244 Chapter 7 Linear Lists—Simulated Pointers

deallocateNode are invoked 1,000,000 times each. But new is invoked only 50
times. The time savings from the 999,950 calls to new that are not made plus the
savings from the significantly reduced garbage collection effort are more than the
cost of the 1,000,000 calls to each of allocateNode and deallocateNode.

The described modifications do not always result in a reduction in run time. For
example, suppose we make 1,000,000 inserts, follow these with 1,000,000 removes,
and then terminate the program. The original version of Chain makes 1,000,000
calls to new; the modified version makes 1,000,000 calls to each of the methods new,
allocateNode, and deallocateNode.

The performance enhancement strategy just described also may be applied to
the linked classes developed in later chapters.

EXERCISE

6. Develop the class ManagedChain that includes all the public instance methods
of the class Chain (Program 6.2). The class ManagedChain includes class
methods to allocate and deallocate nodes. The storage pool is initially empty;
simulated pointers are not used. The allocate method allocateNode allocates
a node from the storage pool whenever the storage pool is not empty. When
the storage pool is empty, it gets a node by invoking the Java method new.
The remove method should return the freed node to the storage pool, and the
add method should invoke allocateNode rather than new.

(a) Test the correctness of your code.

(b) Comment on the relative merits of using the classes ManagedChain and
Chain to represent a collection of chains.

7.7 APPLICATION—UNION-FIND PROBLEM

7.7.1 Equivalence Classes

Suppose we have a set U = 1, 2, ---, n of n elements and a set R = (i1, 1),
(i2,j2), -+, (ir,Jjr) of r relations. The relation R is an equivalence relation iff
the following conditions are true:

e (a,a) € R for all a € U (the relation is reflexive).
e (a,b) € Riff (b,a) € R (the relation is symmetric).
e (a,b) € R and (b,c) € R imply that (a,c) € R (the relation is transitive).

Often when we specify an equivalence relation R, we omit some of the pairs in
R. The omitted pairs may be obtained by applying the reflexive, symmetric, and
transitive properties of an equivalence relation.

Section 7.7 Application—Union-Find Problem 245

Example 7.4 Suppose n = 14 and R = {(1,11), (7,11), (2,12), (12,8), (11,12),
(3,13), (4,13), (13,14), (14,9), (5,14), (6,10)}. We have omitted all pairs of the form
(a,a) because these pairs are implied by the reflexive property. Similarly, we have
omitted all symmetric pairs. Since (1,11) € R, the symmetric property requires
(11,1) € R. Other omitted pairs are obtained by applying the transitive property.
For example, (7,11) and (11,12) imply (7,12). [|

Two elements a and b are equivalent if (a,b) € R. An equivalence class is
defined to be a maximal set of equivalent elements. Mazimal means that no element
outside the class is equivalent to an element in the class. Since it is not possible
for an element to be in more than one equivalence class, an equivalence relation
partitions the universe U into disjoint classes.

Example 7.5 Consider the equivalence relation of Example 7.4. Since elements 1
and 11, and 11 and 12 are equivalent, elements 1, 11, and 12 are equivalent. They
are therefore in the same class. These three elements do not, however, form an
equivalence class, as they are equivalent to other elements (e.g., 7). So {1, 11, 12}
is not a maximal set of equivalent elements. The set {1, 2, 7, 8, 11, 12} is an
equivalence class. The relation R defines two other equivalence classes: {3, 4, 5, 9,
13, 14} and {6, 10}. Notice that the three equivalence classes are disjoint. |

In the offline equivalence class problem, we are given n and R and we need
to determine the equivalence classes. From the definition of an equivalence class, it
follows that each element is in exactly one equivalence class. In the online equiv-
alence class problem, we begin with n elements, each in a separate equivalence
class. We are to process a sequence of the operations: (1) combine(a,b) --- com-
bines the equivalence classes that contain elements a and b into a single class and (2)
find(theElement) --- determines the class that currently contains element the-
Element. The purpose of the find operation is to determine whether two elements
are in the same class. Hence the find operation is to be implemented to return the
same answer for elements in the same class and different answers for elements in
different classes.

We can write the combine operation in terms of two finds and a union that
actually takes two different classes and makes one. So combine(a,b) is equivalent
to

classA = find(a);

classB = find(b);

if (classA != classB)
union(classA, classB);

Notice that with the find and union operations, we can add new relations to R. For
instance, to add the relation (a,b), we determine whether a and b are already in the
same class. If they are, then the new relation is redundant. If they aren’t, then we
perform a union on the two classes that contain a and b.

246 Chapter 7 Linear Lists—Simulated Pointers

In this section we are concerned primarily with the online equivalence problem,
which is more commonly known as the union-find problem. Although the solutions
developed in this section are rather simple, they are not the most efficient. Faster
solutions are developed in Section 12.9.2. A fast solution for the offline equivalence
problem is developed in Section 9.5.5.

7.7.2 Applications

The following examples show how a machine-scheduling problem and a circuit-
wiring problem may be modeled as online equivalence class problems. A version of
the circuit wiring problem may be modeled as an offline equivalence class problem.

Example 7.6 A certain factory has a single machine that is to perform n tasks.
Task ¢ has an integer release time r; and an integer deadline d;. The completion
of each task requires one unit of time on this machine. A feasible schedule is an
assignment of tasks to time slots on the machine such that task i is assigned to a
time slot between its release time and deadline and no slot has more than one task
assigned to it.

Consider the following four tasks:

Task A B C D
Release time 0 0 1 2
Deadline 4 4 2 3

Tasks A and B are released at time 0, task C' is released at time 1, and task D
is released at time 2. The following task-to-slot assignment is a feasible schedule:
do task A from 0 to 1; task C from 1 to 2; task D from 2 to 3; and task B from 3
to 4 (see Figure 7.6).

A C D B

Figure 7.6 A schedule for four tasks

An intuitively appealing method to construct a schedule is
1. Sort the tasks into nonincreasing order of release time.

2. Consider the tasks in this nonincreasing order. For each task determine the
free slot nearest to, but not after, its deadline. If this free slot is before the
task’s release time, fail. Otherwise, assign the task to this slot.

Section 7.7 Application—Union-Find Problem 247

Exercise 9 asks you to prove that the strategy just described fails to find a
feasible schedule only when such a schedule does not exist.

The online equivalence class problem can be used to implement step (2). For
this step, let d denote the latest deadline of any task. The usable time slots are of
the form “from ¢ — 1 to 7 where 1 < 7 < d. We will refer to these usable slots as
slots 1 through d. For any slot a, define near(a) as the largest 7 such that ¢ < a
and slot ¢ is free. If no such i exists, define near(a) = near(0) = 0. Two slots a
and b are in the same equivalence class iff near(a) = near(b).

Prior to the scheduling of any task, near(a) = a for all slots, and each slot is
in a separate equivalence class. When slot a is assigned a task in step (2), near
changes for all slots b with near(b) = a. For these slots the new value of near is
near(a — 1). Hence when slot a is assigned a task, we need to perform a union
on the equivalence classes that currently contain slots a and a — 1. If with each
equivalence class e we retain, in nearest[e], the value of near of its members, then
near(a) is given by nearest[find(a)]. (Assume that the equivalence class name is
taken to be whatever the find operation returns.)]

Example 7.7 [From Wires to Nets] An electronic circuit consists of components,
pins, and wires. Figure 7.7 shows a circuit with the three components A, B, and C.
Each wire connects a pair of pins. Two pins a and b are electrically equivalent
iff they are either connected by a wire or there is a sequence i1, i3, ... iy of pins
such that a, i1; 91, i2; 12, 93; -+ ik—1, 9k; and ig, b are all connected by wires. A
net is a maximal set of electrically equivalent pins. Mazimal means that no pin
outside the net is electrically equivalent to a pin in the net.

wires

Figure 7.7 A three-chip circuit on a printed circuit board

Consider the circuit shown in Figure 7.8. In this figure only the pins and wires
have been shown. The 14 pins are numbered 1 through 14. Each wire may be
described by the two pins that it connects. For instance, the wire connecting pins

248 Chapter 7 Linear Lists—Simulated Pointers

1 and 11 is described by the pair (1,11), which is equivalent to the pair (11,1). The
set of wires is {(1,11), (7,11), (2,12), (12,8), (11,12), (3,13), (4,13), (13,14), (14,9),
(5,14), (6,10)}. The nets are {1, 2, 7, 8, 11, 12}, {3, 4, 5, 9, 13, 14} and {6, 10}.

1 2 3 4 5 6
[(14
13
11 ‘
[) J [
7 8 9 10

Figure 7.8 Circuit with pins and wires shown

In the offline net finding problem, we are given the pins and wires and are
to determine the nets. This problem is modeled by the offline equivalence problem
with each pin being a member of U and each wire a member of R.

In the online version we begin with a collection of pins and no wires and are to
perform a sequence of operations of the form (1) add a wire to connect pins a and
b and (2) find the net that contains pin a. The purpose of the find operation is to
determine whether two pins are in the same net or in different nets. This version of
the net problem may be modeled by the online equivalence class problem. Initially,
there are no wires, and we have R = ¢. The net find operation corresponds to
the equivalence class find operation and adding a new wire (a, b) corresponds to
combine(a, b), which is equivalent to union(find(a), find(b)).]

7.7.3 First Union-Find Solution

A simple solution to the online equivalence class problem is to use an array equiv-
Class and let equivClass[i] be the class that currently contains element i. The
methods to initialize, union, and find take the form given in Program 7.7. n is the
number of elements. n and equivClass are both assumed to be class (i.e., static)
data members. To unite two different classes, we arbitrarily pick one of these classes
and change the equivClass values of all elements in this class to correspond to the
equivClass values of the elements of the other class. Note that the inputs to
union are equivClass values (i.e., the results of a find operation) and not element
indexes. Even though union works correctly when a redundant union (i.e., one
in which classA = classB), we make the assumption that redundant unions are
not performed. The initialize and union methods have complexity ©(n) (we

Section 7.7 Application—Union-Find Problem 249

assume that new does not throw an exception when invoked by initialize), and
the complexity of find is ©(1). From Examples 7.6 and 7.7, we see that in any
application of these methods, we will perform one initialization, v unions, and f
finds. The time needed for all of these operations is ©(n+u*n+f) = O(u*n+f).

public class UnionFindFirstSolution
{
static int [] equivClass;
static int n; // number of elements

/** initialize numberOfElements classes with one element each */
static void initialize(int numberOfElements)
{
n = numberOfElements;
equivClass = new int [n + 1];
for (int e = 1; e <= n; e++)
equivClass[e] = e;

}

/** unite the classes classA and classB */
static void union(int classA, int classB)
{// assume classA != classB
for (int k = 1; k <= n; k++)
if (equivClass[k] == classB)
equivClass[k] = classA;

}

/** find the class that contains theElement */
static int find(int theElement)
{return equivClass[theElement];}

Program 7.7 Union-find methods using arrays

7.7.4 Second Union-Find Solution

The time complexity of the union operation can be reduced by keeping a chain
for each equivalence class because now we can find all elements in a given equiv-
alence class by going down the chain for that class, rather than by examining all
equivClass values. In fact, if each equivalence class knows its size, we can choose
to change the equivClass values of the smaller equivalence class and perform the

250 Chapter 7 Linear Lists—Simulated Pointers

union operation even faster. By using simulated pointers, we get quick access to
the node that represents element e. We adopt the following conventions:

e EquivNode is a class with data members equivClass, size, and next. Pro-
gram 7.8 gives the code for this class.

class EquivNode

{
int equivClass; // element class identifier
int size; // size of class
int next; // pointer to next element in class
/** constructor */
EquivNode(int theClass, int theSize)
{
equivClass = theClass;
size = theSize;
// next has the default value 0
}
}

Program 7.8 The class EquivNode

e An array node[1:n] of type EquivNode is used to represent the n elements
together with the equivalence class chains.

e nodele] .equivClass is both the value to be returned by find(e) and a
pointer to the first node in the chain for the equivalence class node [e] . equiv-
Class.

e nodele] .size is defined only if e is the first node on a chain. In this case
node [e] . size is the number of nodes on the chain that begins at node[e].

e node[e] .next gives the next node on the chain that contains node e. Since
the nodes in use are numbered 1 through n, a null pointer can be simulated
by 0 rather than by —1.

Program 7.9 gives the new code for initialize, union, and find.

Since an equivalence class is of size O(n), the complexity of the union operation is
O(n) when chains are used. The complexity of the initialization and find operations
remain O(n) and ©(1), respectively. To determine the complexity of performing
one initialization and a sequence of w unions and f finds, we will use the following
lemma.

Section 7.7 Application—Union-Find Problem 251

public class UnionFindSecondSolution

{
static EquivNode [] node; // array of nodes
static int n; // number of elements

/** initialize numberOfElements classes with one element each */
static void initialize(int numberOfElements)
{

n = numberOfElements;

node = new equivNode [n + 1];

for (int e = 1; e <= n; e++)
// nodel[e] is initialized so that its equivClass is e,
// size is 1, and next is O
node[e] = new equivNode(e,1);

}

/** unite the classes classA and classB */
static void union(int classA, int classB)
{// assume classA != classB
// make classA smaller class
if (node[classA].size > node[classB].size)
{// swap classA and classB
int t = classA;
classA = classB;
classB = t;

}

// change equivClass values of smaller class

int k;

for (k = classA; nodel[k] .next != 0; k = nodel[k] .next)
node [k] .equivClass = classB;

node[k] .equivClass = classB; // last node in chain

// insert chain classA after first node in chain classB
// and update new chain size

node[classB] .size += node[classA].size;

node [k] .next = node[classB] .next;

node[classB] .next = classA;

Program 7.9 Union-find methods using chains (continues)

252 Chapter 7 Linear Lists—Simulated Pointers

static int find(int theElement)
{return node[theElement] .equivClass;}

Program 7.9 Union-find methods using chains (concluded)

Lemma 7.1 If we start with n classes that have one element each and perform u
nonredundant unions, then

1. No class has more than u + 1 elements.
2. At least n — 2u singleton classes remain.

3. u<n.

Proof See Exercise 7. |

The complexity of the initialize and f finds is O(n+f). For the u nonredundant
unions, we note that the cost of each union is O(size of smaller class). During the
union elements are moved from the smaller class to the bigger one. The complexity
of a single union is O(number of elements moved), and the complexity of all « unions
is O(total number of element moves). Following a union operation, each element
that is moved to a new class ends up in a class whose size is at least twice that of the
class the element was in before the union operation (because elements move from an
initially smaller class into an initially bigger class). Therefore, since at the end no
class has more than v+ 1 elements (Lemma 7.1(1)), no element can be moved more
than logy(u 4+ 1) times during the u unions. Furthermore, from Lemma 7.1(2), at
most 2u elements can move (because the elements left in singleton classes have never
moved). So the total number of element moves cannot exceed 2ulog,(u + 1). As a
result, the time needed to perform the v unions is O(ulogu). The complexity of the
initialization and the sequence of u unions and f finds is therefore O(n+ulogu+f).

EXERCISES

7. Prove Lemma 7.1.

8. Write a Java program for the online net finding problem of Example 7.7.
Model the problem as the online equivalence class problem and use the chain
method. Test the correctness of your program.

9. Prove that the strategy outlined in Example 7.6 fails to find a feasible schedule
only when such a schedule does not exist.

10. Compare the run-time performance of Programs 7.7 and 7.9.

