Single-Source All-Destinations Shortest Paths With Negative Costs

- Directed weighted graph.
- Edges may have negative cost.
- No cycle whose cost is \(< 0 \).
- Find a shortest path from a given source vertex \(s \) to each of the \(n \) vertices of the digraph.

Bellman-Ford Algorithm

- Single-source all-destinations shortest paths in digraphs with negative-cost edges.
- Uses dynamic programming.
- Runs in \(O(n^3) \) time when adjacency matrices are used.
- Runs in \(O(ne) \) time when adjacency lists are used.

Single-Source All-Destinations Shortest Paths With Negative Costs

- Dijkstra’s \(O(n^3) \) single-source greedy algorithm doesn’t work when there are negative-cost edges.
- Floyd’s \(\Theta(n^3) \) all-pairs dynamic-programming algorithm does work in this case.

Decision Sequence

- To construct a shortest path from the source to vertex \(v \), decide on the max number of edges on the path and on the vertex that comes just before \(v \).
- Since the digraph has no cycle whose length is \(< 0 \), we may limit ourselves to the discovery of cycle-free (acyclic) shortest paths.
- A path that has no cycle has at most \(n-1 \) edges.
Problem State

- Problem state is given by \((u,k)\), where \(u\) is the destination vertex and \(k\) is the max number of edges.
- \((v,n-1)\) is the state in which we want the shortest path to \(v\) that has at most \(n-1\) edges.

Cost Function

- Let \(d(v,k)\) be the length of a shortest path from the source vertex to vertex \(v\) under the constraint that the path has at most \(k\) edges.
- \(d(v,n-1)\) is the length of a shortest unconstrained path from the source vertex to vertex \(v\).
- We want to determine \(d(v,n-1)\) for every vertex \(v\).

Value Of \(d(*,0)\)

- \(d(v,0)\) is the length of a shortest path from the source vertex to vertex \(v\) under the constraint that the path has at most \(0\) edges.
- \(d(s,0) = 0\).
- \(d(v,0) = \infty\) for \(v \neq s\).

Recurrence For \(d(*,k), k > 0\)

- \(d(v,k)\) is the length of a shortest path from the source vertex to vertex \(v\) under the constraint that the path has at most \(k\) edges.
- If this constrained shortest path goes through no edge, then \(d(v,k) = d(v,0)\).
Recurrence For $d(*,k)$, $k > 0$

- If this constrained shortest path goes through at least one edge, then let w be the vertex just before v on this shortest path (note that w may be s).

- We see that the path from the source to w must be a shortest path from the source vertex to vertex w under the constraint that this path has at most $k-1$ edges.
- $d(v,k) = d(w,k-1) + \text{length of edge } (w,v)$.

- We do not know what w is.
- We can assert

$$d(v,k) = \min\{d(w,k-1) + \text{length of edge } (w,v)\},$$

where the \min is taken over all w such that (w,v) is an edge of the digraph.

- Combining the two cases considered yields:

$$d(v,k) = \min\{d(v,0), \min\{d(w,k-1) + \text{length of edge } (w,v)\}\}.$$
Let \(p(v,k) \) be the vertex just before vertex \(v \) on the shortest path for \(d(v,k) \).

- \(p(v,0) \) is undefined.
- Used to construct shortest paths.

Example

Source vertex is 1.

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 7 & 7 & 16 & 10 & 8 \\
1 & 3 & 7 & 10 & 8 & 4 \\
2 & 7 & 10 & 8 & 6 & 2 \\
3 & 6 & 2 & 10 & 8 & 4 \\
4 & 6 & 2 & 10 & 8 & 4 \\
\end{array}
\]
Shortest Path From 1 To 5

Observations

- \(d(v, k) = \min\{d(v, 0), \min\{d(w, k-1) + \text{length of edge } (w, v)\}\}\)
- \(d(s, k) = 0\) for all \(k\).
- If \(d(v, k) = d(v, k-1)\) for all \(v\), then \(d(v, j) = d(v, k-1)\), for all \(j \geq k-1\) and all \(v\).
- If we stop computing as soon as we have a \(d(*)\) that is identical to \(d(^*, k-1)\) the run time becomes
 - \(O(n^2)\) when adjacency matrix is used.
 - \(O(ne)\) when adjacency lists are used.

Observations

- The computation may be done in-place.
 \(d(v) = \min\{d(v), \min\{d(w) + \text{length of edge } (w, v)\}\}\)
 instead of
 \(d(v, k) = \min\{d(v, 0), \min\{d(w, k-1) + \text{length of edge } (w, v)\}\}\)
- Following iteration \(k\), \(d(v, k+1) \leq d(v) \leq d(v, k)\)
- On termination \(d(v) = d(v, n-1)\).
- Space requirement becomes \(O(n)\) for \(d(*)\) and \(p(*)\).