Divide-And-Conquer Sorting

- Small instance.
 - \(n \leq 1 \) elements.
 - \(n \leq 10 \) elements.
 - We’ll use \(n \leq 1 \) for now.
- Large instance.
 - Divide into \(k \geq 2 \) smaller instances.
 - \(k = 2, 3, 4, \ldots \) ?
 - What does each smaller instance look like?
 - Sort smaller instances recursively.
 - How do you combine the sorted smaller instances?

Insertion Sort

- \(k = 2 \)
- First \(n - 1 \) elements (\(a[0:n-2] \)) define one of the smaller instances; last element (\(a[n-1] \)) defines the second smaller instance.
- \(a[0:n-2] \) is sorted recursively.
- \(a[n-1] \) is a small instance.

- Combining is done by inserting \(a[n-1] \) into the sorted \(a[0:n-2] \).
- Complexity is \(O(n^2) \).
- Usually implemented nonrecursively.
Selection Sort

- k = 2
- To divide a large instance into two smaller instances, first find the largest element.
- The largest element defines one of the smaller instances; the remaining n-1 elements define the second smaller instance.

- The second smaller instance is sorted recursively.
- Append the first smaller instance (largest element) to the right end of the sorted smaller instance.
- Complexity is $O(n^2)$.
- Usually implemented nonrecursively.

Bubble Sort

- Bubble sort may also be viewed as a $k = 2$ divide-and-conquer sorting method.
- Insertion sort, selection sort and bubble sort divide a large instance into one smaller instance of size $n - 1$ and another one of size 1.
- All three sort methods take $O(n^2)$ time.
Divide And Conquer

- Divide-and-conquer algorithms generally have best complexity when a large instance is divided into smaller instances of approximately the same size.
- When $k = 2$ and $n = 24$, divide into two smaller instances of size 12 each.
- When $k = 2$ and $n = 25$, divide into two smaller instances of size 13 and 12, respectively.

Merge Sort

- $k = 2$
- First $\lceil n/2 \rceil$ elements define one of the smaller instances; remaining $\lfloor n/2 \rfloor$ elements define the second smaller instance.
- Each of the two smaller instances is sorted recursively.
- The sorted smaller instances are combined using a process called merge.
- Complexity is $O(n \log n)$.
- Usually implemented nonrecursively.

Merge Two Sorted Lists

- $A = (2, 5, 6)$
 $B = (1, 3, 8, 9, 10)$
 $C = ()$
- Compare smallest elements of A and B and merge smaller into C.
- $A = (2, 5, 6)$
 $B = (3, 8, 9, 10)$
 $C = (1)$
Merge Two Sorted Lists

- A = (5, 6)
 B = (3, 8, 9, 10)
 C = (1, 2)
- A = (5, 6)
 B = (8, 9, 10)
 C = (1, 2, 3)
- A = (6)
 B = (8, 9, 10)
 C = (1, 2, 3, 5)
- A = ()
 B = (8, 9, 10)
 C = (1, 2, 3, 5, 6)

When one of A and B becomes empty, append the other list to C.

O(1) time needed to move an element into C.

Total time is O(n + m), where n and m are, respectively, the number of elements initially in A and B.

Merge Sort

[8, 3, 13, 6, 2, 14, 5, 9, 10, 1, 7, 12, 4]
[8, 3, 13, 6, 2, 14, 5] [9, 10, 1, 7, 12, 4]
[8, 3, 13, 6] [2, 14, 5] [9, 10] [1] [7, 12] [4]
Time Complexity

- Let $t(n)$ be the time required to sort n elements.
- $t(0) = t(1) = c$, where c is a constant.
- When $n > 1$,
 \[
 t(n) = t(\lceil n/2 \rceil) + t(\lfloor n/2 \rfloor) + dn,
 \]
 where d is a constant.
- To solve the recurrence, assume n is a power of 2 and use repeated substitution.
- $t(n) = O(n \log n)$.

Merge Sort

- Downward pass over the recursion tree.
 - Divide large instances into small ones.
- Upward pass over the recursion tree.
 - Merge pairs of sorted lists.
- Number of leaf nodes is n.
- Number of nonleaf nodes is $n-1$.
Time Complexity

- Downward pass.
 - $O(1)$ time at each node.
 - $O(n)$ total time at all nodes.
- Upward pass.
 - $O(n)$ time merging at each level that has a nonleaf node.
 - Number of levels is $O(\log n)$.
 - Total time is $O(n \log n)$.

Nonrecursive Version

- Eliminate downward pass.
- Start with sorted lists of size 1 and do pairwise merging of these sorted lists as in the upward pass.

Nonrecursive Merge Sort

```
[3, 8] [6, 13] [2, 14] [5, 9] [1, 10] [7, 12] [4]
[3, 6, 8, 13] [2, 5, 9, 14] [1, 7, 10, 12] [4]
[2, 3, 5, 6, 8, 9, 13, 14] [1, 4, 7, 10, 12]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14]
```
Complexity
• Sorted segment size is 1, 2, 4, 8, …
• Number of merge passes is \(\text{ceil}(\log_n n)\).
• Each merge pass takes \(O(n)\) time.
• Total time is \(O(n \log n)\).
• Need \(O(n)\) additional space for the merge.
• Merge sort is slower than insertion sort when \(n \leq 15\) (approximately). So define a small instance to be an instance with \(n \leq 15\).
• Sort small instances using insertion sort.
• Start with segment size = 15.

Natural Merge Sort
• Initial sorted segments are the naturally occurring sorted segments in the input.
• Input = [8, 9, 10, 2, 5, 7, 9, 11, 13, 15, 6, 12, 14].
• Initial segments are:
 [8, 9, 10] [2, 5, 7, 9, 11, 13, 15] [6, 12, 14]
• 2 (instead of 4) merge passes suffice.
• Segment boundaries have \(a[i] > a[i+1]\).

Quick Sort
• Small instance has \(n \leq 1\). Every small instance is a sorted instance.
• To sort a large instance, select a pivot element from out of the \(n\) elements.
• Partition the \(n\) elements into 3 groups left, middle and right.
• The middle group contains only the pivot element.
• All elements in the left group are \(< pivot\).
• All elements in the right group are \(\geq pivot\).
• Sort left and right groups recursively.
• Answer is sorted left group, followed by middle group followed by sorted right group.
Example

Use 6 as the pivot.

Sort left and right groups recursively.

Choice Of Pivot

• Pivot is leftmost element in list that is to be sorted.
 • When sorting a[6:20], use a[6] as the pivot.
 • Text implementation does this.
• Randomly select one of the elements to be sorted as the pivot.
 • When sorting a[6:20], generate a random number r in the range [6, 20]. Use a[r] as the pivot.

Choice Of Pivot

• Median-of-Three rule. From the leftmost, middle, and rightmost elements of the list to be sorted, select the one with median key as the pivot.
 • When sorting a[6:20], examine a[6], a[13] ((6+20)/2), and a[20]. Select the element with median (i.e., middle) key.
 • If a[6].key = 30, a[13].key = 2, and a[20].key = 10, a[20] becomes the pivot.
 • If a[6].key = 3, a[13].key = 2, and a[20].key = 10, a[6] becomes the pivot.
Choice Of Pivot

- When the pivot is picked at random or when the median-of-three rule is used, we can use the quick sort code of the text provided we first swap the leftmost element and the chosen pivot.

Partitioning Into Three Groups

- Sort $a = [6, 2, 8, 5, 11, 10, 4, 1, 9, 7, 3]$.
- Leftmost element (6) is the pivot.
- When another array b is available:
 - Scan a from left to right (omit the pivot in this scan), placing elements \leq pivot at the left end of b and the remaining elements at the right end of b.
 - The pivot is placed at the remaining position of the b.

Partitioning Example Using Additional Array

```
a = 5 2 8 5 11 10 4 1 9 7 3
b = 2 5 4 1 2 7 9 10 11 8
```

Sort left and right groups recursively.
In-place Partitioning

- Find leftmost element (bigElement) > pivot.
- Find rightmost element (smallElement) < pivot.
- Swap bigElement and smallElement provided bigElement is to the left of smallElement.
- Repeat.

In-Place Partitioning Example

```
a  6  2  3  5  11  10  4  1  9  7  8
```
```
a  6  2  3  5  11  10  4  1  9  7  8
```
```
a  6  2  3  5  1  10  4  11  9  7  8
```
```
a  6  2  3  5  1  10  11  9  7  8
```
bigElement is not to left of smallElement, terminate process. Swap pivot and smallElement.
```
a  6  10  4  11  9  7  8
```

Complexity

- \(O(n) \) time to partition an array of \(n \) elements.
- Let \(t(n) \) be the time needed to sort \(n \) elements.
- \(t(0) = t(1) = c \), where \(c \) is a constant.
- When \(t > 1 \),
 \[t(n) = t(|left|) + t(|right|) + dn, \]
 where \(d \) is a constant.
- \(t(n) \) is maximum when either \(|left| = 0 \) or \(|right| = 0 \) following each partitioning.
Complexity

- This happens, for example, when the pivot is always the smallest element.
- For the worst-case time,
 \[t(n) = t(n-1) + dn, \quad n > 1 \]
- Use repeated substitution to get \(t(n) = O(n^2) \).
- The best case arises when left and right are equal (or differ by 1) following each partitioning.
- For the best case, the recurrence is the same as for merge sort.

Complexity Of Quick Sort

- So the best-case complexity is \(O(n \log n) \).
- Average complexity is also \(O(n \log n) \).
- To help get partitions with almost equal size, change in-place swap rule to:
 - Find leftmost element (bigElement) \(\geq \) pivot.
 - Find rightmost element (smallElement) \(\leq \) pivot.
 - Swap bigElement and smallElement provided bigElement is to the left of smallElement.
- \(O(n) \) space is needed for the recursion stack. May be reduced to \(O(\log n) \) (see Exercise 19.22).

Complexity Of Quick Sort

- To improve performance, define a small instance to be one with \(n \leq 15 \) (say) and sort small instances using insertion sort.
Arrays of a primitive data type are sorted using quick sort.
- $n < 7 \implies$ insertion sort
- $7 \leq n \leq 40 \implies$ median of three
- $n > 40 \implies$ pseudo median of 9 equally spaced elements
 - divide the 9 elements into 3 groups
 - find the median of each group
 - pivot is median of the 3 group medians

Arrays of a nonprimitive data type are sorted using merge sort.
- $n < 7 \implies$ insertion sort
- skip merge when last element of left segment is \leq first element of right segment
- Merge sort is stable (relative order of elements with equal keys is not changed).
- Quick sort is not stable.