Section 9.5 Applications 323

are used, towers 1 and 2 must have a capacity of n disks each, while tower 3 must
have a capacity of n—1. Therefore, we need space for a total of 3n —1 disks. As our
earlier analysis has shown, the time complexity of the Towers of Hanoi problem is
exponential in n. So using a reasonable amount of computer time, the problem can
be solved only for small values of n (say n < 30). For these small values of n, the
difference in space required by the array and linked representations is sufficiently
small that either may be used. Since the array implementations of a stack run faster
than the linked implementations, we use an array implementation.

The code of Program 9.8 uses array stacks. towersOfHanoi(n) is just a pre-
processor for the recursive method showTowerStates, which is modeled after the
method of Program 9.7. The preprocessor creates the three stacks tower[1:3]
that will store the states of the three towers. The disks are numbered 1 (smallest)
through n (largest). Since the disks are modeled as integers, the disk numbers can-
not be stored on a stack unless their data type is converted from int to a wrapper
type for int. We can use either of the types Integer or MyInteger for this purpose.
The initial configuration has all n disks in tower [1]; the remaining two towers have
no disk. After constructing this initial configuration, the preprocessor invokes the
method showTowerStates.

9.5.3 Rearranging Railroad Cars
Problem Description

A freight train has n railroad cars. Each is to be left at a different station. Assume
that the n stations are numbered 1 through n and that the freight train visits these
stations in the order n through 1. The railroad cars are labeled by their destination.
To facilitate removal of the railroad cars from the train, we must reorder the cars so
that they are in the order 1 through n from front to back. When the cars are in this
order, the last car is detached at each station. We rearrange the cars at a shunting
yard that has an input track, an output track, and k holding tracks between the
input and output tracks. Figure 9.6(a) shows a shunting yard with & = 3 holding
tracks H1, H2, and H3. The n cars of the freight train begin in the input track
and are to end up in the output track in the order 1 through n from right to left.
In Figure 9.6(a), n = 9; the cars are initially in the order 5, 8, 1, 7, 4, 2, 9, 6, 3
from back to front. Figure 9.6(b) shows the cars rearranged in the desired order.

Solution Strategy

To rearrange the cars, we examine the cars on the input track from front to back.
If the car being examined is the next one in the output arrangement, we move it
directly to the output track. If not, we move it to a holding track and leave it there
until it is time to place it in the output track. The holding tracks operate in a LIFO
manner as cars enter and leave these tracks from the top. When rearranging cars,
only the following moves are permitted:

324 Chapter 9 Stacks

public class TowersOfHanoiShowingStates

{
// data member
private static ArrayStack [tower; // the towers are tower[1:3]
/** n disk Towers of Hanoi problem */
public static void towersOfHanoi(int n)
{// Preprocessor for showTowerStates
// create three stacks, tower[0] is not used
tower = new ArrayStack[4];
for (int i = 1; i <= 3; i++)
tower[i] = new ArrayStack();
for (int d = n; d > 0; d--) // initialize
tower[1] .push(new Integer(d)); // add disk d to tower 1
// move n disks from tower 1 to 2 using 3 as
// intermediate tower
showTowerStates(n, 1, 2, 3);
¥
public static void showTowerStates(int n, int x, int y, int z)
{// Move the top n disks from tower x to tower y.
// Use tower z for intermediate storage.
if (mn > 0)
{
showTowerStates(n-1, x, z, y);
Integer d = (Integer) tower[x].pop(); // move d from top
// of tower x to
tower [y] .push(d); // top of tower y
System.out.println("Move disk " + d + " from tower "
+ x + " to top of tower " + y);
// output statement should be replaced by showState() when
// showState method has been implemented
showTowerStates(n-1, z, y, x);
}
}
}

Program 9.8 Towers of Hanoi using stacks

Section 9.5 Applications 325

[581742963] [987654321]

input track output track

H1H2H3 H1H2H3

(@) Initial (b) Final

Figure 9.6 A three-track example

e A car may be moved from the front (i.e., right end) of the input track to the
top of one of the holding tracks or to the left end of the output track.

e A car may be moved from the top of a holding track to the left end of the
output track.

Consider the input arrangement of Figure 9.6(a). Car 3 is at the front and
cannot be output yet, as it is to be preceded by cars 1 and 2. So car 3 is detached
and moved to the holding track H1. The next car, car 6, is also to be moved to
a holding track. If car 6 is moved to H1, the rearrangement cannot be completed
because car 3 will be below car 6. However, car 3 is to be output before car 6 and
so must leave H1 before car 6 does. So car 6 is put into H2. The next car, car
9, is put into H3 because putting it into either H1 or H2 will make it impossible
to complete the rearrangement. Notice that whenever the car labels in a holding
track are not in increasing order from top to bottom, the rearrangement cannot be
completed. The current state of the holding tracks is shown in Figure 9.7(a).

2 4 7
3 6 9 3 6 9
H1 H2 H3 H1 H2 H3

@ (b)

Figure 9.7 Track states

326 Chapter 9 Stacks

Car 2 is considered next. It can be moved into any of the holding tracks while
satisfying the requirement that car labels in any holding track be in increasing order,
but moving it to H1 is preferred. If car 2 is moved to H3, then we have no place
to move cars 7 and 8. If we move it to H2, then the next car, car 4, will have to be
moved to H3 and we will have no place for cars 5, 7, and 8. The least restrictions
on future car placement arise when the new car u is moved to the holding track
that has at its top a car with smallest label v such that v > u. We will use this
assignment rule to select the holding track.

When car 4 is considered, the cars at the top of the three holding tracks are 2,
6, and 9. Using our assignment rule, car 4 is moved to H2. Car 7 is then moved
to H3. Figure 9.7(b) shows the current state of the holding tracks. The next car,
car 1, is moved to the output track. It is now time to move car 2 from H1 to the
output track. Next car 3 is moved from H1, and then car 4 is moved from H2. No
other cars can be moved to the output at this time.

The next input car, car 8, is moved to H1. Then car 5 is moved from the input
track to the output track. Following this move, car 6 is moved from H2. Then car
7 is moved from H3, car 8 from H1, and car 9 from H3.

While three holding tracks are sufficient to rearrange the cars from the initial
ordering of Figure 9.6(a), other initial arrangements may need more tracks. For
example, the initial arrangement 1, n, n — 1, ..., 2 requires n — 1 holding tracks.

Java Implementation

To implement the preceding rearrangement scheme, we define the class Railroad-
WithStacks. This class uses k array stacks, track[1:k], to represent the k holding
tracks. We use array stacks because they are faster than linked stacks; and regard-
less of whether we use array or linked stacks, the space required by the k stacks
is expected to be well within the capacity of even the most modest computers.
Program 9.9 gives the data members of RailroadWithStacks.

private static ArrayStack [] track; // array of holding tracks
private static int number(OfCars;

private static int numberOfTracks;

private static int smallestCar; // smallest car in any holding track
private static int itsTrack; // holding track with car smallestCar

Program 9.9 Data members of RailroadWithStacks

The method railroad (Program 9.10) determines a sequence of moves that
results in rearranging cars with initial ordering inputOrder [1:theNumber0fCars]
using at most theNumberOfTracks holding tracks. If such a sequence does not exist,
railroad returns false. Otherwise, it returns true.

Section 9.5 Applications 327

/** rearrange railroad cars beginning with the initial order

* inputOrder[1:theNumberOfCars]

* Q@return true if successful, false if impossible. */
public static boolean railroad(int [] inputOrder,

int theNumberOfCars, int theNumberOfTracks)

{

number0fCars = theNumberOfCars;

number0fTracks = theNumberOfTracks;

// create stacks track[1l:numberOfTracks] for use as holding tracks
track = new ArrayStack [numberOfTracks + 1];
for (int i = 1; i <= numberOfTracks; i++)

track[i] = new ArrayStack();

int nextCarToOutput = 1;
smallestCar = numberOfCars + 1; // no car in holding tracks

// rearrange cars
for (int i = 1; i <= number0fCars; i++)
if (inputOrder[i] == nextCarToOutput)
{// send car inputOrder[i] straight out
System.out.println("Move car " + inputOrder[i]
+ " from input track to output track");
nextCarToOutput++;

// output from holding tracks
while (smallestCar == nextCarToOutput)
{
outputFromHoldingTrack() ;
nextCarToOutput++;

}
else
// put car inputOrder[i] in a holding track
if (!putInHoldingTrack(inputOrder[i]))
return false;

return true;

Program 9.10 The method RailroadWithStacks.railroad

328 Chapter 9 Stacks

Method railroad begins by creating an array track of stacks. track[i] rep-
resents holding track i, 1 < i < numberOfTracks. The for loop maintains the
invariant: at the start of this loop, the car with label nextCarToOutput is not in a
holding track.

In iteration i of the for loop, car inputOrder[i] is moved from the input
track. This car is to move to the output track only if inputOrder[i] equals
nextCarToOutput. If car inputOrder[i] is moved to the output track, next-
CarToOutput increases by one, and it may be possible to move one or more of the
cars in the holding tracks. These cars are moved to the output by the while loop.
If car inputOrder [i] cannot be moved to the output, then no car can be so moved.
Consequently, car inputOrder [i] is added to a holding track using the stated track
assignment rule.

Programs 9.11 and 9.12, respectively, give the methods outputFromHolding-
Track and putInHoldingTrack utilized by railroad. outputFromHoldingTrack
outputs instructions to move a car from a holding track to the output track. It
also updates smallestCar and itsTrack. The method putInHoldingTrack puts
car ¢ into a holding track using the stated track assignment rule. It also outputs
instructions to move the car to the chosen holding track and updates smallestCar
and itsTrack if necessary.

/** output the smallest car from the holding tracks */
private static void outputFromHoldingTrack()

{
// remove smallestCar from itsTrack
track[itsTrack] .popQ);
System.out.println("Move car " + smallestCar + " from holding "
+ "track " + itsTrack + " to output track");
// find new smallestCar and itsTrack by checking top of all stacks
smallestCar = numberQOfCars + 2;
for (int i = 1; i <= numberOfTracks; i++)
if (!track[i].empty() &&
((Integer) track[i].peek()).intValue() < smallestCar)
{
smallestCar = ((Integer) track[i].peek()).intValue();
itsTrack = i;
}
}

Program 9.11 The method RailroadWithStacks.outputFromHoldingTrack

Section 9.5 Applications 329

/** put car c into a holding track
* Q@return false iff there is no feasible holding track for this car */
private static boolean putInHoldingTrack(int c)

{
// find best holding track for car c
// initialize
int bestTrack = O, // best track so far
bestTop = numberOfCars + 1; // top car in bestTrack
// scan tracks
for (int i = 1; i <= numberOfTracks; i++)
if (ltrack[i].empty())
{// track i not empty
int topCar = ((Integer) track[i].peek()).intValue();
if (c < topCar && topCar < bestTop)
{
// track i has smaller car at top
bestTop = topCar;
bestTrack = i;
}
}
else // track i empty
if (bestTrack == 0) bestTrack = i;
if (bestTrack == 0) return false; // no feasible track
// add c to bestTrack
track[bestTrack] .push(new Integer(c));
System.out.println("Move car " + ¢ + " from input track "
+ "to holding track " + bestTrack);
// update smallestCar and itsTrack if needed
if (¢ < smallestCar)
{
smallestCar = c;
itsTrack = bestTrack;
}
return true;
}

Program 9.12 The method RailroadWithStacks.putInHoldingTrack

330 Chapter 9 Stacks

Complexity

For the time complexity of railroad (Program 9.10), we first observe that both
outputFromHoldingTrack and putInHoldingTrack have complexity O(number-
0fTracks). Since at most number0fCars-1 cars can be output from the while
loop of railroad and at most number0fCars-1 put into holding tracks from the
else clause, the total time spent in methods outputFromHoldingTrack and put-
InHoldingTrack is O(number0fTracks * number0fCars). The remainder of the
for loop of railroad takes ©(numberOfCars) time. So the overall complexity of
Program 9.10 is O(numberOfTracks % number0fCars). This complexity can be
reduced to O(numberOfCarsx*log(number0fTracks)) by using a balanced binary
search tree (such as an AVL tree) to store the labels of the cars at the top of the
holding tracks (see Chapter 16). When a balanced binary search tree is used in this
way, methods outputFromHoldingTrack and putInHoldingTrack can be rewritten
to have complexity O(log(number0fTracks)). The use of a balanced binary search
tree for this application is recommended only when number0fTracks is large.

9.5.4 Switch Box Routing
Problem Description

In the switch box routing problem, we are given a rectangular routing region with
pins at the periphery. Pairs of pins are to be connected together by laying a metal
path between the two pins. This path is confined to the routing region and is called
a wire. If two wires intersect, an electrical short occurs. So wire intersections are
forbidden. Each pair of pins that is to be connected is called a net. We are to de-
termine whether the given nets can be routed with no intersections. Figure 9.8(a)
shows a sample switch box instance with eight pins and four nets. The nets are (1,
4), (2, 3), (5, 6), and (7, 8). The wire routing of Figure 9.8(b) has a pair of intersect-
ing wires (those for nets (1, 4) and (2, 3)), whereas the routing of Figure 9.8(c) has
no intersections. Since the four nets can be routed with no intersections, the given
switch box is a routable switch box. (In practice, we also require a minimum
separation between adjacent wires. We ignore this additional requirement here.)
Our problem is to input a switch box routing instance and determine whether it is
routable.

While the wires in both Figures 9.8(b) and (c) are composed of straight line
segments parallel to the - and y-axes, segments that are not parallel to these axes
as well as segments that are not straight lines are permissible.

Solution Strategy

To solve the switch box routing problem, we note that when a net is connected,
the wire partitions the routing region into two regions. The pins that fall on the
boundary of a partition do not depend on the wire path, but only on the pins of the
net that was routed. For instance, when net (1, 4) is routed, we get two regions.

