Matrix Multiplication Chains

• Determine the best way to compute the matrix product $M_1 \times M_2 \times M_3 \times \ldots \times M_q$.
• Let the dimensions of M_i be $r_i \times r_{i+1}$.
• $q-1$ matrix multiplications are to be done.
• Decide the matrices involved in each of these multiplications.

Decision Sequence

• $M_1 \times M_2 \times M_3 \times \ldots \times M_q$
• Determine the $q-1$ matrix products in reverse order.
 • What is the last multiplication?
 • What is the next to last multiplication?
 • And so on.
Problem State

- $M_1 \times M_2 \times M_3 \times \ldots \times M_q$
- The matrices involved in each multiplication are a contiguous subset of the given q matrices.
- The problem state is given by a set of pairs of the form (i, j), $i \leq j$.
 - The pair (i, j) denotes a problem in which the matrix product $M_i \times M_{i+1} \times \ldots \times M_j$ is to be computed.
 - The initial state is $(1, q)$.
 - If the last matrix product is $(M_1 \times M_2 \times \ldots \times M_k) \times (M_{k+1} \times M_{k+2} \times \ldots \times M_q)$, the state becomes $\{(1, k), (k+1, q)\}$.

Verify Principle Of Optimality

- Let $M_{ij} = M_i \times M_{i+1} \times \ldots \times M_j$, $i \leq j$.
- Suppose that the last multiplication in the best way to compute M_{ij} is $M_{ik} \times M_{k+1,j}$ for some k, $i \leq k < j$.
- Irrespective of what k is, a best computation of M_{ij} in which the last product is $M_{ik} \times M_{k+1,j}$ has the property that M_{ik} and $M_{k+1,j}$ are computed in the best possible way.
- So the principle of optimality holds and dynamic programming may be applied.
Recurrence Equations

- Let $c(i,j)$ be the cost of an optimal (best) way to compute M_{ij}, $i \leq j$.
- $c(1,q)$ is the cost of the best way to multiply the given q matrices.
- Let $kay(i,j) = k$ be such that the last product in the optimal computation of M_{ij} is $M_{ik} \times M_{k+1,j}$.
- $c(i,i) = 0$, $1 \leq i \leq q$. ($M_{ii} = M_i$)
- $c(i,i+1) = r_ir_{i+1}r_{i+2}$, $1 \leq i < q$. ($M_{ii+1} = M_i \times M_{i+1}$)
- $kay(i,i+1) = i$.

$c(i, i+s)$, $1 < s < q$

- The last multiplication in the best way to compute $M_{i,i+s}$ is $M_{ik} \times M_{k+1,i+s}$ for some k, $i \leq k < i+s$.
- If we knew k, we could claim:
 $$c(i,i+s) = c(i,k) + c(k+1,i+s) + r_ir_{k+1}r_{i+s+1}$$
- Since $i \leq k < i+s$, we can claim
 $$c(i,i+s) = \min\{c(i,k) + c(k+1,i+s) + r_ir_{k+1}r_{i+s+1}\},$$
 where the min is taken over $i \leq k < i+s$.
- $kay(i,i+s)$ is the k that yields above min.
Recurrence Equations

• \(c(i,i+s) = \min_{i \leq k < i+s} \{ c(i,k) + c(k+1,i+s) + r_ir_{k+1}r_{i+s+1} \} \)

• \(c(\ast,\ast) \) terms on right side involve fewer matrices than does the \(c(\ast,\ast) \) term on the left side.

• So compute in the order \(s = 2, 3, \ldots, q-1 \).

Recursive Implementation

• See text for recursive codes.

• Code that does not avoid recomputation of already computed \(c(i,j) \)s runs in \(\Omega(2^q) \) time.

• Code that does not recompute already computed \(c(i,j) \)s runs in \(O(q^3) \) time.

• Implement nonrecursively for best worst-case efficiency.
Example

- \(q = 4, \ (10 \times 1) \ast (1 \times 10) \ast (10 \times 1) \ast (1 \times 10) \)
- \(r = [r_1, r_2, r_3, r_4, r_5] = [10, 1, 10, 1, 10] \)

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & & & \\
2 & & & \\
3 & & & \\
4 & & & \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{array}
\]

c(i,j), i \leq j \quad \text{and} \quad \text{kay(i,j), i} \leq j

s = 0

c(i,i) \text{ and kay(i,i) , } 1 \leq i \leq 4 \text{ are to be computed.}
\(s = 1 \)

c(i,i+1) and kay(i,i+1), 1 \leq i \leq 3 are to be computed.

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\quad
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

\(c(i,j), i \leq j \quad \text{and} \quad kay(i,j), i \leq j \)

\(s = 1 \)

- \(c(i,i+1) = r_i r_{i+1} r_{i+2}, 1 \leq i < q. \ (M_{i+1} = M_i \times M_{i+1}) \)
- \(kay(i,i+1) = i. \)
- \(r = [r_1, r_2, r_3, r_4, r_5] = [10, 1, 10, 1, 10] \)

\[
\begin{array}{cccc}
0 & 100 & 0 & 0 \\
0 & 10 & 0 & 0 \\
0 & 100 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\quad
\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

\(c(i,j), i \leq j \quad \text{and} \quad kay(i,j), i \leq j \)
\(s = 2 \)

- \(c(i,i+2) = \min \{ c(i,i) + c(i+1,i+2) + r_i r_{i+1} r_{i+3}, \\
 c(i,i+1) + c(i+2,i+2) + r_i r_{i+2} r_{i+3} \} \)
- \(r = [r_1, r_2, r_3, r_4, r_5] = [10, 1, 10, 1, 10] \)

\[\begin{array}{cccc}
0 & 100 & 20 & 0 \\
0 & 10 & 100 & 0 \\
0 & 100 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}\]

\(c(i,j), i \leq j \) \quad \text{Kay(i,j), i \leq j}
\(s = 2 \)

- \(c(2,4) = \min\{c(2,2) + c(3,4) + r_2 r_3 r_5, \ c(2,3) + c(4,4) + r_2 r_4 r_5\} \)
- \(r = [r_1, r_2, r_3, r_4, r_5] = [10, 1, 10, 1, 10] \)
- \(c(2,4) = \min\{0 + 100 + 100, 10 + 0 + 10\} \)

\[
\begin{array}{cccc}
0 & 100 & 20 & 120 \\
0 & 10 & 20 & 100 \\
0 & 100 & 0 & 100 \\
0 & 0 & 0 & 0
\end{array}
\]

\(c(i,j), \ i \leq j \)

\(\text{Kay}(i,j), \ i \leq j \)

\[\]

\(s = 3 \)

- \(c(1,4) = \min\{c(1,1) + c(2,4) + r_1 r_2 r_5, \ c(1,2) + c(3,4) + r_1 r_3 r_5, \ c(1,3) + c(4,4) + r_1 r_4 r_5\} \)
- \(r = [r_1, r_2, r_3, r_4, r_5] = [10, 1, 10, 1, 10] \)
- \(c(1,4) = \min\{0+20+100, 100+100+1000, 20+0+100\} \)

\[
\begin{array}{cccc}
0 & 100 & 20 & 120 \\
0 & 10 & 20 & 100 \\
0 & 100 & 0 & 100 \\
0 & 0 & 0 & 0
\end{array}
\]

\(c(i,j), \ i \leq j \)

\(\text{Kay}(i,j), \ i \leq j \)
Determine the best way to compute M_{14}

- $kay(1,4) = 1$.
- So the last multiplication is $M_{14} = M_{11} \times M_{24}$.
- M_{11} involves a single matrix and no multiply.
- Find best way to compute M_{24}.

$$
\begin{array}{cccc}
0 & 100 & 20 & 120 \\
0 & 10 & 20 & \\
0 & 100 & \\
0 & \\
\end{array}
\quad
\begin{array}{cccc}
0 & 1 & 1 & 1 \\
0 & 2 & 3 & \\
0 & 3 & \\
0 & \\
\end{array}
$$

c(i,j), i \leq j
kay(i,j), i \leq j

Determine the best way to compute M_{24}

- $kay(2,4) = 3$.
- So the last multiplication is $M_{24} = M_{23} \times M_{44}$.
- $M_{23} = M_{22} \times M_{33}$.
- M_{44} involves a single matrix and no multiply.

$$
\begin{array}{cccc}
0 & 100 & 20 & 120 \\
0 & 10 & 20 & \\
0 & 100 & \\
0 & \\
\end{array}
\quad
\begin{array}{cccc}
0 & 1 & 1 & 1 \\
0 & 2 & 3 & \\
0 & 3 & \\
0 & \\
\end{array}
$$

c(i,j), i \leq j
kay(i,j), i \leq j
The Best Way To Compute M_{14}

- The multiplications (in reverse order) are:
 - $M_{14} = M_{11} \times M_{24}$
 - $M_{24} = M_{23} \times M_{44}$
 - $M_{23} = M_{22} \times M_{33}$

Time Complexity

- $O(q^2)$ $c(i,j)$ values are to be computed, where q is the number of matrices.
- $c(i,i+s) = \min_{i \leq k < i+s} \{c(i,k) + c(k+1,i+s) + r_i r_{k+1} r_{i+s+1}\}$.
- Each $c(i,j)$ is the min of $O(q)$ terms.
- Each of these terms is computed in $O(1)$ time.
- So all $c(i,j)$ are computed in $O(q^3)$ time.
Time Complexity

The traceback takes $O(1)$ time to determine each matrix product that is to be done.

- $q-1$ products are to be done.
- Traceback time is $O(q)$.