Dynamic Programming

- Sequence of decisions.
- Problem state.
- Principle of optimality.
- Dynamic Programming Recurrence Equations.
- Solution of recurrence equations.

Sequence Of Decisions

- As in the greedy method, the solution to a problem is viewed as the result of a sequence of decisions.
- Unlike the greedy method, decisions are not made in a greedy and binding manner.

0/1 Knapsack Problem

Let \(x_i = 1 \) when item \(i \) is selected and let \(x_i = 0 \) when item \(i \) is not selected.

\[
\text{maximize } \sum_{i=1}^{n} p_i x_i \\
\text{subject to } \sum_{i=1}^{n} w_i x_i \leq c \\
\text{and } x_i = 0 \text{ or } 1 \text{ for all } i
\]

All profits and weights are positive.

Sequence Of Decisions

- Decide the \(x_i \) values in the order \(x_1, x_2, x_3, \ldots, x_n \).
- Decide the \(x_i \) values in the order \(x_n, x_{n-1}, x_{n-2}, \ldots, x_1 \).
- Decide the \(x_i \) values in the order \(x_1, x_n, x_2, x_{n-1}, \ldots \)
- Or any other order.
Problem State

- The state of the 0/1 knapsack problem is given by
 - the weights and profits of the available items
 - the capacity of the knapsack
- When a decision on one of the x_i values is made, the problem state changes.
 - item i is no longer available
 - the remaining knapsack capacity may be less

Problem State

- Suppose that decisions are made in the order $x_1, x_2, x_3, \ldots, x_n$.
- The initial state of the problem is described by the pair $(1, c)$.
 - Items 1 through n are available (the weights, profits and n are implicit).
 - The available knapsack capacity is c.
- Following the first decision the state becomes one of the following:
 - $(2, c)$ when the decision is to set $x_1 = 0$.
 - $(2, c-w_1)$ when the decision is to set $x_1 = 1$.

Problem State

- Suppose that decisions are made in the order $x_n, x_{n-1}, x_{n-2}, \ldots, x_1$.
- The initial state of the problem is described by the pair (n, c).
 - Items 1 through n are available (the weights, profits and first item index are implicit).
 - The available knapsack capacity is c.
- Following the first decision the state becomes one of the following:
 - $(n-1, c)$ when the decision is to set $x_n = 0$.
 - $(n-1, c-w_n)$ when the decision is to set $x_n = 1$.

Principle Of Optimality

- An optimal solution satisfies the following property:
 - No matter what the first decision, the remaining decisions are optimal with respect to the state that results from this decision.
- Dynamic programming may be used only when the principle of optimality holds.
0/1 Knapsack Problem

• Suppose that decisions are made in the order x_1, x_2, x_3, ..., x_n.
• Let $x_1 = a_1$, $x_2 = a_2$, $x_3 = a_3$, ..., $x_n = a_n$ be an optimal solution.
• If $a_1 = 0$, then following the first decision the state is $(2, c)$.
• a_2, a_3, ..., a_n must be an optimal solution to the knapsack instance given by the state $(2, c)$.

$x_1 = a_1 = 0$

maximize $\sum_{i=2}^{n} p_i x_i$

subject to $\sum_{i=2}^{n} w_i x_i \leq c$

and $x_i = 0$ or 1 for all i

• If not, this instance has a better solution b_2, b_3, ..., b_n.

$x_1 = a_1 = 1$

Next, consider the case $a_1 = 1$. Following the first decision the state is $(2, c-w_1)$.

• a_2, a_3, ..., a_n must be an optimal solution to the knapsack instance given by the state $(2, c-w_1)$.

• So $x_1 = a_1$, $x_2 = a_2$, $x_3 = a_3$, ..., $x_n = a_n$ cannot be an optimal solution ... a contradiction with the assumption that it is optimal.
If not, this instance has a better solution \(b_2, b_3, \ldots, b_n \).

\[
\text{maximize } \sum_{i=2}^{n} p_i x_i \\
\text{subject to } \sum_{i=2}^{n} w_i x_i \leq c - w_1 \\
\text{and } x_i = 0 \text{ or } 1 \text{ for all } i
\]

• If not, this instance has a better solution \(b_2, b_3, \ldots, b_n \).

\[
\sum_{i=2}^{n} p_i b_i > \sum_{i=1}^{n} p_i a_i
\]

0/1 Knapsack Problem

• Therefore, no matter what the first decision, the remaining decisions are optimal with respect to the state that results from this decision.

• The principle of optimality holds and dynamic programming may be applied.

Dynamic Programming Recurrence

• Let \(f(i,y) \) be the profit value of the optimal solution to the knapsack instance defined by the state \((i,y)\).
 • Items \(i \) through \(n \) are available.
 • Available capacity is \(y \).
• For the time being assume that we wish to determine only the value of the best solution.
 • Later we will worry about determining the \(x_i \)s that yield this maximum value.
• Under this assumption, our task is to determine \(f(1,c) \).
Dynamic Programming Recurrence

• $f(n,y)$ is the value of the optimal solution to the knapsack instance defined by the state (n,y).
 • Only item n is available.
 • Available capacity is y.
 • If $w_n \leq y$, $f(n,y) = p_n$.
 • If $w_n > y$, $f(n,y) = 0$.

Dynamic Programming Recurrence

• Suppose that $i < n$.
 • $f(i,y)$ is the value of the optimal solution to the knapsack instance defined by the state (i,y).
 • Items i through n are available.
 • Available capacity is y.
 • Suppose that in the optimal solution for the state (i,y), the first decision is to set $x_i = 0$.
 • From the principle of optimality (we have shown that this principle holds for the knapsack problem), it follows that $f(i,y) = f(i+1,y)$.

Dynamic Programming Recurrence

• The only other possibility for the first decision is $x_i = 1$.
• The case $x_i = 1$ can arise only when $y \geq w_i$.
• From the principle of optimality, it follows that $f(i,y) = f(i+1,y-w_i) + p_i$.
• Combining the two cases, we get
 • $f(i,y) = f(i+1,y)$ whenever $y < w_i$.
 • $f(i,y) = \max\{f(i+1,y), f(i+1,y-w_i) + p_i\}$, $y \geq w_i$.

Recursive Code

/** @return f(i,y) */
private static int f(int i, int y)
{
 if (i == n) return (y < w[n]) ? 0 : p[n];
 if (y < w[i]) return f(i + 1, y);
 return Math.max(f(i + 1, y), f(i + 1, y - w[i]) + p[i]);
}
Recursion Tree

- **Time Complexity**
 - Let \(t(n) \) be the time required when \(n \) items are available.
 - \(t(0) = t(1) = a \), where \(a \) is a constant.
 - When \(t > 1 \),
 \[
 t(n) \leq 2t(n-1) + b,
 \]
 where \(b \) is a constant.
 - \(t(n) = O(2^n) \).

Solving dynamic programming recurrences recursively can be hazardous to run time.

Reducing Run Time

- **Time Complexity**
 - Level \(i \) of the recursion tree has up to \(2^{i+1} \) nodes.
 - At each such node an \(f(i,y) \) is computed.
 - Several nodes may compute the same \(f(i,y) \).
 - We can save time by not recomputing already computed \(f(i,y) \)s.
 - Save computed \(f(i,y) \)s in a dictionary.
 - Key is (\(i, y \)) value.
 - \(f(i, y) \) is computed recursively only when \((i, y) \) is not in the dictionary.
 - Otherwise, the dictionary value is used.
Integer Weights

- Assume that each weight is an integer.
- The knapsack capacity c may also be assumed to be an integer.
- Only $f(i,y)$s with $1 \leq i \leq n$ and $0 \leq y \leq c$ are of interest.
- Even though level i of the recursion tree has up to 2^{i-1} nodes, at most $c+1$ represent different $f(i,y)$s.

Integer Weights Dictionary

- Use an array $fArray[i][j]$ as the dictionary.
 - $fArray[1:n][0:c]$
 - $fArray[i][j] = -1$ iff $f(i,y)$ not yet computed.
 - This initialization is done before the recursive method is invoked.
 - The initialization takes $O(cn)$ time.

No Recomputation Code

```java
private static int f(int i, int y)
{
    if (fArray[i][y] >= 0) return fArray[i][y];
    if (i == n) {fArray[i][y] = (y < w[n]) ? 0 : p[n];
                    return fArray[i][y];}
    if (y < w[i]) fArray[i][y] = f(i + 1, y);
    else fArray[i][y] = Math.max(f(i + 1, y),
                          f(i + 1, y - w[i]) + p[i]);
    return fArray[i][y];
}
```

Time Complexity

- $t(n) = O(cn)$.
- Analysis done in text.
- Good when cn is small relative to 2^n.
- $n = 3$, $c = 1010101$
 - $w = [100102, 1000321, 6327]$
 - $p = [102, 505, 5]$
- $2^n = 8$
- $cn = 3030303$