Minimum-Cost Spanning Tree

- weighted connected undirected graph
- spanning tree
- cost of spanning tree is sum of edge costs
- find spanning tree that has minimum cost

Example

- Network has 10 edges.
- Spanning tree has only n - 1 = 7 edges.
- Need to either select 7 edges or discard 3.

Edge Selection Greedy Strategies

- Start with an n-vertex 0-edge forest.
 Consider edges in ascending order of cost. Select edge if it does not form a cycle together with already selected edges.
 - Kruskal’s method.
- Start with a 1-vertex tree and grow it into an n-vertex tree by repeatedly adding a vertex and an edge. When there is a choice, add a least cost edge.
 - Prim’s method.

Edge Rejection Greedy Strategies

- Start with the connected graph. Repeatedly find a cycle and eliminate the highest cost edge on this cycle. Stop when no cycles remain.
- Consider edges in descending order of cost. Eliminate an edge provided this leaves behind a connected graph.

Kruskal’s Method

- Start with a forest that has no edges.
- Consider edges in ascending order of cost.
- Edge (1,2) is considered first and added to the forest.
Kruskal’s Method

• Edge (7,8) is considered next and added.
• Edge (3,4) is considered next and added.
• Edge (5,6) is considered next and added.
• Edge (2,3) is considered next and added.
• Edge (1,3) is considered next and rejected because it creates a cycle.

Prim’s Method

• Start with any single vertex tree.
• Get a 2-vertex tree by adding a cheapest edge.
• Get a 3-vertex tree by adding a cheapest edge.
• Grow the tree one edge at a time until the tree has n - 1 edges (and hence has all n vertices).

Sollin’s Method

• Start with a forest that has no edges.
• Each component selects a least cost edge with which to connect to another component.
• Duplicate selections are eliminated.
• Cycles are possible when the graph has some edges that have the same cost.

n - 1 edges have been selected and no cycle formed.
So we must have a spanning tree.
Cost is 46.
Min-cost spanning tree is unique when all edge costs are different.

Edge (2,4) is considered next and rejected because it creates a cycle.
• Edge (3,5) is considered next and added.
• Edge (3,6) is considered next and rejected.
• Edge (5,7) is considered next and added.

Each component that remains selects a least cost edge with which to connect to another component.
Beware of duplicate selections and cycles.
Can prove that all result in a minimum-cost spanning tree.
- Prim’s method is fastest.
 - $O(n^2)$ using an implementation similar to that of Dijkstra’s shortest-path algorithm.
 - $O(e + n \log n)$ using a Fibonacci heap.
- Kruskal’s uses union-find trees to run in $O(n + e \log e)$ time.

Pseudocode For Kruskal’s Method

Start with an empty set T of edges.
while (E is not empty && |T| != n-1)
{
 Let (u,v) be a least-cost edge in E.
 $E = E - \{(u,v)\}$. // delete edge from E
 if ((u,v) does not create a cycle in T)
 Add edge (u,v) to T.
 }
if (|T| == n-1) T is a min-cost spanning tree.
else Network has no spanning tree.

Data Structures For Kruskal’s Method

Edge set E.

Operations are:
- Is E empty?
- Select and remove a least-cost edge.

Use a min heap of edges.
- Initialize. $O(e)$ time.
- Remove and return least-cost edge. $O(\log e)$ time.

Set of selected edges T.

Operations are:
- Does T have $n - 1$ edges?
- Does the addition of an edge (u, v) to T result in a cycle?
- Add an edge to T.

Use an array linear list for the edges of T.
- Does T have $n - 1$ edges?
 - Check size of linear list. $O(1)$ time.
- Does the addition of an edge (u, v) to T result in a cycle?
 - Not easy.
- Add an edge to T.
 - Add at right end of linear list. $O(1)$ time.

Just use an array rather than ArrayLinearList.

Each component of T is a tree.
- When u and v are in the same component, the addition of the edge (u,v) creates a cycle.
- When u and v are in the different components, the addition of the edge (u,v) does not create a cycle.
• Each component of T is defined by the vertices in the component.
• Represent each component as a set of vertices.
 • $\{1, 2, 3, 4\}$, $\{5, 6\}$, $\{7, 8\}$
• Two vertices are in the same component iff they are in the same set of vertices.

• When an edge (u, v) is added to T, the two components that have vertices u and v combine to become a single component.
• In our set representation of components, the set that has vertex u and the set that has vertex v are united.
 • $\{1, 2, 3, 4\} + \{5, 6\} \Rightarrow \{1, 2, 3, 4, 5, 6\}$

• Initially, T is empty.
• Initial sets are:
 • $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{5\}$, $\{6\}$, $\{7\}$, $\{8\}$
• Does the addition of an edge (u, v) to T result in a cycle? If not, add edge to T.

  ```c
  s1 = find(u); s2 = find(v);
  if (s1 != s2) union(s1, s2);
  ```

• Use FastUnionFind.
• Initialize.
 • $O(n)$ time.
• At most $2e$ finds and $n-1$ unions.
 • Very close to $O(n + e)$.
• Min heap operations to get edges in increasing order of cost take $O(e \log e)$.
• Overall complexity of Kruskal’s method is $O(n + e \log e)$.