All-Pairs Shortest Paths

- Given an n-vertex directed weighted graph, find a shortest path from vertex i to vertex j for each of the n^2 vertex pairs (i, j).

Dijkstra’s Single Source Algorithm

- Use Dijkstra’s algorithm n times, once with each of the n vertices as the source vertex.
Performance

- Time complexity is \(O(n^3) \) time.
- Works only when no edge has a cost < 0.

Dynamic Programming Solution

- Time complexity is \(\Theta(n^3) \) time.
- Works so long as there is no cycle whose length is < 0.
- When there is a cycle whose length is < 0, some shortest paths aren’t finite.
 - If vertex 1 is on a cycle whose length is -2, each time you go around this cycle once you get a 1 to 1 path that is 2 units shorter than the previous one.
- Simpler to code, smaller overheads.
- Known as Floyd’s shortest paths algorithm.
Decision Sequence

- First decide the highest intermediate vertex (i.e., largest vertex number) on the shortest path from i to j.
- If the shortest path is $i, 2, 6, 3, 8, 5, 7, j$ the first decision is that vertex 8 is an intermediate vertex on the shortest path and no intermediate vertex is larger than 8.
- Then decide the highest intermediate vertex on the path from i to 8, and so on.

Problem State

- (i,j,k) denotes the problem of finding the shortest path from vertex i to vertex j that has no intermediate vertex larger than k.
- (i,j,n) denotes the problem of finding the shortest path from vertex i to vertex j (with no restrictions on intermediate vertices).
Cost Function

- Let \(c(i,j,k) \) be the length of a shortest path from vertex \(i \) to vertex \(j \) that has no intermediate vertex larger than \(k \).

\[
\begin{array}{c}
\text{c(i,j,n)} \\
\end{array}
\]

- \(c(i,j,n) \) is the length of a shortest path from vertex \(i \) to vertex \(j \) that has no intermediate vertex larger than \(n \).
- No vertex is larger than \(n \).
- Therefore, \(c(i,j,n) \) is the length of a shortest path from vertex \(i \) to vertex \(j \).
c(i,j,0)

- $c(i,j,0)$ is the length of a shortest path from vertex i to vertex j that has no intermediate vertex larger than 0.
 - Every vertex is larger than 0.
 - Therefore, $c(i,j,0)$ is the length of a single-edge path from vertex i to vertex j.

Recurrence For $c(i,j,k)$, $k > 0$

- The shortest path from vertex i to vertex j that has no intermediate vertex larger than k may or may not go through vertex k.
- If this shortest path does not go through vertex k, the largest permissible intermediate vertex is $k-1$. So the path length is $c(i,j,k-1)$.
Recurrence For $c(i, j, k)$, $k > 0$

- Shortest path goes through vertex k.

- We may assume that vertex k is not repeated because no cycle has negative length.
- Largest permissible intermediate vertex on i to k and k to j paths is $k-1$.

Recurrence For $c(i, j, k)$, $k > 0$

- i to k path must be a shortest i to k path that goes through no vertex larger than $k-1$.
- If not, replace current i to k path with a shorter i to k path to get an even shorter i to j path.
Recurrence For $c(i,j,k)$, $k > 0$

- Similarly, k to j path must be a shortest k to j path that goes through no vertex larger than $k-1$.
- Therefore, length of i to k path is $c(i,k,k-1)$, and length of k to j path is $c(k,j,k-1)$.
- So, $c(i,j,k) = c(i,k,k-1) + c(k,j,k-1)$.

Combining the two equations for $c(i,j,k)$, we get $c(i,j,k) = \min\{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)\}$.
- We may compute the $c(i,j,k)$s in the order $k = 1, 2, 3, \ldots, n$.
Floyd’s Shortest Paths Algorithm

for (int k = 1; k <= n; k++)
 for (int i = 1; i <= n; i++)
 for (int j = 1; j <= n; j++)
 c(i,j,k) = min{c(i,j,k-1),
 c(i,k,k-1) + c(k,j,k-1)};

- Time complexity is $O(n^3)$.
- More precisely $\Theta(n^3)$.
- $\Theta(n^3)$ space is needed for $c(*,*,*)$.

Space Reduction

- $c(i,j,k) = \min\{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)\}$
- When neither i nor j equals k, $c(i,j,k-1)$ is used only in the computation of $c(i,j,k)$.
- So $c(i,j,k)$ can overwrite $c(i,j,k-1)$.
Space Reduction

- \(c(i,j,k) = \min\{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)\} \)

- When \(i \) equals \(k \), \(c(i,j,k-1) \) equals \(c(i,j,k) \).
 - \(c(k,j,k) = \min\{c(k,j,k-1), c(k,k,k-1) + c(k,j,k-1)\} \)
 - \(= \min\{c(k,j,k-1), 0 + c(k,j,k-1)\} \)
 - \(= c(k,j,k-1) \)

- So, when \(i \) equals \(k \), \(c(i,j,k) \) can overwrite \(c(i,j,k-1) \).

- Similarly when \(j \) equals \(k \), \(c(i,j,k) \) can overwrite \(c(i,j,k-1) \).

- So, in all cases \(c(i,j,k) \) can overwrite \(c(i,j,k-1) \).

Floyd’s Shortest Paths Algorithm

```c
for (int k = 1; k <= n; k++)
  for (int i = 1; i <= n; i++)
    for (int j = 1; j <= n; j++)
      c(i,j) = \min\{c(i,j), c(i,k) + c(k,j)\};
```

- Initially, \(c(i,j) = c(i,j,0) \).
- Upon termination, \(c(i,j) = c(i,j,n) \).
- Time complexity is \(\Theta(n^3) \).
- \(\Theta(n^2) \) space is needed for \(c(*,*) \).
Building The Shortest Paths

- Let $kay(i,j)$ be the largest vertex on the shortest path from i to j.
- Initially, $kay(i,j) = 0$ (shortest path has no intermediate vertex).

```cpp
for (int k = 1; k <= n; k++)
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            if (c(i,j) > c(i,k) + c(k,j))
                {kay(i,j) = k; c(i,j) = c(i,k) + c(k,j);}
```

Example

```
Initial Cost Matrix
c(*,*) = c(*,*,0)
```
Final Cost Matrix $c(*,*) = c(*,*,n)$

\[
\begin{array}{cccccccc}
0 & 6 & 5 & 1 & 10 & 13 & 14 & 11 \\
10 & 0 & 15 & 8 & 4 & 7 & 8 & 5 \\
12 & 7 & 0 & 13 & 9 & 9 & 10 & 10 \\
15 & 5 & 20 & 0 & 9 & 12 & 13 & 10 \\
6 & 9 & 11 & 4 & 0 & 3 & 4 & 1 \\
3 & 9 & 8 & 4 & 13 & 0 & 1 & 5 \\
2 & 8 & 7 & 3 & 12 & 6 & 0 & 4 \\
5 & 11 & 10 & 6 & 15 & 2 & 3 & 0 \\
\end{array}
\]

kay Matrix

\[
\begin{array}{cccccccc}
0 & 4 & 0 & 0 & 4 & 8 & 8 & 5 \\
8 & 0 & 8 & 5 & 0 & 8 & 8 & 5 \\
7 & 0 & 0 & 5 & 0 & 0 & 6 & 5 \\
8 & 0 & 8 & 0 & 2 & 8 & 8 & 5 \\
8 & 4 & 8 & 0 & 0 & 8 & 8 & 0 \\
7 & 7 & 7 & 7 & 7 & 0 & 0 & 7 \\
0 & 4 & 1 & 1 & 4 & 8 & 0 & 0 \\
7 & 7 & 7 & 7 & 7 & 0 & 6 & 0 \\
\end{array}
\]
Shortest path from 1 to 7. Path length is 14.

Build A Shortest Path

0 4 0 0 4 8 8 5 8 0 8 5 0 8 8 5 7 0 0 5 0 0 6 5 8 0 8 0 2 8 8 5 8 4 8 0 0 8 8 0 7 7 7 7 7 0 0 7 0 4 1 1 4 8 0 0 7 7 7 7 7 0 6 0

• The path is 1 4 2 5 8 6 7.
 • kay(1,7) = 8
 1 → 8 → 7
 • kay(1,8) = 5
 1 → 5 → 8 → 7
 • kay(1,5) = 4
 1 → 4 → 5 → 8 → 7
Build A Shortest Path

\[
\begin{array}{cccccccc}
0 & 4 & 0 & 0 & 4 & 8 & 8 & 5 \\
8 & 0 & 8 & 5 & 0 & 8 & 8 & 5 \\
7 & 0 & 0 & 5 & 0 & 0 & 6 & 5 \\
8 & 0 & 8 & 0 & 2 & 8 & 8 & 5 \\
8 & 4 & 8 & 0 & 0 & 8 & 8 & 0 \\
7 & 7 & 7 & 7 & 7 & 0 & 0 & 7 \\
0 & 4 & 1 & 1 & 4 & 8 & 0 & 0 \\
7 & 7 & 7 & 7 & 0 & 6 & 0 & 0 \\
\end{array}
\]

- The path is \(1 \rightarrow 4 \rightarrow 5 \rightarrow 8 \rightarrow 7\).
- \(k_{ay}(1,4) = 0\)
- \(k_{ay}(4,5) = 2\)
- \(k_{ay}(4,2) = 0\)

Build A Shortest Path

\[
\begin{array}{cccccccc}
0 & 4 & 0 & 0 & 4 & 8 & 8 & 5 \\
8 & 0 & 8 & 5 & 0 & 8 & 8 & 5 \\
7 & 0 & 0 & 5 & 0 & 0 & 6 & 5 \\
8 & 0 & 8 & 0 & 2 & 8 & 8 & 5 \\
8 & 4 & 8 & 0 & 0 & 8 & 8 & 0 \\
7 & 7 & 7 & 7 & 7 & 0 & 0 & 7 \\
0 & 4 & 1 & 1 & 4 & 8 & 0 & 0 \\
7 & 7 & 7 & 7 & 0 & 6 & 0 & 0 \\
\end{array}
\]

- The path is \(1 \rightarrow 4 \rightarrow 5 \rightarrow 8 \rightarrow 7\).
- \(k_{ay}(2,5) = 0\)
- \(k_{ay}(5,8) = 0\)
- \(k_{ay}(8,7) = 6\)
Build A Shortest Path

0 4 0 0 4 8 8 5
8 0 8 5 0 8 8 5
7 0 0 5 0 0 6 5
8 0 8 0 2 8 8 5
8 4 8 0 0 8 8 0
7 7 7 7 7 0 0 7
0 4 1 1 4 8 0 0
7 7 7 7 7 0 6 0

• The path is 1 4 2 5 8 6 7.
 1 4 2 5 8 → 6 → 7

• kay(8,6) = 0
 1 4 2 5 8 6 → 7

• kay(6,7) = 0
 1 4 2 5 8 6 7

Output A Shortest Path

public static void outputPath(int i, int j)
{
 // does not output first vertex (i) on path
 if (i == j) return;
 if (kay[i][j] == 0) // no intermediate vertices on path
 System.out.print(j + " ");
 else { // kay[i][j] is an intermediate vertex on the path
 outputPath(i, kay[i][j]);
 outputPath(kay[i][j], j);
 }
}
Time Complexity Of outputPath

$O(\text{number of vertices on shortest path})$