Single-Source All-Destinations Shortest Paths With Negative Costs

- Directed weighted graph.
- Edges may have negative cost.
- No cycle whose cost is < 0.
- Find a shortest path from a given source vertex \(s \) to each of the \(n \) vertices of the digraph.

Bellman-Ford Algorithm

- Single-source all-destinations shortest paths in digraphs with negative-cost edges.
- Uses dynamic programming.
- Runs in \(O(n^3) \) time when adjacency matrices are used.
- Runs in \(O(ne) \) time when adjacency lists are used.

Decision Sequence

- To construct a shortest path from the source to vertex \(v \), decide on the max number of edges on the path and on the vertex that comes just before \(v \).
- Since the digraph has no cycle whose length is < 0, we may limit ourselves to the discovery of cycle-free (acyclic) shortest paths.
- A path that has no cycle has at most \(n-1 \) edges.

Problem State

- Problem state is given by \((u,k)\), where \(u \) is the destination vertex and \(k \) is the max number of edges.
- \((v,n-1)\) is the state in which we want the shortest path to \(v \) that has at most \(n-1 \) edges.

Cost Function

- Let \(d(v,k) \) be the length of a shortest path from the source vertex to vertex \(v \) under the constraint that the path has at most \(k \) edges.
- \(d(v,n-1) \) is the length of a shortest unconstrained path from the source vertex to vertex \(v \).
- We want to determine \(d(v,n-1) \) for every vertex \(v \).
Value Of $d(*,0)$

- $d(v,0)$ is the length of a shortest path from the source vertex to vertex v under the constraint that the path has at most 0 edges.
 - $d(s,0) = 0.$
 - $d(v,0) = \infty$ for $v \neq s$.

Recurrence For $d(*,k)$, $k > 0$

- $d(v,k)$ is the length of a shortest path from the source vertex to vertex v under the constraint that the path has at most k edges.
 - If this constrained shortest path goes through no edge, then $d(v,k) = d(v,0)$.
 - If this constrained shortest path goes through at least one edge, then let w be the vertex just before v on this shortest path (note that w may be s).
 - We see that the path from the source to w must be a shortest path from the source vertex to vertex w under the constraint that this path has at most $k-1$ edges.
 - $d(v,k) = d(w,k-1) + \text{length of edge } (w,v)$.

Pseudocode To Compute $d(*,*)$

```plaintext
// initialize $d(*,0)$
d(s,0) = 0;
d(v,0) = \infty, v \neq s;
// compute $d(*,k)$, $0 < k < n$
for (int k = 1; k < n; k++)
{
    d(v,k) = d(v,0), 1 <= v <= n;
    for (each edge $(u,v)$)
        d(v,k) = min(d(v,k), d(u,k-1) + cost(u,v))
}
```

Complexity

- $\Theta(n)$ to initialize $d(*,0)$.
- $\Theta(n^2)$ to compute $d(*,k)$ for each $k > 0$ when adjacency matrix is used.
- $\Theta(e)$ to compute $d(*,k)$ for each $k > 0$ when adjacency lasts are used.
- Overall time is $\Theta(n^3)$ when adjacency matrix is used.
- Overall time is $\Theta(ne)$ when adjacency lists are used.
- $\Theta(n^2)$ space needed for $d(*,*)$.

$p(\ast, \ast)$

• Let $p(v,k)$ be the vertex just before vertex v on the shortest path for $d(v,k)$.
• $p(v,0)$ is undefined.
• Used to construct shortest paths.

Example

Source vertex is 1.

Observations

• $d(v,k) = \min\{d(v,0), \min\{d(w,k-1) + \text{length of edge } (w,v)\}\}$
• $d(s,k) = 0$ for all k.
• If $d(v,k) = d(v,k-1)$ for all v, then $d(v,j) = d(v,k-1)$ for all $j \geq k-1$ and all v.
• If we stop computing as soon as we have a $d(\ast,k)$ that is identical to $d(\ast,k-1)$ the run time becomes
 • $O(n^3)$ when adjacency matrix is used.
 • $O(ne)$ when adjacency lists are used.
Observations

- The computation may be done in-place.
 \[d(v) = \min\{d(v), \min\{d(w) + \text{length of edge } (w,v)\}\} \]
 instead of
 \[d(v,k) = \min\{d(v,0),\min\{d(w,k-1) + \text{length of edge } (w,v)\}\} \]

- Following iteration \(k \), \(d(v,k+1) \leq d(v) \leq d(v,k) \)

- On termination \(d(v) = d(v,n-1) \).

- Space requirement becomes \(O(n) \) for \(d(*) \) and \(p(*) \).