Backtracking And Branch And Bound

Subset & Permutation Problems

• Subset problem of size n.
 ▪ Nonsystematic search of the space for the answer takes $O(p2^n)$ time, where p is the time needed to evaluate each member of the solution space.

• Permutation problem of size n.
 ▪ Nonsystematic search of the space for the answer takes $O(pn!)$ time, where p is the time needed to evaluate each member of the solution space.

• Backtracking and branch and bound perform a systematic search; often taking much less time than taken by a nonsystematic search.
Tree Organization Of Solution Space

- Set up a tree structure such that the leaves represent members of the solution space.
- For a size n subset problem, this tree structure has 2^n leaves.
- For a size n permutation problem, this tree structure has $n!$ leaves.
- The tree structure is too big to store in memory; it also takes too much time to create the tree structure.
- Portions of the tree structure are created by the backtracking and branch and bound algorithms as needed.

Subset Problem

- Use a full binary tree that has 2^n leaves.
- At level i the members of the solution space are partitioned by their x_i values.
- Members with $x_i = 1$ are in the left subtree.
- Members with $x_i = 0$ are in the right subtree.
- Could exchange roles of left and right subtree.
Subset Tree For \(n = 4 \)

Permutation Problem

- Use a tree that has \(n! \) leaves.
- At level \(i \) the members of the solution space are partitioned by their \(x_i \) values.
- Members (if any) with \(x_i = 1 \) are in the first subtree.
- Members (if any) with \(x_i = 2 \) are in the next subtree.
- And so on.
Permutation Tree For \(n = 3 \)

Backtracking

- Search the solution space tree in a depth-first manner.
- May be done recursively or use a stack to retain the path from the root to the current node in the tree.
- The solution space tree exists only in your mind, not in the computer.
Backtracking Depth-First Search

x₁ = 1
x₂ = 1

x₁ = 0
x₂ = 0

x₂ = 1
x₂ = 0

x₂ = 1
x₂ = 0

Backtracking Depth-First Search
Backtracking Depth-First Search

```
x_1 = 1
x_2 = 1
```

```
x_1 = 0
x_2 = 0
```

```
x_1 = 1
x_2 = 0
```

```
x_1 = 0
x_2 = 0
```

```
x_1 = 1
x_2 = 1
```

```
x_1 = 0
x_2 = 0
```

```
x_1 = 1
x_2 = 0
```

```
x_1 = 0
x_2 = 0
```

```
x_1 = 1
x_2 = 1
```

```
x_1 = 0
x_2 = 0
```

```
x_1 = 1
x_2 = 0
```

```
x_1 = 0
x_2 = 0
```
Backtracking Depth-First Search

\[x_1 = 1 \quad x_1 = 0 \]
\[x_2 = 1 \quad x_2 = 0 \]
\[x_2 = 1 \quad x_2 = 0 \]

\[\text{O}(2^n) \text{ Subset Sum & Bounding Functions} \]
\{10, 5, 2, 1\}, \(c = 14 \)

Each forward and backward move takes \(O(1) \) time.
Bounding Functions

• When a node that represents a subset whose sum equals the desired sum c, terminate.
• When a node that represents a subset whose sum exceeds the desired sum c, backtrack. I.e., do not enter its subtrees, go back to parent node.
• Keep a variable r that gives you the sum of the numbers not yet considered. When you move to a right child, check if current subset sum + $r >= c$. If not, backtrack.

Backtracking

• Space required is O(tree height).
• With effective bounding functions, large instances can often be solved.
• For some problems (e.g., 0/1 knapsack), the answer (or a very good solution) may be found quickly but a lot of additional time is needed to complete the search of the tree.
• Run backtracking for as much time as is feasible and use best solution found up to that time.
Branch And Bound

- Search the tree using a breadth-first search (FIFO branch and bound).
- Search the tree as in a bfs, but replace the FIFO queue with a stack (LIFO branch and bound).
- Replace the FIFO queue with a priority queue (least-cost (or max priority) branch and bound).
 The priority of a node \(p \) in the queue is based on an estimate of the likelihood that the answer node is in the subtree whose root is \(p \).

Branch And Bound

- Space required is \(O(\text{number of leaves}) \).
- For some problems, solutions are at different levels of the tree (e.g., 16 puzzle).

```
4 14 1
13 2 3 12
6 11 5 10
9 8 7 15
```

```
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15
```
Branch And Bound

- FIFO branch and bound finds solution closest to root.
- Backtracking may never find a solution because tree depth is infinite (unless repeating configurations are eliminated).
- Least-cost branch and bound directs the search to parts of the space most likely to contain the answer. So it could perform better than backtracking.