Divide-And-Conquer Sorting

- Small instance.
 - $n \leq 1$ elements.
 - $n \leq 10$ elements.
 - We’ll use $n \leq 1$ for now.
- Large instance.
 - Divide into $k \geq 2$ smaller instances.
 - $k = 2, 3, 4, \ldots$?
 - What does each smaller instance look like?
 - Sort smaller instances recursively.
 - How do you combine the sorted smaller instances?

Insertion Sort

- $k = 2$
- First $n - 1$ elements ($a[0:n-2]$) define one of the smaller instances; last element ($a[n-1]$) defines the second smaller instance.
- $a[0:n-2]$ is sorted recursively.
- $a[n-1]$ is a small instance.

Insertion Sort

- Combining is done by inserting $a[n-1]$ into the sorted $a[0:n-2]$.
- Complexity is $O(n^2)$.
- Usually implemented nonrecursively.

Selection Sort

- $k = 2$
- To divide a large instance into two smaller instances, first find the largest element.
- The largest element defines one of the smaller instances; the remaining $n-1$ elements define the second smaller instance.
Selection Sort

- The second smaller instance is sorted recursively.
- Append the first smaller instance (largest element) to the right end of the sorted smaller instance.
- Complexity is $O(n^2)$.
- Usually implemented nonrecursively.

Bubble Sort

- Bubble sort may also be viewed as a $k = 2$ divide-and-conquer sorting method.
- Insertion sort, selection sort and bubble sort divide a large instance into one smaller instance of size $n - 1$ and another one of size 1.
- All three sort methods take $O(n^2)$ time.

Divide And Conquer

- Divide-and-conquer algorithms generally have best complexity when a large instance is divided into smaller instances of approximately the same size.
- When $k = 2$ and $n = 24$, divide into two smaller instances of size 12 each.
- When $k = 2$ and $n = 25$, divide into two smaller instances of size 13 and 12, respectively.

Merge Sort

- $k = 2$
- First $\text{ceil}(n/2)$ elements define one of the smaller instances; remaining $\text{floor}(n/2)$ elements define the second smaller instance.
- Each of the two smaller instances is sorted recursively.
- The sorted smaller instances are combined using a process called merge.
- Complexity is $O(n \log n)$.
- Usually implemented nonrecursively.
Merge Two Sorted Lists

- \(A = (2, 5, 6) \)
 \(B = (1, 3, 8, 9, 10) \)
 \(C = () \)
- Compare smallest elements of \(A \) and \(B \) and merge smaller into \(C \).
- \(A = (2, 5, 6) \)
 \(B = (3, 8, 9, 10) \)
 \(C = (1) \)

Merge Two Sorted Lists

- \(A = (5, 6) \)
 \(B = (3, 8, 9, 10) \)
 \(C = (1, 2) \)
- \(A = (5, 6) \)
 \(B = (8, 9, 10) \)
 \(C = (1, 2, 3) \)
- \(A = (6) \)
 \(B = (8, 9, 10) \)
 \(C = (1, 2, 3, 5) \)
- \(A = () \)
 \(B = (8, 9, 10) \)
 \(C = (1, 2, 3, 5, 6) \)
- When one of \(A \) and \(B \) becomes empty, append the other list to \(C \).
- \(O(1) \) time needed to move an element into \(C \).
- Total time is \(O(n + m) \), where \(n \) and \(m \) are, respectively, the number of elements initially in \(A \) and \(B \).

Merge Sort

\[
\begin{array}{c}
[8, 3, 13, 6, 2, 14, 5, 9, 10, 1, 7, 12, 4] \\
[8, 3, 13, 6, 2, 14, 5] & [9, 10, 1, 7, 12, 4] \\
\end{array}
\]
Merge Sort

- Downward pass over the recursion tree.
 - Divide large instances into small ones.
- Upward pass over the recursion tree.
 - Merge pairs of sorted lists.
- Number of leaf nodes is n.
- Number of nonleaf nodes is n-1.

Time Complexity

- Let \(t(n) \) be the time required to sort \(n \) elements.
- \(t(0) = t(1) = c \), where \(c \) is a constant.
- When \(n > 1 \),
 \[
 t(n) = t(\text{ceil}(n/2)) + t(\text{floor}(n/2)) + dn,
 \]
 where \(d \) is a constant.
- To solve the recurrence, assume \(n \) is a power of 2 and use repeated substitution.
- \(t(n) = O(n \log n) \).
Nonrecursive Version

- Eliminate downward pass.
- Start with sorted lists of size 1 and do pairwise merging of these sorted lists as in the upward pass.

Nonrecursive Merge Sort

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[3, 8]</td>
<td>[6, 13]</td>
<td>[2, 14]</td>
<td>[5, 9]</td>
<td>[1, 10]</td>
<td>[7, 12]</td>
<td>[4]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3, 6, 8, 13]</td>
<td>[2, 5, 9, 14]</td>
<td>[1, 7, 10, 12]</td>
<td>[4]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2, 3, 5, 6, 8, 9, 13, 14]</td>
<td>[1, 4, 7, 10, 12]</td>
<td></td>
</tr>
<tr>
<td>[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14]</td>
<td></td>
</tr>
</tbody>
</table>

Complexity

- Sorted segment size is 1, 2, 4, 8, …
- Number of merge passes is \(\text{ceil}(\log_2 n) \).
- Each merge pass takes \(O(n) \) time.
- Total time is \(O(n \log n) \).
- Need \(O(n) \) additional space for the merge.
- Merge sort is slower than insertion sort when \(n \leq 15 \) (approximately). So define a small instance to be an instance with \(n \leq 15 \).
- Sort small instances using insertion sort.
- Start with segment size = 15.

Natural Merge Sort

- Initial sorted segments are the naturally occurring sorted segments in the input.
- Input = [8, 9, 10, 2, 5, 7, 9, 11, 13, 15, 6, 12, 14].
- Initial segments are:
 [8, 9, 10] [2, 5, 7, 9, 11, 13, 15] [6, 12, 14]
- 2 (instead of 4) merge passes suffice.
- Segment boundaries have \(a[i] > a[i+1] \).
Quick Sort

- Small instance has \(n \leq 1 \). Every small instance is a sorted instance.
- To sort a large instance, select a pivot element from out of the \(n \) elements.
- Partition the \(n \) elements into 3 groups left, middle and right.
 - The middle group contains only the pivot element.
 - All elements in the left group are \(\leq \) pivot.
 - All elements in the right group are \(\geq \) pivot.
- Sort left and right groups recursively.
- Answer is sorted left group, followed by middle group followed by sorted right group.

Example

```
6 2 8 5 11 10 4 1 9 7 3
```

Use 6 as the pivot.

```
2 5 4 1 13 10 7 9 11 18
```

Sort left and right groups recursively.

Choice Of Pivot

- **Pivot is leftmost** element in list that is to be sorted.
 - When sorting \([a[6:20]]\), use \(a[6] \) as the pivot.
 - Text implementation does this.
- **Randomly** select one of the elements to be sorted as the pivot.
 - When sorting \([a[6:20]]\), generate a random number \(r \) in the range \([6, 20]\). Use \(a[r] \) as the pivot.

Choice Of Pivot

- **Median-of-Three rule**. From the leftmost, middle, and rightmost elements of the list to be sorted, select the one with median key as the pivot.
 - When sorting \([a[6:20]]\), examine \(a[6] \), \(a[13] \) ((6+20)/2), and \(a[20] \). Select the element with median (i.e., middle) key.
 - If \(a[6].key = 30 \), \(a[13].key = 2 \), and \(a[20].key = 10 \), \(a[20] \) becomes the pivot.
 - If \(a[6].key = 3 \), \(a[13].key = 2 \), and \(a[20].key = 10 \), \(a[6] \) becomes the pivot.
Choice Of Pivot

- When the pivot is picked at random or when the median-of-three rule is used, we can use the quick sort code of the text provided we first swap the leftmost element and the chosen pivot.

Partitioning Into Three Groups

- Sort a = [6, 2, 8, 5, 11, 10, 4, 1, 9, 7, 3].
- Leftmost element (6) is the pivot.
- When another array b is available:
 - Scan a from left to right (omit the pivot in this scan), placing elements <= pivot at the left end of b and the remaining elements at the right end of b.
 - The pivot is placed at the remaining position of the b.

Partitioning Example Using Additional Array

```
a  6 2 8 5 11 10 4 1 9 7 3
b  2 5 4 1 3 7 9 10 11 8
```
Sort left and right groups recursively.

In-place Partitioning

- Find leftmost element (bigElement) > pivot.
- Find rightmost element (smallElement) < pivot.
- Swap bigElement and smallElement provided bigElement is to the left of smallElement.
- Repeat.
Complexity

- **O(n)** time to partition an array of *n* elements.
- Let \(t(n) \) be the time needed to sort *n* elements.
- \(t(0) = t(1) = c \), where *c* is a constant.
- When \(t > 1 \),
 \[t(n) = t(|left|) + t(|right|) + dn, \]
 where *d* is a constant.
- \(t(n) \) is maximum when either \(|left| = 0 \) or \(|right| = 0 \) following each partitioning.

Complexity Of Quick Sort

- So the best-case complexity is \(O(n \log n) \).
- Average complexity is also \(O(n \log n) \).
- To help get partitions with almost equal size, change in-place swap rule to:
 - Find leftmost element \((bigElement) \geq pivot\).
 - Find rightmost element \((smallElement) \leq pivot\).
 - Swap \(bigElement \) and \(smallElement \) provided \(bigElement \) is to the left of \(smallElement \).
- \(O(n) \) space is needed for the recursion stack. May be reduced to \(O(\log n) \) (see Exercise 19.22).
Complexity Of Quick Sort

- To improve performance, define a small instance to be one with \(n \leq 15 \) (say) and sort small instances using insertion sort.

java.util.arrays.sort

- Arrays of a primitive data type are sorted using quick sort.
 - \(n < 7 \) => insertion sort
 - \(7 \leq n \leq 40 \) => median of three
 - \(n > 40 \) => pseudo median of 9 equally spaced elements
 - divide the 9 elements into 3 groups
 - find the median of each group
 - pivot is median of the 3 group medians

java.util.arrays.sort

- Arrays of a nonprimitive data type are sorted using merge sort.
 - \(n < 7 \) => insertion sort
 - skip merge when last element of left segment is \(\leq \) first element of right segment
- Merge sort is stable (relative order of elements with equal keys is not changed).
- Quick sort is not stable.