Dynamic Programming

- Sequence of decisions.
- Problem state.
- Principle of optimality.
- Dynamic Programming Recurrence Equations.
- Solution of recurrence equations.

0/1 Knapsack Problem

Let \(x_i = 1 \) when item \(i \) is selected and let \(x_i = 0 \) when item \(i \) is not selected.

\[
\text{maximize } \sum_{i=1}^{n} p_i x_i \\
\text{subject to } \sum_{i=1}^{n} w_i x_i \leq c \\
\text{and } x_i = 0 \text{ or } 1 \text{ for all } i
\]

All profits and weights are positive.

Sequence Of Decisions

- As in the greedy method, the solution to a problem is viewed as the result of a sequence of decisions.
- Unlike the greedy method, decisions are not made in a greedy and binding manner.

0/1 Knapsack Problem

Sequence Of Decisions

- Decide the \(x_i \) values in the order \(x_1, x_2, x_3, \ldots, x_n \).
- Decide the \(x_i \) values in the order \(x_m, x_{m+1}, x_{m+2}, \ldots, x_{n-1} \).
- Decide the \(x_i \) values in the order \(x_1, x_2, x_3, \ldots \).
- Or any other order.

Problem State

- The state of the 0/1 knapsack problem is given by
 - the weights and profits of the available items
 - the capacity of the knapsack

- When a decision on one of the \(x_i \) values is made, the problem state changes.
 - item \(i \) is no longer available
 - the remaining knapsack capacity may be less

Problem State

- Suppose that decisions are made in the order \(x_1, x_2, x_3, \ldots, x_n \).
- The initial state of the problem is described by the pair \((1, c)\).
 - Items 1 through \(n \) are available (the weights, profits and \(n \) are implicit).
 - The available knapsack capacity is \(c \).
- Following the first decision the state becomes one of the following:
 - \((2, c)\) … when the decision is to set \(x_i = 0 \).
 - \((2, c-w_j)\) … when the decision is to set \(x_i = 1 \).
Problem State

- Suppose that decisions are made in the order \(x_1, x_2, \ldots, x_n\).
- The initial state of the problem is described by the pair \((n, c)\).
 - Items 1 through \(n\) are available (the weights, profits and first item index are implicit).
 - The available knapsack capacity is \(c\).
- Following the first decision the state becomes one of the following:
 - \((n-1, c)\) when the decision is to set \(x_n = 0\).
 - \((n-1, c-w_n)\) when the decision is to set \(x_n = 1\).

Principle Of Optimality

- An optimal solution satisfies the following property:
 - No matter what the first decision, the remaining decisions are optimal with respect to the state that results from this decision.
- Dynamic programming may be used only when the principle of optimality holds.

0/1 Knapsack Problem

- Suppose that decisions are made in the order \(x_1, x_2, x_3, \ldots, x_n\).
- Let \(x_1 = a_1, x_2 = a_2, x_3 = a_3, \ldots, x_n = a_n\) be an optimal solution.
- If \(a_1 = 0\), then following the first decision the state is \((2, c)\).
- \(a_2, a_3, \ldots, a_n\) must be an optimal solution to the knapsack instance given by the state \((2, c)\).

x_1 = a_1 = 0

- \(x_1 = a_1 = 0\)

\[
\begin{align*}
\text{maximize} & \quad \sum_{i=2}^{n} p_i x_i \\
\text{subject to} & \quad \sum_{i=2}^{n} w_i x_i \leq c \\
& \quad x_i = 0 \text{ or } 1 \text{ for all } i
\end{align*}
\]

- If not, this instance has a better solution \(b_2, b_3, \ldots, b_n\),

\[
\sum_{i=2}^{n} p_i b_i > \sum_{i=2}^{n} p_i a_i
\]

x_1 = a_1 = 1

- \(x_1 = a_1 = 1\)

- Next, consider the case \(a_1 = 1\). Following the first decision the state is \((2, c-w_1)\).
- \(a_2, a_3, \ldots, a_n\) must be an optimal solution to the knapsack instance given by the state \((2, c-w_1)\).
If not, this instance has a better solution b_2, b_3, \ldots, b_n.

\[
\text{maximize } \sum_{i=2}^{n} p_i x_i \\
\text{subject to } \sum_{i=2}^{n} w_i x_i \leq c - w_1 \\
\text{and } x_i = 0 \text{ or } 1 \text{ for all } i
\]

If not, this instance has a better solution b_2, b_3, \ldots, b_n.

\[
\sum_{i=2}^{n} p_i b_i > \sum_{i=2}^{n} p_i a_i
\]

0/1 Knapsack Problem

- Therefore, no matter what the first decision, the remaining decisions are optimal with respect to the state that results from this decision.
- The principle of optimality holds and dynamic programming may be applied.

Dynamic Programming Recurrence

- Let $f(i, y)$ be the profit value of the optimal solution to the knapsack instance defined by the state (i, y).
 - Items i through n are available.
 - Available capacity is y.
 - For the time being assume that we wish to determine only the value of the best solution.
 - Later we will worry about determining the x_i that yield this maximum value.
 - Under this assumption, our task is to determine $f(1, c)$.

Dynamic Programming Recurrence

- $f(n, y)$ is the value of the optimal solution to the knapsack instance defined by the state (n, y).
 - Only item n is available.
 - Available capacity is y.
 - If $w_n \leq y$, $f(n, y) = p_n$.
 - If $w_n > y$, $f(n, y) = 0$.

Dynamic Programming Recurrence

- Suppose that $i < n$.
- $f(i, y)$ is the value of the optimal solution to the knapsack instance defined by the state (i, y).
 - Items i through n are available.
 - Available capacity is y.
 - Suppose that in the optimal solution for the state (i, y), the first decision is to set $x_i = 0$.
 - From the principle of optimality (we have shown that this principle holds for the knapsack problem), it follows that $f(i, y) = f(i+1, y)$.
Dynamic Programming Recurrence

- The only other possibility for the first decision is \(x_1 = 1 \).
- The case \(x_1 = 1 \) can arise only when \(y \geq w_r \).
- From the principle of optimality, it follows that
 \[f(i, y) = f(i+1, y-w_r) + p_r. \]
- Combining the two cases, we get
 \[f(i, y) = f(i+1, y) \text{ whenever } y < w_r, \]
 \[f(i, y) = \max\{f(i+1, y), f(i+1, y-w_r) + p_r\}, \text{ } y \geq w_r. \]

Recursive Code

```java
/** @return f(i, y) */
private static int f(int i, int y)
{
    if (i == n) return (y < w[n]) ? 0 : p[n];
    if (y < w[i]) return f(i + 1, y);
    return Math.max(f(i + 1, y), f(i + 1, y - w[i]) + p[i]);
}
```

Recursion Tree

```
                     f(1, c)
                      /   \
                    f(2, c)    f(2, c-w_r)
                   /   \      /   \
                  f(3, c)  f(3, c-w_r) f(3, c-w_2)
                 /   \    /   \     /   \    /   \  
                f(4, c) f(4, c-w_2) f(4, c-w_2) f(4, c-w_3)
                   /   \    /   \    /   \    /   \  
                  f(5, c) f(5, c-w_3) f(5, c-w_2-w_3)
```

Time Complexity

- Let \(t(n) \) be the time required when \(n \) items are available.
- \(t(0) = t(1) = a \), where \(a \) is a constant.
- When \(t > 1 \),
 \[t(n) = 2t(n-1) + b, \]
 where \(b \) is a constant.
- \(t(n) = O(2^n) \).

Solving dynamic programming recurrences recursively can be hazardous to run time.

Reducing Run Time

```
                     f(1, c)
                      /   \
                    f(2, c)    f(2, c-w_r)
                   /   \      /   \ 
                  f(3, c)  f(3, c-w_r) f(3, c-w_2)
                 /   \    /   \     /   \  
                f(4, c) f(4, c-w_2) f(4, c-w_2) f(4, c-w_3)
                   /   \    /   \    /   \    /   \  
                  f(5, c) f(5, c-w_3) f(5, c-w_2-w_3)
```

Time Complexity

- Level \(i \) of the recursion tree has up to \(2^{i+1} \) nodes.
- At each such node an \(f(i, y) \) is computed.
- Several nodes may compute the same \(f(i, y) \).
- We can save time by not recomputing already computed \(f(i, y) \) s.
- Save computed \(f(i, y) \) s in a dictionary.
 - Key is \((i, y) \) value.
 - \(f(i, y) \) is computed recursively only when \((i, y) \) is not in the dictionary.
 - Otherwise, the dictionary value is used.
Integer Weights

- Assume that each weight is an integer.
- The knapsack capacity c may also be assumed to be an integer.
- Only $f(i,y)$s with $1 \leq i \leq n$ and $0 \leq y \leq c$ are of interest.
- Even though level i of the recursion tree has up to 2^{i-1} nodes, at most $c+1$ represent different $f(i,y)$s.

Integer Weights Dictionary

- Use an array fArray as the dictionary.
- fArray[1:][0:c]
- fArray[i][y] = -1 iff $f(i,y)$ not yet computed.
- This initialization is done before the recursive method is invoked.
- The initialization takes $O(cn)$ time.

No Recomputation Code

```java
private static int f(int i, int y)
{
    if (fArray[i][y] >= 0) return fArray[i][y];
    if (i == n) {fArray[i][y] = (y < w[n]) ? 0 : p[n];
        return fArray[i][y];}
    if (y < w[i]) fArray[i][y] = f(i + 1, y);
    else fArray[i][y] = Math.max(f(i + 1, y),
        f(i + 1, y - w[i]) + p[i]);
    return fArray[i][y];
}
```

Time Complexity

- $t(n) = O(cn)$.
- Analysis done in text.
- Good when cn is small relative to 2^n.
- $n = 3$, $c = 1010101$
 - $w = [100102, 1000321, 6327]$
 - $p = [102, 505, 5]$
- $2^n = 8$
- $cn = 3030303$