
Highly Compressed Aho-Corasi
k Automata ForEÆ
ient Intrusion Dete
tion �Xinyan Zha & Sartaj SahniComputer and Information S
ien
e and EngineeringUniversity of FloridaGainesville, FL 32611fxzha,sahnig�
ise.u
.eduAbstra
tWe develop a method to
ompress the unoptimized Aho-Corasi
k automaton thatis used widely in intrusion dete
tion systems. Our method uses bitmaps with multiplelevels of summaries as well as aggressive path
ompa
tion. By using multiple levels ofsummaries, we are able to determine a pop
ount with as few as 1 addition. On Snortstring databases, our
ompressed automata take 24% to 31% less memory than takenby the
ompressed automata of Tu
k et al. [32℄. and the number of additions requiredto
ompute pop
ounts is redu
ed by about 90%.Keywords: Intrusion dete
tion, Aho-Corasi
k trees,
ompression, eÆ
ient pop
ount
omputation, performan
e.1 Introdu
tionIntrusion dete
tion systems (IDS) monitor events within a network or
omputer system withthe obje
tive of dete
ting \attempts to
ompromise the
on�dentiality, integrity, availability,or to bypass the se
urity me
hanisms of a
omputer or network" [4℄. The intrusion dete
tedby an IDS may manifest itself as a denial of servi
e, unauthorized login, a user performingtasks that he/she is not authorized to do (e.g., a

ess se
ure �les,
reate new a

ounts,et
), exe
ution of malware su
h as viruses and worms, and so on. An IDS a

omplishesits obje
tive by analyzing data gathered from the network, host
omputer, or appli
ation�This resear
h was supported, in part, by the National S
ien
e Foundation under grant ITR-03261551

that is being monitored. The analysis usually takes one of two forms{misuse (or signature)dete
tion and anomaly dete
tion. In misuse dete
tion, the IDS maintains a database ofsignatures (patterns of events) that
orrespond to known atta
ks and sear
hes the gathereddata for these signatures. In anomaly dete
tion the IDS maintains statisti
s that des
ribenormal usage and
he
ks for deviations from these statisti
s in the monitored data. Whilemisuse dete
tion usually has a low rate of false positives, it is able to dete
t only knownatta
ks. Anomaly dete
tion usually has a higher rate of false positives (be
ause users keep
hanging their usage pattern thereby invalidating the stored statisti
s) but is able to dete
tnew atta
ks never seen before.Several types{network, host, appli
ation, proto
ol and hybrid{of IDSs are available
om-mer
ially. Network intrusion dete
tion systems (NIDS) examine network traÆ
 (both in-and out-bound pa
kets) looking for traÆ
 patterns that indi
ate attempts to break into atarget
omputer, port s
ans, denial of servi
e atta
ks, and other mali
ious behavior. Hostintrusion dete
tion systems (HIDS) monitor the a
tivity within a
omputing system lookingfor a
tivity that violates the
omputing systems internal se
urity poli
y (e.g., a programattempting to a

ess an unauthorized resour
e). Appli
ation intrusion dete
tion systems(AIDS) monitor the a
tivity of a spe
i�
 appli
ation while proto
ol intrusion dete
tion sys-tems (PIDS) ensure that spe
i�
 proto
ols su
h as HTTP behave as they should. Ea
h typeof IDS has its
apabilities and limitations and attempts have been made to put togetherhybrid IDSs that
ombine the
apabilities of the des
ribed base IDSs.Bro [22, 8, 11, 27, 7℄ and Snort [25℄ are two of the more popular publi
-domain NIDSs.Both maintain a database of signatures (or rules) that in
lude a string as a
omponent.These intrusion dete
tion systems examine the payload of ea
h pa
ket that is mat
hed bya rule and reports all o

urren
es of the string asso
iated with that rule. It is estimatedthat about 70% of the time it takes Snort, for example, to pro
ess pa
kets is spent in itsstring mat
hing
ode and this
ode a

ounts for about 80% of the instru
tions exe
uted[2℄. Consequently, mu
h resear
h has been done re
ently to improve the eÆ
ien
y of stringmat
hing ([6, 13, 32℄, for example). The fo
us of this paper is to improve the storage andsear
h
ost of NIDS string mat
hing using Aho-Corasi
k trees [1℄.2

In Se
tion 2, we review related work. The Aho-Corasi
k automaton, whi
h is
entral toour work, is des
ribed in Se
tion 3. The
ompression method of Tu
k et al. [32℄ is des
ribedin Se
tion 4. In Se
tion 5 we des
ribe the method of Munro [20, 21℄ to
ompute pop
ountswith 2 additions and we propose three designs to
ompute pop
ounts eÆ
iently in 256-bitbitmaps. These designs make it possible to use pop
ounts eÆ
iently without any hardwaresupport whatsoever! Our method to
ompress the Aho-Corasi
k automaton is des
ribed inSe
tion 6 and experimental results
omparing our method with that of Tu
k et al. [32℄ arepresented in Se
tion 7.2 Related WorkThe development of high-speed intrusion dete
tion systems and
omponents has been thefo
us of signi�
ant re
ent resear
h. Although there are many
omponents in a NIDS thatneed to be optimized to a
hieve line-rate pro
essing, we fo
us our dis
ussion here to the stringmat
hing
omponent, whi
h is the most time
onsuming and whi
h has been the fo
us ofmu
h of the prior work on NIDS optimization. String mat
hing requires the examination ofthe network traÆ
 to determine all mat
hes with the strings in the string database. Althoughthrough pre-�ltering [22, 29℄ we
an redu
e the e�e
tive workload on the NIDS
onsiderably,there remains a need for powerful and
ompa
t data stru
tures for string mat
hing.Snort [25℄ and Bro [22, 8, 11, 27, 7℄ are two of the more popular publi
 domain NIDSs.Both are software solutions to intrusion dete
tion. The
urrent implementation of Snortuses the optimized version of the Aho-Corasi
k automaton [1℄. Snort also uses SFK sear
hand the Wu-Manber [34℄ multi-string sear
h algorithm. The memory required to store theoptimized Aho-Corasi
k and Wu-Manber data stru
tures is ex
essive [32℄. To redu
e thememory requirement of the Aho-Corasi
k automaton, Tu
k et al. [32℄ have proposed startingwith the unoptimized Aho-Corasi
k automaton and using bitmaps and path
ompression.We note that the use of bitmaps to obtain
ompa
t representations was proposed �rst byJa
obson [21℄. In the network algorithms area, bitmaps have been used also in the tree bitmaps
heme [9℄ and in shape shifting and hybrid shape shifting tries [28, 17℄; path
ompressionhas been used in several IP lookup stru
tures in
luding tree bitmap [9℄ and hybrid shape3

shifting tries [17℄. With these
ompression methods, the memory required by the
ompressedunoptimized Aho-Corasi
k automaton be
omes about 1/50 to 1/30 of that required by theoptimized automaton and the Wu-Manber stru
ture and is slightly less than that requiredby SFK sear
h [32℄. However, a sear
h requires us to perform a large number of additions atea
h node and so requires hardware support for eÆ
ient implementation. String mat
hingusing a purely software implementation of the bitmap and path-
ompressed Aho-Corasi
kautomaton takes about 10% to 20% more time, on average, than when an optimized Aho-Corasi
k automaton is used.Hardware and hardware assisted solutions also have been proposed. Song and Lo
k-wood [30℄, Fang et al. [10℄, and Yu and Katz [36℄, for example, propose the use of TCAMs(in the
ase of [30℄, the TCAM is supplemented with bit-ve
tor hardware) for NIDS appli-
ations. Yazadani et al. [35℄ propose a two-level state ma
hine ar
hite
ture that employs aTCAM for pa
ket
ontent examination. Dharmapurikar and Lo
kwood [6℄ have proposed ahardware implementation of the Aho-Corasi
k [1℄ string mat
hing algorithm for NIDS ap-pli
ations. They assert that their hardware design is more s
alable than FPGA and TCAMbased designs be
ause of its relian
e on \embedded on-
hip memory blo
ks in VLSI hard-ware." Song et al. [29℄ propose the use of an FPGA pre-�lter to redu
e the network traÆ
a
tually examined by a NIDS and Lo
kwood et al. [13℄ propose an extensible system-on-programmable-
hip design for
ontent-aware �ltering. Their design employs TCAMs andFPGAs. Tu
k et al. [32℄ propose a way to represent unoptimized Aho-Corasi
k automata ina
ompa
t format. They predi
t a pro
essing rate of about 8Gbps for an ASIC design. Lun-teran [19℄ has proposed a B-FSM (Bart Finite State Ma
hine) for NIDS appli
ations. Theproposed B-FSM employs a �nite state ma
hine similar to that used in the Aho-Corasi
kstring mat
hing algorithm and the pa
ket
lassi�
ation s
heme Bart developed earlier byLunteran [18℄. It is estimated that an FPGA version of the B-FSM will pro
ess at 10Gbpsand an ASIC version at 20Gbps.
4

3 The Aho-Corasi
k AutomatonThe Aho-Corasi
k automaton [1℄ for multi-string mat
hing is widely used in IDSs. Thereare two versions of this automaton{unoptimized and optimized. While both versions are�nite state ma
hines, the unoptimized version has a failure pointer for ea
h state while inthe optimized version, no state has a failure pointer. In both versions, ea
h state has su

esspointers and ea
h su

ess pointer has a label, whi
h is a
hara
ter from the string alphabet,asso
iated with it. Also, ea
h state has a list of strings/rules (from the string database) thatare mat
hed when that state is rea
hed by following a su

ess pointer. This is the list ofmat
hed rules. In the unoptimized version, the sear
h starts with the automaton start statedesignated as the
urrent state and the �rst
hara
ter in the text string, S, that is beingsear
hed designated as the
urrent
hara
ter. At ea
h step, a state transition is made byexamining the
urrent
hara
ter of S. If the
urrent state has a su

ess pointer labeled bythe
urrent
hara
ter, a transition to the state pointed at by this su

ess pointer is madeand the next
hara
ter of S be
omes the
urrent
hara
ter. When there is no
orrespondingsu

ess pointer, a transition to the state pointed at by the failure pointer is made and the
urrent
hara
ter is not
hanged. Whenever a state is rea
hed by following a su

ess pointer,the rules in the list of mat
hed rules for the rea
hed state are output along with the positionin S of the
urrent
hara
ter. This output is suÆ
ient to identify all o

urren
es, in S, of alldatabase strings. Aho and Corasi
k [1℄ have shown that when their unoptimized automatonis used, the number of state transitions is 2n, where n is the length of S.In the optimized version, ea
h state has a su

ess pointer for every
hara
ter in thealphabet and so, there is no failure pointer. Aho and Corasi
k [1℄ show how to
ompute thesu

ess pointer for pairs of states and
hara
ters for whi
h there is no su

ess pointer in theunoptimized automaton thereby transforming a unoptimized automaton into an optimizedone. The number of state transitions made by an optimized automaton when sear
hing format
hes in a string of length n is n.Figure 1 shows an example string set drawn from the 3-letter alphabet fa,b,
g. Figures 2and 3, respe
tively, show its unoptimized and optimized Aho-Corasi
k automata. For this5

ab
aabbab
aabb

a
ba
b

abb

abbb

ab
bb

ab
aFigure 1: An example string setexample, we assume that the string alphabet is fA, B, Cg.It is important to note that when we remove the failure pointers from an un
ompressedAho-Corasi
k automaton, the resulting stru
ture is a trie [23℄ rooted at the automaton startnode. However, an optimized automaton has the stru
ture of a graph that may not be atrie. This di�eren
e in the stru
ture de�ned by the su

ess pointers has a profound impa
ton our ability to
ompress unoptimized automata versus optimized automata.4 The Method of Tu
k et al. [32℄ To Compress Non-Optimized AutomatonAssume that the alphabet size is 256 (e.g., ASCII
hara
ters). Although the development isgeneralized readily to any alphabet size, it is more
onvenient to do the development usinga �xed and realisti
 alphabet size. A natural way to store the Aho-Corasi
k automaton, fora given database D of strings, in a
omputer is to represent ea
h state of the unoptimizedautomaton by a node that has the following �elds:1. Su

ess[0 : 255℄, where Su

ess[i℄ gives the state to transition to when the ASCII
odefor the
urrent
hara
ter is i (Su

ess[i℄ is null in
ase there is no su

ess pointer forthe
urrent state when the
urrent
hara
ter is i).2. RuleList ::: a list of rules that are mat
hed when this state is rea
hed via a su

esspointer.3. Failure ::: the transition to make when there is no su

ess transition, for the
urrent
hara
ter, from the
urrent state. 6

Figure 2: Unoptimized Aho-Corasi
k automata for strings of Figure 1Assume that ea
h pointer requires 4 bytes. So, ea
h node requires 1024 bytes for theSu

ess array and 4 bytes for the failure pointer. In keeping with Tu
k et al. [32℄, whena

ounting for the memory required for RuleList, we shall assume that only a 4-byte pointerto this list is stored in the node and ignore the memory required by the list itself. Hen
e, thesize of a state node for an unoptimized automaton is 1032 bytes. In the optimized version,the Failure �eld is omitted and the memory required by a node is 1028 bytes. While ea
h7

Figure 3: Optimized Aho-Corasi
k automata for strings of Figure 1node of the optimized automaton requires 4 bytes less than required by ea
h node of theunoptimized automaton, there is little opportunity to
ompress an optimized node as ea
hof its 256 su

ess pointers is non-null and the automaton does not have a tree stru
ture.However, many of the su

ess pointers in the nodes of a unoptimized automaton are nulland the stru
ture de�ned by the su

ess pointers is a trie. Therefore, there is signi�
antopportunity to
ompress these nodes. Following up on this observation, Tu
k et al. [32℄propose two transformations to
ompress the nodes in an unoptimized automaton:8

1. Bitmap Compression. In its simplest form, bitmap
ompression repla
es ea
h 1032-byte node of an unoptimized automaton with a 44-byte node. Of these 44 bytes, 8 areused for the failure and rule list pointers. Another 32 bytes are used to maintain a256-bit bitmap with the property that bit i of this map is 1 i� Su

ess[i℄ 6= null. Thenodes
orresponding to the non-null su

ess pointers are stored in
ontiguous memoryand a pointer (firstChild) to the �rst of these stored in the 44-byte node. To make astate transition when the ASCII
ode for the
urrent
hara
ter is i, we �rst determinewhether Su

ess[i℄ is null by examining bit i of the map. In
ase this bit is null, thefailure pointer is used. When this bit is not null, we determine the number of bits(pop
ount or rank) in bitmap positions less than i that are 1 and using this
ount, thesize of a node (44-bytes), and the value of the �rst
hild pointer, determine the lo
ationof the node to transition to. Sin
e, determining the pop
ount involves examining upto 255 bits, this operation is quite expensive (at least in software). To redu
e the
ostof determining the pop
ount, Tu
k et al. [32℄ propose the use of summaries that givethe pop
ount for the �rst 32 � j, 1 � j < 8 bits of the bitmap. Using these summariesthe pop
ount for any i may be determined by adding together a summary pop
ountand up to 31 bit values. Ea
h summary needs to be 8 bits long (the maximum value is255) and 7 summaries are needed. The size of a bit
ompressed node with summariesis, therefore, 51 bytes. We note that the notion of using bitmaps and summaries forthe
ompa
t representation of data stru
tures (in parti
ular, trees) was �rst advan
edby Ja
obson [12, 21℄ and has been used frequently in the
ontext of data stru
turesfor network appli
ations (see [5, 9, 17, 28℄, for example). While Ja
obson [12, 21℄suggests using several levels of summaries, [5, 32℄ use a single level. Also, Munro [21℄has proposed a s
heme that uses 3 levels of summaries, requires O(m) spa
e, where mis the size of the bitmap, and enables the
omputation of the pop
ount by adding threesummaries, one from ea
h level. The size of a bitmap node be
omes 52 bytes when weadd in the node type and failure pointer o�set �elds that are needed to support path
ompression (Figure 4).
9

node
type
1bit

bitmap 256bits
failure

ptr
32bits

rule ptr
32bits

firstchild
ptr

32bits

L1 (S1,S2,…S7)
8bits*7=56bits

failptr
offset
3bits

Figure 4: A bitmap node of [32℄2. Path Compression. Path
ompression is similar to end-node optimization [9, 17℄. Anend-node sequen
e is a sequen
e of states at the bottom of the automaton (the startstate is at the top of the automaton) that are
omprised of states that have a singlenon-null su

ess transition (ex
ept the last state in the sequen
e, whi
h has no non-nullsu

ess transition). States in the same end-node sequen
e are pa
ked together into oneor more path
ompressed nodes. The number of these states that may be pa
ked into a
ompressed node is limited by the
apa
ity of a path
ompressed node. So, for example,if there is an end-node sequen
e s1; s2; :::; s6 and if the
apa
ity of a path
ompressednode is 4 states, then s1; ::::s4 are pa
ked into one node (say A) and s5 and s6 intoanother (say B). For ea
h si pa
ked into a path
ompressed node in this way, we needto store the 1-byte
hara
ter for the transition plus the failure and rule list pointers forsi. Sin
e several automaton states are pa
ked into a single
ompressed node, a 4-bytefailure pointer that points to a
ompressed node isn't suÆ
ient. In addition, we need ano�set value that tells us whi
h state within the
ompressed node we need to transitionto. Using 3 bits for the o�set, we
an handle nodes with
apa
ity
 � 8. Note thatnow, d3
=8e bytes are needed for the o�sets. Hen
e, a path
ompressed node whose
apa
ity is
 � 8 needs 9
+d3
=8e bytes for the state information. Another 4 bytes areneeded for a pointer to the next node (if any) in the sequen
e of path
ompressed nodes(i.e., a pointer from A to B). An additional byte is required to identify the node type(bitmap and
ompressed) and the size (number of states pa
ked into this
ompressednode). So, the size of a
ompressed node is 9
+ d3
=8e+5 bytes. The node type bit is10

char5
8bits

rule ptr
32bits

failptr
32bits

capacity
3bits

…

char1
8bits

ruleptr
32bits

failptr
32bits

firstchild
ptr 32bits

failptroff
3bits

failptroff
3bits

node
type
1bit

Figure 5: A path
ompressed node of [32℄required now in bitmap nodes as well as is an o�set for the failure pointer. A

ountingfor these �elds, the size of a bitmap node be
omes 52 bytes. Sin
e a
ompressed nodemay be a sibling (states/nodes rea
hable by following a single su

ess pointer fromany given state/node are siblings) of a bitmap node, we need to keep the size of bothbitmap and path
ompressed nodes the same so that we
an a

ess easily the jth
hildof a bitmap node by performing arithmeti
 on the �rst
hild pointer. This requirementlimits us to
 = 5 and a path
ompressed node size that is 52 bytes. Figure 5 shows apath
ompressed node.On the 1533-string Snort database of 2003, the memory required by the bitmapped-path
ompressed automaton using 1 level of summaries is about 1/50 that required by theoptimized automaton, about 1/27 that required by the Wu-Manber data stru
ture, and about10% less than that required by the SFK sear
h data stru
ture [32℄. However, the averagesear
h time, using a software implementation, is in
reased by between 10% and 20% relativeto that for the optimized automaton, by between 30% and 100% relative to the Wu-Manberalgorithm, and is about the same as for SFK sear
h. The real payo� from the Aho-Corasi
kautomaton
omes with respe
t to worst-
ase sear
h time. The worst-
ase sear
h time usingthe Aho-Corasi
k automaton is between 1/4 and 1/3 that when the Wu-Manber or SFKsear
h algorithms are used. The worst-
ase sear
h time for the bitmapped-path
ompressedunoptimized automaton is between 50% and 100% more than for the optimized automaton[32℄. 11

5 Pop
ounts With Fewer AdditionsA serious de�
ien
y of the
ompression method of [32℄ is the need to perform up to 31additions at ea
h bitmap node. This seriously degrades worst-
ase performan
e and in
reasesthe
lamor for hardware support for a pop
ount in network pro
essors [32℄. Sin
e pop
ountsare used in a variety of network algorithms ([5, 9, 17, 28℄, for example) in addition tothose for intrusion dete
tion, we
onsider, in this se
tion, the problem of determining thepop
ount independent of the appli
ation. This problem has been studied extensively bythe algorithms
ommunity ([12, 20, 21℄, for example). In the algorithms
ommunity, thepop
ount problem is referred to as the bit-ve
tor-rank problem, where the terms bitmap andbit ve
tor are synonyms and pop
ount and rank are synonyms. We re
ast the best result forthe bit-ve
tor-rank problem using the bitmap-pop
ount terminology.Munro [20, 21℄ has proposed a method to determine the pop
ount for m-bit bitmap using3 levels of summaries that together take o(m) bits of spa
e. The pop
ount is determinedby adding together 3 O(logm)-bit numbers, one from ea
h of the 3 levels of summaries.Munro's method is des
ribed below:� Level 1 Summaries Partition the bitmap into blo
ks of s1 = dlog22me bits. The numberof su
h blo
ks is n1 = dm=s1e. Compute the level 1 summaries S1(1 : n1), where S1(i)is the number of 1s in blo
ks 0 through i� 1, 1 � i � n1.� Level 2 Summaries Ea
h level 1 blo
k j is partitioned into subblo
ks of s2 = d12 log2mebits. The number of su
h subblo
ks is n2 = ds1=s2e. S2(j; i) is the number of 1s insubblo
ks 0 through i� 1 of blo
k j, 0 � j < n1, 1 � i < n2.� Level 3 Summaries For the level 3 summaries, a lookup table Ts2 that gives the pop-
ount for every possible position in every possible subblo
k is
omputed. The numberof possible subblo
ks is 2s2 = O(pm) and there are s2 possible positions in a subblo
k.Also, ea
h entry of the table has O(log s2) = O(log logm) bits. So, the size of thelookup table is O(pm logm log logm) bits. Figure 6 gives the lookup table T4, whi
his for the
ase s2 = 4. T4(i; j) is the number of 1s in positions 0 through j � 1 in the12

i in binary T4(i; 0) T4(i; 1) T4(i; 2) T4(i; 3)0 0000 0 0 0 01 0001 0 0 0 02 0010 0 0 0 13 0011 0 0 0 14 0100 0 0 1 15 0101 0 0 1 16 0110 0 0 1 27 0111 0 0 1 28 1000 0 1 1 19 1001 0 1 1 110 1010 0 1 1 211 1011 0 1 1 212 1100 0 1 2 213 1101 0 1 2 214 1110 0 1 2 315 1110 0 1 2 3Figure 6: Lookup table for 4-bit blo
ksbinary representation of i; positions are numbered left to right beginning with 0 and a4-bit representation of i is used.One may verify that the total spa
e required by the summaries is o(m) bits and that apop
ount may be determined by adding one summary from ea
h of the three levels. For a256-bit bitmap, using Munro's method [20, 21℄, the level-1 blo
ks are s1 = 64 bits long andthere are n1 = 4 of these; ea
h level-1 blo
k is partitioned into n2 = 16 subblo
ks of sizes2 = 4; and the lookup table Ts2 is T4.Motivated by the work of Munro [20, 21℄, we propose 3 designs for summaries for a 256-bitbitmap. The �rst two of these use 3 levels of summaries and the third uses 2 levels.1. Type I Summaries� Level 1 Summaries For the level 1 summaries, the 256-bit bitmap is partitionedinto 4 blo
ks of 64 bits ea
h. S1(i) is the number of 1s in blo
ks 0 through i� 1,1 � i � 3.� Level 2 Summaries For ea
h blo
k j of 64 bits, we keep a
olle
tion of level 2 sum-13

256 bit

64 bit

B0 B1 B3 B2

SB0 SB1 SB2 … SB15 SB14

SSB0 SSB1

4bit

2bit Figure 7: Type I summariesmaries. For this purpose, the 64-bit blo
k is partitioned into 16 4-bit subblo
ks.S2(j; i) is the number of 1s in subblo
ks 0 through i � 1 of blo
k j, 0 � j � 3,1 � i � 15.� Level 3 Summaries Ea
h 4-bit subblo
k is partitioned into 2 2-bit subsubblo
ks.S3(j; i; 1) is the number of 1s in subsubblo
k 0 of the ith 4-bit subblo
k of thejth 64-bit blo
k, 0 � j � 3, 0 � i � 15.Figure 7 shows the setup for Type I summaries. When Type I summaries are used,the pop
ount for position q (i.e., the number of 1s pre
eding position q), 0 � q < 256,of the bitmap is obtained as follows:Step 1: Position q is in subblo
k sb = b(q mod 64)=4
 of blo
k b = bq=64
. Thesubsubblo
k ssb is 0 when q mod 4 < 2 and 1 otherwise.Step 2: The pop
ount for position q is S1(b) + S2(b; sb) + S3(b; sb; ssb) + bit(q � 1),where bit(q � 1) is 0 if q mod 2 = 0 and is bit q � 1 of the bitmap otherwise;14

S1(0), S2(b; 0) and S3(b; sb; 0) are all 0.As an example,
onsider the
ase q = 203. This bit is in subblo
k sb = b(203 mod 64)=4
= b11=4
 = 2 of blo
k b = b203=64
 = 3. Sin
e 203 mod 4 = 3, the subsubblo
k ssb is1. The pop
ount for bit 203 is the number of 1s in positions 0 through 191 + the num-ber in positions 192 through 199 + those in positions 200 through 201 + the numberin position 202 = S1(3) + S2(3; 2) + S3(3; 2; 1) + bit(202).Sin
e we do not store summaries for b, sb, and ssb equal to zero, the
ode to
omputethe pop
ount takes the formif (b) pop
ount = S1(b)else pop
ount = 0;if (sb) pop
ount += S2(b,sb);if (ssb) pop
ount += S3(b,sb,ssb);if (q) pop
ount += bit(q-1);So, using Type I summaries, we
an determine a pop
ount with at most 3 additionswhereas using only 1 level of summaries as in [32℄, up to 31 additions are required.This redu
tion in the number of additions
omes at the expense of memory. An S1(�)value lies between 0 and 192 and so requires 8 bits; an S2 value requires 6 bits andan S3 value requires 2 bits. So, we need 8 � 3 = 24 bits for the level-1 summaries,6 � 15 � 4 = 360 bits for the level-2 summaries, and 2 � 1 � 16 � 4 = 128 bits for thelevel-3 summaries. Therefore, 512 bits (or 64 bytes) are needed for the summaries. In
ontrast, the summaries of the 1-level s
heme of [32℄ require only 56 bits (or 7 bytes).2. Type II Summaries These are exa
tly what is pres
ribed by Munro [20, 21℄. S1 and S2are as for Type I summaries. However, the S3 summaries are repla
ed by a summarytable (Figure 6) T4(0 : 15; 0 : 3) su
h that T4(i; j) is the number of 1s in positions 0through j�1 of the binary representation of i. The pop
ount for position q of a bitmapis S1(b) + S2(b; sb) + T4(d; e), where d is the integer whose binary representation is15

the bits in subblo
k sb of blo
k b of the bitmap and e is the position of q within thissubblo
k; S1 and SB are for the
urrent state/bitmap.Sin
e T4(i; j) � 3, we need 2 bits for ea
h entry of T4 for a total of 128 bits for theentire table. Re
ognizing that rows 2j and 2j+1 are the same for every j, we may storeonly the even rows and redu
e storage
ost to 64 bits. A further redu
tion in storage
ost for T4 is possible by noti
ing that all values in
olumn 0 of this array are 0 andso we need not store this
olumn expli
itly. A
tually, sin
e only 1
opy of this table isneeded, there seems to be little value (for our intrusion dete
tion system appli
ation)to the suggested optimizations and we may store the entire table at a storage
ost of128 bits.The memory required for the level 1 and 2 summaries is 24 + 360 = 384 bits (48 bytes),a redu
tion of 16 bytes
ompared to Type I summaries. When Type II summaries areused, a pop
ount is determined with 2 additions rather than 3 using Type I summariesand 31 using the 1-level summaries of [32℄.3. Type III Summaries These are 2 level summaries and using these, the number of addi-tions needed to
ompute a pop
ount is redu
ed to 1. Level-1 summaries are kept forthe bitmap and a lookup table is used for the se
ond level. For the level-1 summaries,we partition the bitmap into 16 blo
ks of 16 bits ea
h. S1(i) is the number of 1s inblo
ks 0 through i� 1, 1 � i � 15. The lookup table T16(i; j) gives the number of 1sin positions 0 through j � 1 of the binary representation of i, 0 � i < 65; 536 = 216,0 � j < 16. The pop
ount for position q of the bitmap is S1(bq=16
) + T16(d; e),where d is the integer whose binary representation is the bits in blo
k bq=16
 of thebitmap and e is the position of q within this subblo
k; S1 and SB are for the
urrentstate/bitmap.8 � 15 = 120 bits (or 15 bytes) of memory are required for the level-1 summaries of abitmap
ompared to 7 bytes in [32℄. The lookup table T16 requires 216 � 16 � 4 bitsas ea
h table entry lies between 0 and 15 and so requires 4 bits. The total memoryfor T16 is 512KB. For a table of this size, it is worth
onsidering the optimizations16

mentioned earlier in
onne
tion with T4. Sin
e rows 2j and 2j+1 are the same for allj, we may redu
e table size to 256KB by storing expli
itly only the even rows of T16.Another 16KB may be saved by not storing
olumn 0 expli
itly. Yet another 16KBredu
tion is a
hieved by splitting the optimized table into 2. Now,
olumn 0 of one ofthem is all 0 and is all 1 in the other. So,
olumn 0 may be eliminated. We note thatoptimization below 256KB may not be of mu
h value as the in
reased
omplexity ofusing the table will outweigh the small redu
tion is storage.6 Our Method To Compress The Non-Optimized Aho-Corasi
k Automaton6.1 Classi�
ation of Automaton StatesThe Snort database had 3,578 strings in April, 2006. Figure 8 pro�les the states in the
orresponding unoptimized Aho-Corasi
k automaton by degree (i.e., number of non-nullsu

ess pointers in a state). As
an be seen, there are only 36 states whose degree is morethan 8 and the number of states whose degree is between 2 and 8 is 869. An overwhelmingnumber of states (24,417) have a degree that is less than 2. However, 1639 of these 24,417states are not in end-node sequen
es. These observations motivated us to
lassify the statesinto 3
ategories{B (states whose degree is more than 8), L (states whose degree is between 2and 8) and O (all other states). B states are those that will be represented using a bitmap, Lstates are low degree states, and O states are states whose degree is one or zero. In
ase thedistribution of states in future string databases
hanges signi�
antly, we
an use a di�erent
lassi�
ation of states.Next, a �ner (2 letter) state
lassi�
ation is done as below and in the stated order.BB All B states are re
lassi�ed as BB states.BL All L states that have a sibling BB state are re
lassi�ed as a BL states.BO All O states that have a BB sibling are re
lassi�ed as BO states.LL All remaining L states are re
lassi�ed as LL states.17

degree number of nodes per
entage0 1964 7.751 22453 88.62 591 2.333 149 0.584 43 0.175 35 0.146 14 0.0557 23 0.0908 14 0.0559 8 0.03110 6 < 0:0311 3 < 0:0312 4 < 0:0313 5 < 0:0314 3 < 0:0315 2 < 0:0317,18,21,51,78 1 < 0:03Figure 8: Distribution of states in a 3000 string Snort databaseLO All remaining O states that have an LL sibling are re
lassi�ed as LO states.OO All remaining O states are re
lassi�ed as OO states.6.2 Node TypesOur
ompressed representation uses three node types{bitmap, low degree, and path
om-pressed. These are des
ribed below.BitmapA bitmap node has a 256-bit bitmap together with summaries; any of the three summarytypes des
ribed in Se
tion 5 may be used. We note that when Type II or Type III summariesare used, only one
opy of the lookup table (T4 or T16) is needed for the entire automaton.All bitmap nodes may share this single
opy of the lookup table. When Type II summariesare used, the 128 bits needed by the unoptimized T4 are insigni�
ant
ompared to thestorage required by the remainder of the automaton. For Type III summaries, however,18

node
type
3bits

256 bits bitmap
failure

ptr
32bits

rule ptr
32bits

firstchild
ptr

32bits

L1(B0,..,B2)
8bits*3=24bits

L2(SB0,…SB14)
6bits*4*15=360bits

L3(SSB0)
2bits*16*4*1=128bits

failptroff
8bits

firstchild
type
3bits

Figure 9: Our bitmap nodeusing a 512KB unoptimized T16 is quite wasteful of memory and it is desirable to go downto at least the 256KB version.The memory required for a bitmap node depends on the summary type that is used.When Type I summaries are used, ea
h bitmap node (Figure 9) is 110 bytes (we need 57extra bytes
ompared to the 52-byte nodes of [32℄ for the larger summaries and an additionalextra byte be
ause we use larger failure pointer o�sets). When Type II summaries are used,ea
h bitmap node is 94 bytes and the node size is 61 bytes when Type III summaries areused.Low Degree NodeLow degree nodes are used for states that have between 2 and 8 su

ess transitions. Figure 10shows the format of su
h a node. In addition to �elds for the node type, failure pointer,failure pointer o�set, rule list pointer, and �rst
hild pointer, a low degree node has the�elds
har1, :::,
har8 for the up to 8
hara
ters for whi
h the state has a non-null su

esstransition and size, whi
h gives us the number of these
hara
ters stored in the node. Sin
ethis number is between 2 and 8, 3 bits are suÆ
ient for the size �eld. Although it is suÆ
ientto allo
ate 22 bytes to a low degree node, we allo
ate 25 bytes as this allows us to pa
k apath
ompressed node with up to 2
hara
ters (i.e., an O2 node as des
ribed later) into alow degree node.
19

failptr
32bits

rule ptr
32bits

firstchild
ptr 32bits …

char8
8bits

char1
8bits

size
3bits

node
type
3bits

failptroff
8bits

firstchild
type
3bits Figure 10: Our low degree node

charc
8bits

rule ptr
32bits

failptr
32bits

capacity
8bits

…

char1
8bits

ruleptr
32bits

failptr
32bits

firstchild
ptr 32bits

failptroff
8bits

failptroff
8bits

node
type
3bits

firstchild
type
3bits

Figure 11: Our path
ompressed nodePath Compressed NodeUnlike [32℄, we do not limit path
ompression to end-node sequen
es. Instead, we path
ompress any sequen
e of states whose degree is either 1 or 0. Further, we use variable-sizepath
ompressed nodes so that both short and long sequen
es may be
ompressed into asingle node with no waste. In the path
ompression s
heme of [32℄ an end-node sequen
ewith 31 states will use 7 nodes and in one of these the
apa
ity utilization is only 20% (onlyone of the available 5 slots is used). Additionally, the overhead of the type, next node, andsize �elds is in
urred for ea
h of the path
ompressed nodes. By using variable-size path
ompressed nodes, all the spa
e in su
h a node is utilized and the node overhead is paidjust on
e. In our implementation, we limit the
apa
ity of a path
ompressed node to 256states. This requires that the failure pointer o�sets in all nodes be at least 8 bits. A path
ompressed node whose
apa
ity is
,
 � 256, has

hara
ter �elds,
 failure pointers,
failure pointer o�sets,
 rule list pointers, 1 type �eld, 1 size �eld, and 1 next node �eld(Figure 11).We refer to the path
ompressed node of Figure 11 as an O node. Five spe
ial types ofO nodes{O1 through O5{also are used by us. An Ol node, 1 � l � 5, is simply an O node20

whose
apa
ity is exa
tly l
hara
ters. For these spe
ial O-node types, we may dispense withthe
apa
ity �eld as the
apa
ity may be inferred from the node type.The type �elds (node type and �rst
hild type) are 3 bits. We use Type = 000 for a bitmapnode, Type = 111 for a low degree node and Type = 110 for an O node. The remaining 5values for Type are assigned to Ol nodes. Sin
e the
apa
ity of an O node must be at least6, we a
tually store the node's true
apa
ity minus 6 in its
apa
ity �eld. As a result, an8-bit
apa
ity �eld suÆ
es for
apa
ities up to 261. However, sin
e failure pointer o�sets are8 bits, using an O node with
apa
ity between 257 and 261 isn't possible. So, the limit onO node
apa
ity is 256. The total size of a path
ompressed node O is 10
+ 6 bytes, where
 is the
apa
ity of the O node. The size of an Ol node is 10l + 5 as we do not need the
apa
ity �eld in su
h a node.6.3 Memory A

essesThe number of memory a

esses needed to pro
ess a node depends on the memory bandwidthW , how the node's �elds are mapped to memory, and whether or not we get a mat
h at thenode. We provide the a

ess analysis primarily for the
ase W = 32 bits.Bitmap Node With Type I Summaries, W = 32We map our bitmap node into memory by pa
king the node type, �rst
hild type, failurepointer o�set �elds as well as 2 of the 3 L1 summaries into a 32-bit blo
k; 2 bits of thisblo
k are unused. The remaining L1 summary (S1(3)) together with S2(0; �) are pla
edinto another 32-bit blo
k. The remaining L2 summaries are pa
ked into 32-bit blo
ks; 5summaries per blo
k; 2 bits per blo
k are unused. The L3 summaries o

upy 4 memoryblo
ks; the bitmap takes 8 blo
ks; and ea
h of the 3 pointers takes a blo
k.When a bitmap node is rea
hed, the memory blo
k with type �elds is a

essed to determinethe node's a
tual type. The rule pointer is a

essed so we
an list all mat
hing rules.A bitmap blo
k is a

essed to determine whether we have a mat
h with the input string
hara
ter. If the examined bit is 0, the failure pointer is a

essed and we pro
eed to thenode pointed by this pointer; the failure pointer o�set, whi
h was retrieved from memory21

when the blo
k with type �elds was a

essed, is used to position us at the proper pla
e inthe node pointed at by the failure pointer in
ase this node is a path
ompressed node. So,the total number of memory a

esses when we do not have a mat
h is 4. When the examinedbit of the bitmap is 1, we
ompute a pop
ount. This may require between 0 and 3 memorya

esses (for example, 0 are needed when bit 0 of the bitmap is examined or when the onlysummary required is S1(1) or S1(2)). Using the
omputed pop
ount, the �rst
hild pointer(another memory a

ess) and the �rst
hild type (
annot be that of an O node), we moveto the next node in our data stru
ture. A total of 4 to 7 memory a

esses are made.Low Degree Node, W = 32Next
onsider the
ase of a low degree node. We pa
k the type �elds, size �eld, failure pointero�set �eld, and the
har 1 �eld into a memory blo
k; 7 bits are unused. The remaining 7
har �elds are pa
ked into 2 blo
ks leaving 8 bits unused. Ea
h of the pointer �elds o

upiesa memory blo
k. When a low degree node is rea
hed, we must a

ess the memory blo
k withtype �elds as well as the rule pointer. To determine whether we have a mat
h at this node,we do an ordered sequential sear
h of the up to 8
hara
ters stored in the node. Let i denotethe number of
hara
ters examined. For i = 1, no additional memory a

ess is required, oneadditional a

ess is required when 2 � i � 5, and 2 a

esses are required when 6 � i � 8. In
ase of no mat
h we need to a

ess also the failure pointer; the �rst
hild pointer is retrievedin
ase of a mat
h. The total number of memory a

esses to pro
ess a low degree node is 3to 5 regardless of whether there is a mat
h.Ol; 1 � l � 5, Nodes, W = 32For an O1 node, we pla
e the type, failure pointer o�set, and
har 1 �elds into a memoryblo
k; the rule, failure and �rst
hild pointers are pla
ed into individual memory blo
k.To pro
ess an O1 node, we �rst retrieve the type blo
k and then the rule pointer. The rulepointer is used to list the mat
hing rules. Then, we
ompare with
har 1 that is the retrievedtype blo
k. If there is a mat
h, we retrieve the �rst
hild pointer and pro
eed to the nodepointed at. In
ase of no mat
h, we retrieve the failure pointer, whi
h together with the22

o�set in the type blo
k leads us to the next node. So, 3 a

esses are needed when an O1node is rea
hed.The mapping for an O2 is similar to that used for an O1 node. This time, the type blo
k
ontains
har 1 and
har 2, the additional rule pointer and failure o�set pointers are pla
edin separate blo
ks. The number of memory a

esses needed to pro
ess su
h a node is 3 whenonly
har 1 is examined (this happens when there is a mismat
h at
har 1). When
har 2also is examined an additional rule pointer is retrieved. For a mismat
h, we must retrievethe se
ond failure pointer as well as its failure pointer o�set. So, 5 a

esses are needed. Fora mat
h, 4 a

esses are required. So, in
ase of a mismat
h in an O2 node, 3 or 5 a

essesare needed; otherwise, 4 are needed.For O3 nodes, we pla
e
har 3 and its asso
iated failure pointer o�set into the memoryblo
k of O2 that
ontains the se
ond failure pointer o�set. The asso
iated rule and failurepointers are pla
ed in separate memory blo
ks. When all 3
hara
ters are mat
hed, we need6 memory a

esses. When a mismat
h o

urs at
har 1, there are 3 a

esses; at
har 2, thereare 5 a

esses; and at
har 3, there are 6 a

esses.An alternative mapping for an O3 node pla
es the data �elds into memory in the followingorder: node and �rst
hild type �elds (1 byte total), pairs of
hara
ter and rule pointer �elds((
har j, rule pointer j), 5 bytes per pair), �rst
hild pointer (4 bytes), pairs of failure pointerand failure pointer o�sets (5 bytes per pair). When i
hara
ters are examined, we retrieved(1 + 5i)=4e blo
ks to pro
ess the
hara
ters and their rule pointers. In
ase of a mismat
hat
hara
ter i, 2 additional a

esses are needed to retrieve the
orresponding failure pointerand its o�set. In
ase of a mat
h, a single additional memory a

ess gets us the �rst
hildpointer. So, the total number of memory a

esses is d(1+5i)=4e+2 when there is a mismat
hand d(1 + 5i)=4e + 1 when all
hara
ters in the nodes are mat
hed. When this alternativemat
hing is used, a mismat
h at
hara
ter i, 1 � i � 3 takes 4, 5, and 6 memory a

esses,respe
tively. When there is no mismat
h, 5 memory a

esses are required.For an O4 node, we extend the original O3 mapping by pla
ing
har 3,
har 4, and o�setpointers 3 and 4 in one memory blo
k; and o�set pointer 2 in another. Rule and failurepointers o

upy one blo
k ea
h. When all 4
hara
ters are mat
hed, we need 7 memory23

a

esses. A mismat
h at
hara
ter i, 1 � i � 4, results in 3, 5, 6, and 7 a

esses, respe
tively.An O5 node is mapped with
hars 3, 4, 5 and o�set pointer 3 in a memory blo
k and o�setpointers 2, 4, and 5 in another. When all 5
hara
ters in an O5 node are mat
hed, thereare 8 memory a

esses. When there is a mismat
h at
hara
ter i, 1 � i � 5, the number ofmemory a

esses is 3, 5, 6, 8, and 9, respe
tively.O Nodes, W = 32 and 1024For simpli
ity, we extend the alternative mapping des
ribed above for O3 nodes. Fields aremapped to memory in the order: node type, �rst
hild type, and
apa
ity �elds (2 bytestotal), pairs of
hara
ter and rule pointer �elds ((
har j, rule pointer j), 5 bytes per pair), �rst
hild pointer (4 bytes), pairs of failure pointer and failure pointer o�sets (5 bytes per pair).The memory a

ess analysis is similar to that for O3 nodes and the total number of memorya

esses, when W = 32, is d(2 + 5i)=4e + 2 when there is a mismat
h and d(2 + 5i)=4e + 1when all
hara
ters in the nodes are mat
hed.When W = 1024, an O node �ts into a single memory blo
k provided its
apa
ity,
, is nomore than 12. Hen
e, for
 � 12, a single memory a

ess suÆ
es to pro
ess this node. When
 > 12, the memory a

ess
ount using the above mapping is is d(2 + 5i)=128e + 1. Sin
ei �
 � 256, at most 12 memory a

ess are need to pro
ess an O node when W = 1024.Path Compressed Node of [32℄, W = 32 and 1024When W = 32, the type, size, failure o�set 1, and
har 1 through 3 �elds of the path
ompressed node of [32℄ may be mapped into a single memory blo
k. The
har 4 and 5�elds together with the 4 remaining failure pointer o�set �elds may be mapped into anothermemory blo
k. For a mismat
h at
har 1, we need to a

ess blo
k 1, rule pointer 1, andfailure pointer 1 for a total of 3 memory a

esses. For a failure at
har i, 2 � i � size, wemust a

ess also blo
k 2 and an additional i� 1 rule pointers. The memory a

ess
ount is3 + i.Noti
e that sin
e [32℄ path
ompresses end-node sequen
es only, a failure must o

urwhenever we pro
ess a path
ompressed node whose size is less than 5 as the last state in24

su
h a node has no su

ess transition (i.e., its degree is 0 in the Aho-Corasi
k automaton).Hen
e, for a mat
h at this node, we may assume that the size is 5. The two blo
ks, 5 rulepointers, and the �rst
hild pointer are a

essed. The total number of memory a

esses is 8.When W = 1024, all 52 bytes of the path
ompressed node �t in a memory blo
k. So,only 1 memory a

ess is needed to pro
ess the node. Note that for an end-node sequen
ewith 256 states, 53 path
ompressed nodes are used. The worst-
ase a

esses to go throughthis end-node sequen
e is 53. Using our O node, 12 memory a

esses are made in the worst
ase.SummaryUsing a similar analysis, we
an derive the memory a

ess
ounts for di�erent values of thememory bandwidth W , other summary types, and other node types. Figures 12 and 13 givethe a

ess
ounts for the di�erent node and summary types for a few sample values of W .The rows labeled B (bitmap), L (low degree), Ol (O1 through O5), and O refer to nodetypes for our stru
ture while those labeled TB (bitmap) and TO (one degree) refer to nodetypes in the stru
ture of Tu
k et al. [32℄. We note that the
ounts of Figures 12 and 13 arespe
i�
 to a
ertain mapping of the �elds of a node to memory. Using a di�erent mappingwill
hange the memory a

ess
ount. However, we believe that the mappings used in ouranalysis are quite reasonable and that using alternative mappings will not improve these
ounts in any signi�
ant manner.6.4 Mapping States to NodesWe map states to nodes as follows and in the stated order.1. Category BX;X 2 fB;L;Og, states are mapped to 1 bitmap node ea
h; sibling statesare mapped to nodes that are
ontiguous in memory. Note that in the
ase of BL andBO states, only a portion of a bitmap node is used.2. Maximal sets of LX;X 2 fL;Og, states that are siblings are pa
ked into unused spa
ein a bitmap node
reated in (1) using 25 bytes per LX state and the low degree25

W=32 W=64mat
h mismat
h mat
h mismat
hB (Type I) 4 to 7 4 3 to 6 3B (Type II) 4 to 6 4 3 to 5 3B (Type III) 4 to 5 4 3 to 4 3L 3 to 5 3 to 5 2 to 3 2 to 3O1 3 3 2 2O2 4 3 or 5 2 2 or 3O3 6 3, 5, or 6 3 2 or 3O4 7 3 or 5 to 7 4 2 to 4O5 8 3, 5, 6, 8, or 9 4 2, 3 to 5O 3 or d2+5i4 e+1 3 or d2+5i4 e+2 2 or d2+5i8 e+1 2 or d2+5i8 e+1TB ([32℄) 4 to 5 4 3 3TO ([32℄) 1 + i, 6, or 8 3 or 3 + i 1 + i or 7 2+d i2e or 4Figure 12: Memory a

esses to pro
ess a nodeW=128 W=1024mat
h mismat
h mat
h mismat
hB (Type I) 2 to 5 2 1 1B (Type II) 2 to 4 2 1 1B (Type III) 2 to 3 2 1 1L 1 to 2 1 to 2 1 1O1 1 1 1 1O2 1 2 1 1O3 2 2 1 1O4 2 2 1 1O5 2 2 or 3 1 1O 1 or d2+5i16 e+1 1 or d2+5i16 e+1 1(
 � 12), 1(
 � 12),d2+5i128 e+1(
 > 12) d2+5i128 e+1(
 > 12)TB ([32℄) 2 3 1 1TO ([32℄) 2 2 1 1Figure 13: Memory a

esses to pro
ess a nodestru
ture of Figure 10. By this, we mean that if there are (say) 3 LX states thatare siblings and there is a bitmap node with at least 75 bytes of unused spa
e, all 3siblings are pa
ked into this unused spa
e. If there is no bitmap node with this mu
hunutilized spa
e, none of the 3 siblings is pa
ked into a bitmap node. The pa
king ofsibling LX nodes is done in non-in
reasing order of the number of siblings. Note that26

by pa
king all siblings into a single bitmap node, we make it possible to a

ess any
hild of a bitmap node using its �rst
hild pointer, the
hild's rank (i.e., index in thelayout of
ontiguous siblings), and the size of the �rst
hild (this is determined by thetype of the �rst
hild). Note that when an LO state whose
hild is an OO state ismapped in this way, it is mapped together with its lone OO-state
hild into a single25-byte O2 node, whi
h is the same size as a low degree node.3. The remaining LX states are mapped into low degree nodes (LL states) or O2 nodes(LO states). LL states are mapped one state per low degree node. As before, whenan LO state whose
hild is an OO state is mapped in this way, it is mapped togetherwith its lone OO-state
hild into a single 25-byte O2 node. Sibling states are mappedto nodes that are
ontiguous in memory.4. The
hains of remaining OO states are handled in groups where a group is
omprisedof
hains whose �rst nodes are siblings. In ea
h group, we �nd the length, l, of theshortest
hain. If l > 5, set l = 5. Ea
h
hain is mapped to an Ol node followed by anO node. The Ol nodes for the group are in
ontiguous memory. Note that an O node
an only be the
hild of an Ol node or another O node.7 Experimental ResultsWe ben
hmarked our
ompression method of Se
tion 6 against that proposed by Tu
k etal. [32℄ using two data sets of strings extra
ted from Snort [26℄ rule sets. The �rst data sethas 1284 strings and the se
ond has 2430 strings. We name ea
h data set by the number ofstrings in the data set.Number of NodesFigures 14 15 give the number of nodes of ea
h type in the
ompressed Aho-Corasi
k stru
turefor ea
h of our string sets. The maximum
apa
ity of an allo
ated O node was 128 for dataset 1284 and 256 for data set 2430. 27

Node Type B L Ol O TB TODataSet 1284 133 595 850 454 1057 2955DataSet 2430 100 769 938 576 1527 3310Figure 14: Number of nodes of ea
h type, Ol and O
ounts are for Type I summariesNode Type Ol (Type II) O (Type II) Ol (Type III) O (Type III)DataSet 1284 848 456 851 464DataSet 2430 938 576 940 578Figure 15: Number of Ol O nodes for Type II and Type III summariesMemory RequirementAlthough the total number of nodes used by us is less than that used by Tu
k et al. [32℄, ournodes are larger and so the potential remains that we a
tually use more memory than used bythe stru
ture of Tu
k et al. [32℄. Figures 16 and 17 give the number of bytes of memory usedby the stru
ture of [32℄ as well as that used by our stru
ture for ea
h of the di�erent summarytypes of Se
tion 5. Re
all that the size of a B node depends on the summary type that isused. As stated in Se
tion 6, the B node size is 110 bytes for Type I summaries, 94 bytesfor Type II summaries, and 61 bytes for Type III summaries. The memory numbers given inFigures 16 and 17 do not in
lude the 16 bytes (or less) needed for the single T4 table used byType II summaries or the 256KB needed by the T16 table used by Type I summaries. In the
ase of Type II summaries, adding in the 16 bytes needed by T4 doesn't materially a�e
tthe numbers reported in Figures 16 and 17. For Type III summaries, the 256KB neededfor T16 is more than what is needed for the rest of the data stru
ture. However, as thedata set size in
reases, this 256KB remains un
hanged and �xed at 256KB. The row labeledNormalized gives the memory required normalized by that required by the stru
ture of Tu
ket al. [32℄. The normalized values are plotted in Figure 18. As
an be seen, our stru
turestake between 24% and 31% less memory than is required by the stru
ture of [32℄. With the256KB required by T16 added in for Type III summaries, the Type III representation takestwi
e as mu
h memory as does [32℄ for the 1284 data set and 75% more for the 2430 data set.As the size of the data set in
reases, we expe
t Type II summaries to be more
ompetitive28

Methods [32℄ Type I Type II Type IIIMemory (bytes) 208624 157549 155603 152237Normalized 1 0.76 0.75 0.73*Ex
ludes memory for T4 and T16Figure 16: Memory requirement for data set 1284Data set 2430)Methods [32℄ Type I Type II Type IIIMemory(bytes) 251524 177061 175511 172523Normalized 1 0.70 0.70 0.69*Ex
ludes memory for T4 and T16Figure 17: Memory requirement for data set 2430than [32℄ on total memory required.

1284 2430
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rule set size

m
em

or
y

si
ze

Tuck et al [31]
Type I summaries
Type II summaries
Type III summaries

Figure 18: Normalized memory requirementPop
ountFigures 19 and 20 give the total number of additions required to
ompute pop
ounts whenusing ea
h of the data stru
tures. For this experiment, we used 5 query strings obtained by
on
atenating a di�ering number of real emails that were
lassi�ed as spam by our spam29

Methods [32℄ Type I Type II Type IIIstrlen=1002832 10.61M 1.37M 1.25M 0.76Mstrlen=2032131 32.21M 4.15M 3.79M 2.29Mstrlen=3002665 64.26M 8.25M 7.51M 4.55Mstrlen=4006579 107.21M 13.74M 12.49M 7.56Mstrlen=5035666 161.76M 20.75M 18.82M 11.37MNormalized 1 0.128 0.117 0.071Figure 19: Number of pop
ount additions, data set 1284Methods [32℄ Type I Type II Type IIIstrlen=1002832 11.54M 1.46M 1.33M 0.79Mstrlen=2032131 34.97M 4.43M 4.02M 2.42Mstrlen=3002665 69.54M 8.78M 7.96M 4.80Mstrlen=4006579 116.11M 14.67M 13.28M 8.00Mstrlen=5035666 175.60M 22.25M 20.09M 12.08MNormalized 1 0.127 0.114 0.069Figure 20: Number of pop
ount additions, data set 2430�lter. The string lengths varied from 1MB to 5MB and we
ounted the number of additionsneeded to report all o

urren
es of all strings in the Snort data sets (1284 or 2430) in ea
hof the query strings. The last row of ea
h �gure is the total number of adds for all 5 querystrings normalized by the total for the stru
ture of [32℄. The normalized values are plottedin Figure 21. When Type III summaries are used, the number of pop
ount additions is only7% that used by the stru
ture of [32℄. Type I and Type II summaries require about 13%and 12%, respe
tively, of the number of additions required by [32℄.Memory A

essesFigures 22 and 23 give the normalized number of memory a

esses required to pro
ess ourquery strings. The data is normalized using the total memory a

ess
ount for the method of[32℄. Sin
e the normalized numbers were virtually the same for ea
h of our 5 query strings,we give only the numbers for the �rst query string. The number of memory a

esses usingour data stru
ture is generally larger than when the stru
ture of [32℄ is used. However, as thememory bandwidth in
reases, the di�eren
e between the two s
hemes be
omes very small30

1284 2430
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rule set size

A
dd

s
fo

r
po

pc
ou

nt

Tuck et al [31]
Type I summaries
Type II summaries
Type III summaries

Figure 21: Normalized additions for pop
ountMethods W=32 W=64 W=128 W=1024[32℄ 1 1 1 1Type I 1.108 1.241 1.136 1.004Type II 1.069 1.184 1.064 1.004Type III 1.007 1.093 0.977 1.004Figure 22: Normalized memory a

esses to pro
ess a query string, data set 1284Methods W=32 W=64 W=128 W=1024[32℄ 1 1 1 1Type I 1.115 1.250 1.158 1.0021Type II 1.076 1.193 1.086 1.0021Type III 1.013 1.100 0.983 1.0021Figure 23: Normalized memory a

esses to pro
ess a query string, data set 2430(0.1% to 0.4% when W = 1024) on this metri
.8 Con
lusionWe have proposed the use of 2- and 3-level summaries for eÆ
ient pop
ount
omputation andhave suggested ways to minimize the size of the lookup table asso
iated with the pop
ount31

s
heme of Munro [20, 21℄. As near as we
an tell, we are the �rst to use more than 1level of summaries for pop
ount
omputation in network appli
ations. Using the summariesproposed here, the number of additions required to
ompute pop
ount is between 7% and 13%of that required by the s
heme of [32℄. We also have proposed an aggressive
ompressions
heme. When this s
heme is used on our test sets, the memory required by the sear
hstru
ture is between 24% and 31% less than that required when the
ompression s
heme of[32℄ is used. Although a sear
h using our stru
ture makes more memory a

esses than whenthe stru
ture of [32℄ is used, the two s
hemes make almost the same number of memorya

esses when the memory bandwidth is suÆ
iently large.Referen
es[1℄ A. Aho and M. Corasi
k, EÆ
ient string mat
hing: An aid to bibliographi
 sear
h,CACM, 18, 6, 1975, 333-340.[2℄ S. Antonatos, K. Anagnostakis and E. Markatos, Generating realisti
 workloads fornetwork intrusion dete
tion systems, ACM Workshop on Software and Performan
e,2004.[3℄ F. Baboes
u, S. Singh and G. Varghese, Pa
ket Classi�
ation for Core Routers: Is therean alternative to CAMs? INFOCOM, 2003.[4℄ R. Ba
e and P. Mell, Intrusion dete
tion systems, NIST Spe
ial Publi
ation on IDSs.[5℄ M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, Small forwarding tables for fastrouting lookups, ACM SIGCOMM, 1997, 3-14.[6℄ S. Dharamapurikar and J. Lo
kwood, Fast and s
alable pattern mat
hing for
ontent�ltering, ANCS, 2005.[7℄ H. Dreger, A. Feldmann, M. Mai, V. Paxson and R. Sommer, Dynami
 appli
ation-layerproto
ol analysis for network intrusion dete
tion, USENIX Se
urity Symposium, 2006.32

[8℄ H. Dreger, C. Kreiba
h, V. Paxson, and R. Sommer, Enhan
ing the a

ura
y of network-based intrusion dete
tion with host-based
ontext, DIMVA, 2005.[9℄ W. Eatherton, G. Varghese, Z. Dittia, Tree bitmap: hardware/software IP lookups within
remental updates, Computer Communi
ation Review, 34(2): 97-122, 2004.[10℄ Y. Fang, R. Katz and T. Lakshman, Gigabit rate pa
ket pattern-mat
hing using TCAM,ICNP, 2004[11℄ J. Gonzalez and V. Paxson, Enhan
ing network intrusion dete
tion with integratedsampling and �ltering, RAID, 2006.[12℄ G. Ja
obson, Su

in
t Stati
 Data Stru
ture, Carnegie Mellon University Ph.D Thesis,1998.[13℄ J. Lo
kwood, C. Neely, and C. Zuver, An extensible system-on-programmable-
hip,
ontent-aware Internet �rewall.[14℄ H. Lu and S. Sahni, O(logW) multidimensional pa
ket
lassi�
ation, IEEE/ACMTransa
tions on Networking, 15,2, 2007, 462{472.[15℄ W. Lu and S. Sahni, Pa
ket
lassi�
ation using two-dimensional multi-bit tries, IEEE Symposium on Computers and Communi
ations, 2005.http://www.
ise.u
.edu/�wlu/papers/2dtries.[16℄ W. Lu and S. Sahni, Pa
ket
lassi�
ation using pipelined two-dimensional multibit tries,IEEE Symposium on Computers and Communi
ations, 2006.[17℄ W. Lu and S. Sahni, Su

in
t representation of stati
 pa
ket
lassi�ers, IEEE Sympo-sium on Computers and Communi
ations, 2007.[18℄ J. Lunteran and A. Engbersen, Fast and s
alable pa
ket
lassi�
ation using, IEEEJSAC, 21, 4, 2003, 560-571.[19℄ J. Lunteren, High-performan
e pattern-mat
hing for intrusion dete
tion, INFOCOM,2006 33

[20℄ J. Munro, Tables, Foundations of Software Te
hnology and Theoreti
al Computer S
i-en
e, LNCS, 1180, 37{42, 1996.[21℄ J. Munro and S. Rao, Su

in
t representation of data stru
tures, in Handbook of DataStru
tures and Appli
ations, D. Mehta and S. Sahni ed., Chapman & Hall/CRC, 2005.[22℄ V. Paxson, Bro: A system for dete
ting network intruders in real-time, Computer Net-works, 31, 1999, 2435{2463.[23℄ S. Sahni, Data stru
tures, algorithms, and appli
ations in C++, Se
ond Edition, Sili
onPress, 2005.[24℄ S. Singh, F. Baboes
u, G. Varghese, and J. Wang, Pa
ket
lassi�
ation using multidi-mensional
utting, ACM Sig
omm, 8, 2003.[25℄ Snort users manual 2.6.0, 2006.[26℄ http://www.snort.org/dl.[27℄ R. Sommer and V. Paxson, Exploiting independent state for network intrusion dete
tion,ACSAC, 2005.[28℄ H. Song, J. Turner, and J. Lo
kwood, Shape shifting tries for faster IP route lookup,ICNP, 2005.[29℄ H. Song, et al. Snort o�oader: A re
on�gurable hardware NIDS �lter, FPL 2005.[30℄ H. Song and J. Lo
kwood, EÆ
ient pa
ket
lassi�
ation for network intrusion dete
tion,FPGA, 2005.[31℄ D. Taylor and J. Turner, ClassBen
h: A pa
ket
lassi�
ation ben
hmark, INFOCOM,2005.[32℄ N. Tu
k, T. Sherwood, B. Calder and G. Varghese, Deterministi
 memory-eÆ
ient stringmat
hing algorithms for intrusion dete
tion, INFOCOM, 2004.34

[33℄ M.Waldvogel, G.Varghese, J.Turner, and B.Plattner, S
alable high-speed pre�x mat
h-ing, ACM Trans. on Computer Systems, 19, 4, 440-482, 2001.[34℄ S. Wu and U. Manber, Agrep{a fast algorithm for multi-pattern sear
hing, Te
hni
alReport, Department of Computer S
ien
e, University of Arizona, 1994.[35℄ M. Yazdani, W. Fra
zak, F. Welfeld, and I. Lambadaris, Two level state ma
hine ar
hi-te
ture for
ontent inspe
tion engines, INFOCOM 2006.[36℄ F. Yu and R. Katz, EÆ
ient multi-mat
h pa
ket
lassi�
ation with TCAM.

35

