Dynamic Programming

- Sequence of decisions.
- Problem state.
- Principle of optimality.
- Dynamic Programming Recurrence Equations.
- Solution of recurrence equations.

Sequence Of Decisions

- As in the greedy method, the solution to a problem is viewed as the result of a sequence of decisions.
- Unlike the greedy method, decisions are not made in a greedy and binding manner.
0/1 Knapsack Problem

Let $x_i = 1$ when item i is selected and let $x_i = 0$ when item i is not selected.

$$\text{maximize } \sum_{i = 1}^{n} p_i x_i$$

subject to $$\sum_{i = 1}^{n} w_i x_i \leq c$$

and $x_i = 0$ or 1 for all i

All profits and weights are positive.

Sequence Of Decisions

- Decide the x_i values in the order $x_1, x_2, x_3, \ldots, x_n$.
- Decide the x_i values in the order $x_n, x_{n-1}, x_{n-2}, \ldots, x_1$.
- Decide the x_i values in the order $x_1, x_n, x_2, x_{n-1}, \ldots$
- Or any other order.
Problem State

- The state of the 0/1 knapsack problem is given by:
 - the weights and profits of the available items
 - the capacity of the knapsack
- When a decision on one of the x_i values is made, the problem state changes.
 - item i is no longer available
 - the remaining knapsack capacity may be less

Problem State

- Suppose that decisions are made in the order $x_1, x_2, x_3, \ldots, x_n$.
- The initial state of the problem is described by the pair $(1, c)$.
 - Items 1 through n are available (the weights, profits and n are implicit).
 - The available knapsack capacity is c.
- Following the first decision the state becomes one of the following:
 - $(2, c)$ … when the decision is to set $x_i = 0$.
 - $(2, c-w_i)$ … when the decision is to set $x_i = 1$.
Problem State

- Suppose that decisions are made in the order $x_n, x_{n-1}, x_{n-2}, \ldots, x_1$.
- The initial state of the problem is described by the pair (n, c).
 - Items 1 through n are available (the weights, profits and first item index are implicit).
 - The available knapsack capacity is c.
- Following the first decision the state becomes one of the following:
 - $(n-1, c)$ … when the decision is to set $x_n = 0$.
 - $(n-1, c-w_n)$ … when the decision is to set $x_n = 1$.

Principle Of Optimality

- An optimal solution satisfies the following property:
 - No matter what the first decision, the remaining decisions are optimal with respect to the state that results from this decision.
- Dynamic programming may be used only when the principle of optimality holds.
0/1 Knapsack Problem

- Suppose that decisions are made in the order x_1, x_2, x_3, ..., x_n.
- Let $x_1 = a_1$, $x_2 = a_2$, $x_3 = a_3$, ..., $x_n = a_n$ be an optimal solution.
- If $a_1 = 0$, then following the first decision the state is $(2, c)$.
- a_2, a_3, ..., a_n must be an optimal solution to the knapsack instance given by the state $(2, c)$.

\[
\begin{align*}
x_1 &= a_1 = 0 \\
\text{maximize} & \sum_{i=2}^{n} p_i x_i \\
\text{subject to} & \sum_{i=2}^{n} w_i x_i \leq c \\
\text{and} & \ x_i = 0 \text{ or } 1 \text{ for all } i \\
\text{If not, this instance has a better solution } b_2, b_3, \\
& \sum_{i=2}^{n} p_i b_i > \sum_{i=2}^{n} p_i a_i
\end{align*}
\]
\[x_1 = a_1 = 0 \]

- \(x_1 = a_1, x_2 = b_2, x_3 = b_3, \ldots, x_n = b_n \) is a better solution to the original instance than is \(x_1 = a_1, x_2 = a_2, x_3 = a_3, \ldots, x_n = a_n \).
- So \(x_1 = a_1, x_2 = a_2, x_3 = a_3, \ldots, x_n = a_n \) cannot be an optimal solution ... a contradiction with the assumption that it is optimal.

\[x_1 = a_1 = 1 \]

- Next, consider the case \(a_1 = 1 \). Following the first decision the state is \((2, c-w_1)\).
- \(a_2, a_3, \ldots, a_n \) must be an optimal solution to the knapsack instance given by the state \((2, c -w_1)\).
If not, this instance has a better solution \(b_2, b_3, \ldots, b_n \).

\[
\sum_{i=2}^{n} p_i b_i > \sum_{i=2}^{n} p_i a_i
\]

So \(x_1 = a_1, x_2 = a_2, x_3 = a_3, \ldots, x_n = a_n \) cannot be an optimal solution … a contradiction with the assumption that it is optimal.
0/1 Knapsack Problem

- Therefore, no matter what the first decision, the remaining decisions are optimal with respect to the state that results from this decision.
- The principle of optimality holds and dynamic programming may be applied.

Dynamic Programming Recurrence

- Let \(f(i,y) \) be the profit value of the optimal solution to the knapsack instance defined by the state \((i,y)\).
 - Items \(i \) through \(n \) are available.
 - Available capacity is \(y \).
- For the time being assume that we wish to determine only the value of the best solution.
 - Later we will worry about determining the \(x_i \)s that yield this maximum value.
- Under this assumption, our task is to determine \(f(1,c) \).
Dynamic Programming Recurrence

- $f(n, y)$ is the value of the optimal solution to the knapsack instance defined by the state (n, y).
 - Only item n is available.
 - Available capacity is y.
- If $w_n \leq y$, $f(n, y) = p_n$.
- If $w_n > y$, $f(n, y) = 0$.

Dynamic Programming Recurrence

- Suppose that $i < n$.
- $f(i, y)$ is the value of the optimal solution to the knapsack instance defined by the state (i, y).
 - Items i through n are available.
 - Available capacity is y.
- Suppose that in the optimal solution for the state (i, y), the first decision is to set $x_i = 0$.
- From the principle of optimality (we have shown that this principle holds for the knapsack problem), it follows that $f(i, y) = f(i+1, y)$.
Dynamic Programming Recurrence

- The only other possibility for the first decision is $x_i = 1$.
- The case $x_i = 1$ can arise only when $y \geq w_i$.
- From the principle of optimality, it follows that $f(i,y) = f(i+1,y-w_i) + p_i$.
- Combining the two cases, we get
 - $f(i,y) = f(i+1,y)$ whenever $y < w_i$.
 - $f(i,y) = \max\{f(i+1,y), f(i+1,y-w_i) + p_i\}$ whenever $y \geq w_i$.

Recursive Code

```java
/** @return f(i,y) */
private static int f(int i, int y)
{
    if (i == n) return (y < w[n]) ? 0 : p[n];
    if (y < w[i]) return f(i + 1, y);
    return Math.max(f(i + 1, y),
                    f(i + 1, y - w[i]) + p[i]);
}
```
Recursion Tree

Time Complexity

- Let $t(n)$ be the time required when n items are available.
- $t(0) = t(1) = a$, where a is a constant.
- When $t > 1$,
 $$t(n) \leq 2t(n-1) + b,$$
 where b is a constant.
- $t(n) = O(2^n)$.

Solving dynamic programming recurrences recursively can be hazardous to run time.
Reducing Run Time

Time Complexity

- Level \(i \) of the recursion tree has up to \(2^{i-1} \) nodes.
- At each such node an \(f(i,y) \) is computed.
- Several nodes may compute the same \(f(i,y) \).
- We can save time by not recomputing already computed \(f(i,y) \)s.
- Save computed \(f(i,y) \)s in a dictionary.
 - Key is \((i, y) \) value.
 - \(f(i, y) \) is computed recursively only when \((i,y) \) is not in the dictionary.
 - Otherwise, the dictionary value is used.
Integer Weights

- Assume that each weight is an integer.
- The knapsack capacity c may also be assumed to be an integer.
- Only $f(i,y)$s with $1 \leq i \leq n$ and $0 \leq y \leq c$ are of interest.
- Even though level i of the recursion tree has up to 2^{i-1} nodes, at most $c+1$ represent different $f(i,y)$s.

Integer Weights Dictionary

- Use an array `fArray[][]` as the dictionary.
- `fArray[1:n][0:c]`
- `fArray[i][y] = -1` iff $f(i,y)$ not yet computed.
- This initialization is done before the recursive method is invoked.
- The initialization takes $O(cn)$ time.
private static int f(int i, int y)
{
 if (fArray[i][y] >= 0) return fArray[i][y];
 if (i == n) {fArray[i][y] = (y < w[n]) ? 0 : p[n];
 return fArray[i][y];}
 if (y < w[i]) fArray[i][y] = f(i + 1, y);
 else fArray[i][y] = Math.max(f(i + 1, y),
 f(i + 1, y - w[i]) + p[i]);
 return fArray[i][y];
}

Time Complexity

• \(t(n) = O(cn) \).
• Analysis done in text.
• Good when \(cn \) is small relative to \(2^n \).
• \(n = 3, c = 1010101 \)
 \(w = [100102, 1000321, 6327] \)
 \(p = [102, 505, 5] \)
• \(2^n = 8 \)
• \(cn = 3030303 \)