Matrix Multiplication Chains
- Determine the best way to compute the matrix product $M_1 \times M_2 \times M_3 \times \ldots \times M_q$.
- Let the dimensions of M_i be $r_i \times r_{i+1}$.
- $q-1$ matrix multiplications are to be done.
- Decide the matrices involved in each of these multiplications.

Decision Sequence
- $M_1 \times M_2 \times M_3 \times \ldots \times M_q$
- Determine the $q-1$ matrix products in reverse order.
 - What is the last multiplication?
 - What is the next to last multiplication?
 - And so on.

Problem State
- $M_1 \times M_2 \times M_3 \times \ldots \times M_q$
- The matrices involved in each multiplication are a contiguous subset of the given q matrices.
- The problem state is given by a set of pairs of the form (i, j), $i \leq j$.
 - The pair (i, j) denotes a problem in which the matrix product $M_i \times M_{i+1} \times \ldots \times M_j$ is to be computed.
 - The initial state is $(1, q)$.
- If the last matrix product is $(M_{k-1} \times M_k \times M_{k+1} \times \ldots \times M_q)$, then the state becomes $(1, k, (k+1, q))$.

Verify Principle Of Optimality
- Let $M_{ij} = M_i \times M_{i+1} \times \ldots \times M_j$, $i \leq j$.
- Suppose that the last multiplication in the best way to compute M_{ij} is $M_k \times M_{k+1} \times \ldots \times M_p$, $i \leq k < j$.
- Irrespective of what k is, a best computation of M_{ij} in which the last product is $M_k \times M_{k+1} \times \ldots \times M_p$ has the property that M_k and M_{k+1} are computed in the best possible way.
- So the principle of optimality holds and dynamic programming may be applied.

Recurrence Equations
- Let $c(i, j)$ be the cost of an optimal (best) way to compute M_{ij}, $i \leq j$.
- $c(1, q)$ is the cost of the best way to multiply the given q matrices.
- Let $kay(i, j) = k$ be such that the last product in the optimal computation of M_{ij} is $M_k \times M_{k+1} \times \ldots \times M_j$.
- $c(i, j) = 0$, $1 \leq i \leq q$. ($M_q = M_q$)
- $c(i, i+1) = r_{i+1} r_{i+2}$, $1 \leq i < q$. ($M_{i+1} = M_i \times M_{i+1}$)
- $kay(i, i+1) = i$.

c(i, i+s), 1 < s < q
- The last multiplication in the best way to compute $M_{i,i+s}$ is $M_k \times M_{k+1} \times \ldots \times M_p$, $i \leq k < i+s$.
- If we knew k, we could claim:
 $$c(i, i+s) = c(i, k) + c(k+1, i+s) + r_k r_{i+s}$$
- Since $i \leq k < i+s$, we can claim
 $$c(i, i+s) = \min\{c(i, k) + c(k+1, i+s) + r_k r_{i+s}\}$$
 where the min is taken over $i \leq k < i+s$.
- $kay(i, i+s)$ is the k that yields above min.
Recurrence Equations

- \(c(i,i+s) = \min_{i \leq k < i+s} \{ c(i,k) + c(k+1,i+s) + r_{i,k+1;r_{k+1,i+s}} \} \)
- \(c(*) \) terms on right side involve fewer matrices than does the \(c(*) \) term on the left side.
- So compute in the order \(s = 2, 3, \ldots, q-1 \).

Recursive Implementation

- See text for recursive codes.
- Code that does not avoid recomputation of already computed \(c(i,j) \)s runs in \(\Omega(2^q) \) time.
- Code that does not recompute already computed \(c(i,j) \)s runs in \(O(q^3) \) time.
- Implement nonrecursively for best worst-case efficiency.

Example

- \(q = 4 \), \((10 \times 1) \ast (1 \times 10) \ast (10 \times 1) \ast (1 \times 10)\)
- \(r = [r_1, r_2, r_3, r_4, r_5] = [10, 1, 10, 1, 10] \)

s = 0

\(c(i,i) \) and \(\text{kay}(i,i) \), \(1 \leq i \leq 4 \) are to be computed.

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & & & \\
3 & & & \\
4 & & & \\
\end{array}
\]

\[
\begin{array}{cccc}
c(i,j), i \leq j & & & \\
\text{kay}(i,j), i \leq j & & & \\
\end{array}
\]

s = 1

\(c(i,i+1) \) and \(\text{kay}(i,i+1) \), \(1 \leq i \leq 3 \) are to be computed.

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & & & \\
3 & & & \\
4 & & & \\
\end{array}
\]

\[
\begin{array}{cccc}
c(i,j), i \leq j & & & \\
\text{kay}(i,j), i \leq j & & & \\
\end{array}
\]

s = 1

\(c(i,i+1) = r_ir_{i+1}, 1 \leq i \leq q, (M_{i+1} = M_i \times M_{i+1}) \)
- \(\text{kay}(i,i+1) = i \).
- \(r = [r_1, r_2, r_3, r_4] = [10, 1, 10, 10] \)
\[s = 2 \]

- \(c(i,i+2) = \min\{c(i,i) + c(i+1,i+2) + r_{i+1,i+3}, \]
 \(c(i,i+1) + c(i+2,i+2) + r_{i+1,i+3}\} \)
- \(r = [r_1,r_2,r_3,r_4,r_5] = [10, 1, 10, 1, 10] \)

\[s = 2 \]

- \(c(1,3) = \min\{c(1,1) + c(2,3) + r_1, \]
 \(c(1,2) + c(3,3) + r_1\} \)
- \(r = [r_1,r_2,r_3,r_4,r_5] = [10, 1, 10, 1, 10] \)
- \(c(1,3) = \min\{0 + 10 + 10, 100 + 0 + 100\} \)

\[s = 2 \]

- \(c(2,4) = \min\{c(2,2) + c(3,4) + r_3, \]
 \(c(2,3) + c(4,4) + r_3\} \)
- \(r = [r_1,r_2,r_3,r_4,r_5] = [10, 1, 10, 1, 10] \)
- \(c(2,4) = \min\{0 + 100 + 100, 10 + 0 + 10\} \)

\[s = 3 \]

- \(c(1,4) = \min\{c(1,1) + c(2,4) + r_1, \]
 \(c(1,2) + c(3,4) + r_1, c(1,3) + c(4,4) + r_1\} \)
- \(r = [r_1,r_2,r_3,r_4,r_5] = [10, 1, 10, 1, 10] \)
- \(c(1,4) = \min\{0+20+100, 100+100+1000, 20+0+100\} \)

Determine The Best Way To Compute \(M_{14} \)
- \(\text{kay}(1,4) = 1 \).
- So the last multiplication is \(M_{14} = M_{11} \times M_{24} \).
- \(M_{11} \) involves a single matrix and no multiply.
- Find best way to compute \(M_{24} \).

Determine The Best Way To Compute \(M_{24} \)
- \(\text{kay}(2,4) = 3 \).
- So the last multiplication is \(M_{24} = M_{23} \times M_{44} \).
- \(M_{23} = M_{22} \times M_{33} \).
- \(M_{44} \) involves a single matrix and no multiply.
The Best Way To Compute M_{14}

- The multiplications (in reverse order) are:
 - $M_{14} = M_{11} \times M_{24}$
 - $M_{24} = M_{23} \times M_{44}$
 - $M_{23} = M_{22} \times M_{33}$

Time Complexity

- $O(q^3) c(i,j)$ values are to be computed, where q is the number of matrices.
- $c(i,i+s) = \min_{1 \leq k < i+s} (c(i,k) + c(k+1,i+s) + r_{i+k_1}r_{i+s+1})$.
- Each $c(i,j)$ is the min of $O(q)$ terms.
- Each of these terms is computed in $O(1)$ time.
- So all $c(i,j)$ are computed in $O(q^3)$ time.

The traceback takes $O(1)$ time to determine each matrix product that is to be done.
- $q-1$ products are to be done.
- Traceback time is $O(q)$.