Rank

Rank of an element is its position in ascending key order.

[2, 6, 7, 8, 10, 15, 18, 20, 25, 30, 35, 40]

 rank(2) = 0
 rank(15) = 5
 rank(20) = 7

Selection Problem

- Given n unsorted elements, determine the k'th smallest element. That is, determine the element whose rank is $k-1$.
- Applications
 - Median score on a test.
 - $k = \text{ceil}(n/2)$.
 - Median salary of Computer Scientists.
 - Identify people whose salary is in the bottom 10%. First find salary at the 10% rank.

Selection By Sorting

- Sort the n elements.
- Pick up the element with desired rank.
- $O(n \log n)$ time.

Divide-And-Conquer Selection

- Small instance has $n \leq 1$. Selection is easy.
- When $n > 1$, select a pivot element from out of the n elements.
- Partition the n elements into 3 groups left, middle and right as is done in quick sort.
- The rank of the pivot is the location of the pivot following the partitioning.
- If $k-1 = \text{rank}(\text{pivot})$, pivot is the desired element.
- If $k-1 < \text{rank}(\text{pivot})$, determine the k'th smallest element in left.
- If $k-1 > \text{rank}(\text{pivot})$, determine the $(k-\text{rank}(\text{pivot})-1)^{th}$ smallest element in right.

D&C Selection Example

Find kth element of:

```
 a 1 2 3 4 5 6 7 8 9 10 11 12
```

Use 3 as the pivot and partition.

```
 a 1 2 3 4 5 6 7 8 9 10 11 12
```

$\text{rank}(\text{pivot}) = 5$. So pivot is the 6'th smallest element.

D&C Selection Example

```
 a 1 2 3 4 5 6 7 8 9 10 11 12
```

- If $k = 6$ ($k-1 = \text{rank}(\text{pivot})$), pivot is the element we seek.
- If $k < 6$ ($k-1 < \text{rank}(\text{pivot})$), find k'th smallest element in left partition.
- If $k > 6$ ($k-1 > \text{rank}(\text{pivot})$), find $(k-\text{rank}(\text{pivot})-1)^{th}$ smallest element in right partition.
Time Complexity
- Worst case arises when the partition to be searched always has all but the pivot.
 - $O(n^2)$
- Expected performance is $O(n)$.
- Worst case becomes $O(n)$ when the pivot is chosen carefully.
 - Partition into $n/9$ groups with 9 elements each (last group may have a few more)
 - Find the median element in each group.
 - pivot is the median of the group medians.
 - This median is found using select recursively.

Applications
- We plan to drill holes in a metal sheet.
- If the holes are too close, the sheet will tear during drilling.
- Verify that no two holes are closer than a threshold distance (e.g., holes are at least 1 inch apart).

Closest Pair Of Points
- Given n points in 2D, find the pair that are closest.

Air Traffic Control
- 3D -- Locations of airplanes flying in the neighborhood of a busy airport are known.
- Want to be sure that no two planes get closer than a given threshold distance.

Simple Solution
- For each of the $n(n-1)/2$ pairs of points, determine the distance between the points in the pair.
- Determine the pair with the minimum distance.
- $O(n^2)$ time.

Divide-And-Conquer Solution
- When n is small, use simple solution.
- When n is large
 - Divide the point set into two roughly equal parts A and B.
 - Determine the closest pair of points in A.
 - Determine the closest pair of points in B.
 - Determine the closest pair of points such that one point is in A and the other in B.
 - From the three closest pairs computed, select the one with least distance.
• Divide so that points in A have x-coordinate \leq that of points in B.

• Find closest pair in A.
• Let d_1 be the distance between the points in this pair.

• Find closest pair in B.
• Let d_2 be the distance between the points in this pair.

• Let $d = \min\{d_1, d_2\}$.
• Is there a pair with one point in A, the other in B and distance $< d$?

• Candidates lie within d of the dividing line.
• Call these regions R_A and R_B, respectively.

• Let q be a point in R_A.
• q need be paired only with those points in R_B that are within d of q.y.
Points that are to be paired with q are in a $d \times 2d$ rectangle of R (comparing region of q).

Points in this rectangle are at least d apart.

So the comparing region of q has at most 6 points.

So number of pairs to check is $\leq 6|R_A| = O(n)$.

Time Complexity

- Create a sorted by x-coordinate list of points.
 - $O(n \log n)$ time.
- Create a sorted by y-coordinate list of points.
 - $O(n \log n)$ time.
- Using these two lists, the required pairs of points from R_A and R_B can be constructed in $O(n)$ time.
- Let $n < 4$ define a small instance.