6,8 0r9| 4 2,3t05
@) 3or [H2]41 | 3or [22]42 || 2 or [2£2]+1 | 2 or [2£2]+1
TB ([32]) 4to5 4 3 3
TO ([32]) 1+i,6,0or8 |3or3+i l+ior7 2+[L] or 4
Figure 12: Memory accesses to process a node
W=128 W=1024
match | mismatch match | mismatch
B (Type I) 2t0b 2 1 1
B (Type II) || 2to4 2 1 1
B (Type III) || 2 to 3 2 1 1
L 1to 2 1to2 1 1
01 1 1 1 1
02 1 2 1 1
03 2 2 1 1
04 2 2 1 1
05 2 20r3 1 1
O 1or [ZE58941 | Tor [Z2]+1 | 1(c < 12), 1(c < 12),
(2550741 (c > 12) | [EE3]+1(c > 12)
TB ([32]) 2 3 1 1
TO ([32]) 2 2 1 1

structure of Figure 10. By this, we mean that if there are (say) 3 LX states that
are siblings and there is a bitmap node with at least 75 bytes of unused space, all 3
siblings are packed into this unused space. If there is no bitmap node with this much
unutilized space, none of the 3 siblings is packed into a bitmap node. The packing of

sibling L X nodes is done in non-increasing order of the number of siblings. Note that

Figure 13: Memory accesses to process a node

26

7

by packing all siblings into a single bitmap node, we make it possible to access any
child of a bitmap node using its first child pointer, the child’s rank (i.e., index in the
layout of contiguous siblings), and the size of the first child (this is determined by the
type of the first child). Note that when an LO state whose child is an OO state is
mapped in this way, it is mapped together with its lone OO-state child into a single

25-byte O2 node, which is the same size as a low degree node.

. The remaining LX states are mapped into low degree nodes (LL states) or O2 nodes

(LO states). LL states are mapped one state per low degree node. As before, when
an LO state whose child is an OO state is mapped in this way, it is mapped together
with its lone OO-state child into a single 25-byte O2 node. Sibling states are mapped

to nodes that are contiguous in memory.

. The chains of remaining OO states are handled in groups where a group is comprised

of chains whose first nodes are siblings. In each group, we find the length, [, of the
shortest chain. If [> 5, set [= 5. Each chain is mapped to an Ol node followed by an
O node. The Ol nodes for the group are in contiguous memory. Note that an O node

can only be the child of an Ol node or another O node.

Experimental Results

We benchmarked our compression method of Section 6 against that proposed by Tuck et

al. [32] using two data sets of strings extracted from Snort [26] rule sets. The first data set

has 1284 strings and the second has 2430 strings. We name each data set by the number of

strings in the data set.

Number of Nodes

Figures 14 15 give the number of nodes of each type in the compressed Aho-Corasick structure

for each of our string sets. The maximum capacity of an allocated O node was 128 for data

set 1284 and 256 for data set 2430.

27

Node Type B L |Ol| O |TB | TO
DataSet 1284 || 133 | 595 | 850 | 454 | 1057 | 2955
DataSet 2430 || 100 | 769 | 938 | 576 | 1527 | 3310

Figure 14: Number of nodes of each type, Ol and O counts are for Type I summaries

Node Type || Ol (Type 1) | O (Type II) | Ol (Type III) | O (Type III)
DataSet 1284 848 456 851 464
DataSet 2430 938 576 940 578

Figure 15: Number of Ol O nodes for Type II and Type 111 summaries

Memory Requirement

Although the total number of nodes used by us is less than that used by Tuck et al. [32], our
nodes are larger and so the potential remains that we actually use more memory than used by
the structure of Tuck et al. [32]. Figures 16 and 17 give the number of bytes of memory used
by the structure of [32] as well as that used by our structure for each of the different summary
types of Section 5. Recall that the size of a B node depends on the summary type that is
used. As stated in Section 6, the B node size is 110 bytes for Type I summaries, 94 bytes
for Type II summaries, and 61 bytes for Type I1I summaries. The memory numbers given in
Figures 16 and 17 do not include the 16 bytes (or less) needed for the single 74 table used by
Type II summaries or the 256 KB needed by the T'16 table used by Type I summaries. In the
case of Type Il summaries, adding in the 16 bytes needed by T4 doesn’t materially affect
the numbers reported in Figures 16 and 17. For Type III summaries, the 256 KB needed
for T'16 is more than what is needed for the rest of the data structure. However, as the
data set size increases, this 256 KB remains unchanged and fixed at 256 KB. The row labeled
Normalized gives the memory required normalized by that required by the structure of Tuck
et al. [32]. The normalized values are plotted in Figure 18. As can be seen, our structures
take between 24% and 31% less memory than is required by the structure of [32]. With the
256KB required by 716 added in for Type III summaries, the Type III representation takes
twice as much memory as does [32] for the 1284 data set and 75% more for the 2430 data set.

As the size of the data set increases, we expect Type Il summaries to be more competitive

28

Methods [32] | Type I | Type II | Type III
Memory (bytes) | 208624 | 157549 | 155603 | 152237
Normalized 1 0.76 0.75 0.73

*Excludes memory for 74 and T'16

Figure 16: Memory requirement for data set 1284

Data set 2430)

Methods [32] Type I | Type IT | Type III
Memory(bytes) | 251524 | 177061 | 175511 | 172523
Normalized 1 0.70 0.70 0.69

Popcount

*Excludes memory for 74 and T'16

Figure 17: Memory requirement for data set 2430

than [32] on total memory required.

1

0.9

0.8

0.7

memory size
o o o o o
N w N (9] o

I
=

o

|
1284

rule set size

I
Hl Tuck et al [31]
I Type | summaries
[Type Il summaries —
[Type lll summaries

2430

Figure 18: Normalized memory requirement

29

Figures 19 and 20 give the total number of additions required to compute popcounts when
using each of the data structures. For this experiment, we used 5 query strings obtained by

concatenating a differing number of real emails that were classified as spam by our spam

Methods 132] Type I | Type I | Type III
strlen=1002832 | 10.61M 1.37TM 1.25M 0.76 M
strlen=2032131 | 32.21M | 4.15M 3.79M 2.29M
strlen=3002665 | 64.26M | 8.256M | 7.51M 4.55M
strlen=4006579 | 107.21M | 13.74M | 12.49M 7.56M
strlen=>5035666 | 161.76M | 20.75M | 18.82M | 11.37M

Normalized 1 0.128 0.117 0.071

Figure 19: Number of popcount additions, data set 1284

Methods 132] Type I | Type I | Type III
strlen=1002832 | 11.54M | 1.46M 1.33M 0.79M
strlen=2032131 | 34.97M | 4.43M | 4.02M 2.42M
strlen=3002665 | 69.54M | 8.78M | 7.96M 4.80M
strlen=4006579 | 116.11M | 14.67M | 13.28M 8.00M
strlen=>5035666 | 175.60M | 22.25M | 20.09M | 12.08M

Normalized 1 0.127 0.114 0.069

Figure 20: Number of popcount additions, data set 2430

filter. The string lengths varied from 1MB to 5MB and we counted the number of additions
needed to report all occurrences of all strings in the Snort data sets (1284 or 2430) in each
of the query strings. The last row of each figure is the total number of adds for all 5 query
strings normalized by the total for the structure of [32]. The normalized values are plotted
in Figure 21. When Type III summaries are used, the number of popcount additions is only
7% that used by the structure of [32]. Type I and Type Il summaries require about 13%
and 12%, respectively, of the number of additions required by [32].

Memory Accesses

Figures 22 and 23 give the normalized number of memory accesses required to process our
query strings. The data is normalized using the total memory access count for the method of
[32]. Since the normalized numbers were virtually the same for each of our 5 query strings,
we give only the numbers for the first query string. The number of memory accesses using
our data structure is generally larger than when the structure of [32] is used. However, as the

memory bandwidth increases, the difference between the two schemes becomes very small

30

I Tuck et al [31]
I Type | summaries
[Type Il summaries
[IType Il summaries

o
o

Adds for popcount
o o o o
NDow B~ »

o
[

o

2430

rule set size

Figure 21: Normalized additions for popcount

Methods | W=32 | W=64 | W=128 | W=1024
32] 1 1 1 1
Typel |1.108 |1.241 |1.136 | 1.004
Type II | 1.069 |1.184 | 1.064 | 1.004
Type IIT | 1.007 | 1.093 | 0.977 | 1.004

Figure 22: Normalized memory accesses to process a query string, data set 1284

Methods | W=32 | W=64 | W=128 | W=1024
[32] 1 1 1 1
Type 1 1.115 1.250 1.158 1.0021
Type IT | 1.076 | 1.193 | 1.086 1.0021
Type IIT | 1.013 | 1.100 | 0.983 1.0021

Figure 23: Normalized memory accesses to process a query string, data set 2430

(0.1% to 0.4% when W = 1024) on this metric.

8 Conclusion

We have proposed the use of 2- and 3-level summaries for efficient popcount computation and

have suggested ways to minimize the size of the lookup table associated with the popcount

31

scheme of Munro [20, 21]. As near as we can tell, we are the first to use more than 1
level of summaries for popcount computation in network applications. Using the summaries
proposed here, the number of additions required to compute popcount is between 7% and 13%
of that required by the scheme of [32]. We also have proposed an aggressive compression
scheme. When this scheme is used on our test sets, the memory required by the search
structure is between 24% and 31% less than that required when the compression scheme of
[32] is used. Although a search using our structure makes more memory accesses than when
the structure of [32] is used, the two schemes make almost the same number of memory

accesses when the memory bandwidth is sufficiently large.

References

1] A. Aho and M. Corasick, Efficient string matching: An aid to bibliographic search,
CACM, 18, 6, 1975, 333-340.

2] S. Antonatos, K. Anagnostakis and E. Markatos, Generating realistic workloads for
network intrusion detection systems, ACM Workshop on Software and Performance,

2004.

[3] F. Baboescu, S. Singh and G. Varghese, Packet Classification for Core Routers: Is there
an alternative to CAMs? INFOCOM, 2003.

[4] R. Bace and P. Mell, Intrusion detection systems, NIST Special Publication on IDSs.

[5] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, Small forwarding tables for fast
routing lookups, ACM SIGCOMM, 1997, 3-14.

(6] S. Dharamapurikar and J. Lockwood, Fast and scalable pattern matching for content

filtering, ANCS, 2005.

[7] H. Dreger, A. Feldmann, M. Mai, V. Paxson and R. Sommer, Dynamic application-layer

protocol analysis for network intrusion detection, USENIX Security Symposium, 2006.

32

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

H. Dreger, C. Kreibach, V. Paxson, and R. Sommer, Enhancing the accuracy of network-

based intrusion detection with host-based context, DIMVA, 2005.

W. Eatherton, G. Varghese, Z. Dittia, Tree bitmap: hardware/software IP lookups with

incremental updates, Computer Communication Review, 34(2): 97-122, 2004.

Y. Fang, R. Katz and T. Lakshman, Gigabit rate packet pattern-matching using TCAM,
ICNP, 2004

J. Gonzalez and V. Paxson, Enhancing network intrusion detection with integrated

sampling and filtering, RAID, 2006.

G. Jacobson, Succinct Static Data Structure, Carnegie Mellon University Ph.D Thests,
1998.

J. Lockwood, C. Neely, and C. Zuver, An extensible system-on-programmable-chip,

content-aware Internet firewall.

H. Lu and S. Sahni, O(logW) multidimensional packet classification, IEEE/ACM
Transactions on Networking, 15,2, 2007, 462 472.

W. Lu and S. Sahni, Packet classification wusing two-dimensional multi-
bit tries, IFEE Symposium on Computers and Communications, 2005.
http://www. cise.ufl. edu/~wlu/papers/2dtries.

W. Lu and S. Sahni, Packet classification using pipelined two-dimensional multibit tries,

IEEE Symposium on Computers and Communications, 2006.

W. Lu and S. Sahni, Succinct representation of static packet classifiers, IEEE Sympo-

stum on Computers and Communications, 2007.

J. Lunteran and A. Engbersen, Fast and scalable packet classification using, IFEFE
JSAC, 21, 4, 2003, 560-571.

J. Lunteren, High-performance pattern-matching for intrusion detection, INFOCOM,
2006

33

[20]

[21]

[22]

J. Munro, Tables, Foundations of Software Technology and Theoretical Computer Sci-
ence, LNCS, 1180, 37-42, 1996.

J. Munro and S. Rao, Succinct representation of data structures, in Handbook of Data

Structures and Applications, D. Mehta and S. Sahni ed., Chapman & Hall/CRC, 2005.

V. Paxson, Bro: A system for detecting network intruders in real-time, Computer Net-

works, 31, 1999, 2435 2463.

S. Sahni, Data structures, algorithms, and applications in C++, Second Edition, Silicon

Press, 2005.

S. Singh, F. Baboescu, G. Varghese, and J. Wang, Packet classification using multidi-
mensional cutting, ACM Sigcomm, 8, 2003.

Snort users manual 2.6.0, 2006.
http://www.snort.org/dl.

R. Sommer and V. Paxson, Exploiting independent state for network intrusion detection,

ACSAC, 2005.

H. Song, J. Turner, and J. Lockwood, Shape shifting tries for faster IP route lookup,
ICNP, 2005.

H. Song, et al. Snort offloader: A reconfigurable hardware NIDS filter, FPL 2005.

H. Song and J. Lockwood, Efficient packet classification for network intrusion detection,

FPGA, 2005.

D. Taylor and J. Turner, ClassBench: A packet classification benchmark, INFOCOM,
2005.

N. Tuck, T. Sherwood, B. Calder and G. Varghese, Deterministic memory-efficient string
matching algorithms for intrusion detection, INFOCOM, 2004.

34

[33] M.Waldvogel, G.Varghese, J. Turner, and B.Plattner, Scalable high-speed prefix match-
ing, ACM Trans. on Computer Systems, 19, 4, 440-482, 2001.

[34] S. Wu and U. Manber, Agrep—a fast algorithm for multi-pattern searching, Technical

Report, Department of Computer Science, University of Arizona, 1994.

[35] M. Yazdani, W. Fraczak, F. Welfeld, and I. Lambadaris, Two level state machine archi-
tecture for content inspection engines, INFOCOM 2006.

[36] F. Yu and R. Katz, Efficient multi-match packet classification with TCAM.

35

