Algorithms Design Methods

- Greedy method.
- Divide and conquer.
- Dynamic Programming.
- Backtracking.
- Branch and bound.

Some Methods Not Covered

- Linear Programming.
- Integer Programming.
- Simulated Annealing.
- Neural Networks.
- Genetic Algorithms.
- Tabu Search.

Optimization Problem

A problem in which some function (called the optimization or objective function) is to be optimized (usually minimized or maximized) subject to some constraints.

Machine Scheduling

Find a schedule that minimizes the finish time.

- optimization function \(\text{... finish time} \)
- constraints
 - each job is scheduled continuously on a single machine for an amount of time equal to its processing requirement
 - no machine processes more than one job at a time

Bin Packing

Pack items into bins using the fewest number of bins.

- optimization function \(\text{... number of bins} \)
- constraints
 - each item is packed into a single bin
 - the capacity of no bin is exceeded

Min Cost Spanning Tree

Find a spanning tree that has minimum cost.

- optimization function \(\text{... sum of edge costs} \)
- constraints
 - must select \(n-1 \) edges of the given \(n \) vertex graph
 - the selected edges must form a tree
Feasible And Optimal Solutions

A feasible solution is a solution that satisfies the constraints.

An optimal solution is a feasible solution that optimizes the objective/optimization function.

Greedy Method

- Solve problem by making a sequence of decisions.
- Decisions are made one by one in some order.
- Each decision is made using a greedy criterion.
- A decision, once made, is (usually) not changed later.

Machine Scheduling

LPT Scheduling.
- Schedule jobs one by one and in decreasing order of processing time.
- Each job is scheduled on the machine on which it finishes earliest.
- Scheduling decisions are made serially using a greedy criterion (minimize finish time of this job).
- LPT scheduling is an application of the greedy method.

LPT Schedule

- LPT rule does not guarantee minimum finish time schedules.
- \((\text{LPT Finish Time})/\text{(Minimum Finish Time)} \leq 4/3 - 1/(3m)\) where \(m\) is number of machines
- Minimum finish time scheduling is NP-hard.
- In this case, the greedy method does not work.
- The greedy method does, however, give us a good heuristic for machine scheduling.

Container Loading

- Ship has capacity \(c\).
- \(m\) containers are available for loading.
- Weight of container \(i\) is \(w_i\).
- Each weight is a positive number.
- Sum of container weights > \(c\).
- Load as many containers as is possible without sinking the ship.

Greedy Solution

- Load containers in increasing order of weight until we get to a container that doesn’t fit.
- Does this greedy algorithm always load the maximum number of containers?
- Yes. May be proved using a proof by induction (see text).
Container Loading With 2 Ships

Can all containers be loaded into 2 ships whose capacity is c (each)?
- Same as bin packing with 2 bins.
- Are 2 bins sufficient for all items?
- Same as machine scheduling with 2 machines.
- Can all jobs be completed by 2 machines in c time units?
- NP-hard.

0/1 Knapsack Problem

- Hiker wishes to take n items on a trip.
- The weight of item i is w_i.
- The items are to be carried in a knapsack whose weight capacity is c.
- When sum of item weights ≤ c, all n items can be carried in the knapsack.
- When sum of item weights > c, some items must be left behind.
- Which items should be taken/left?

Greedy Attempt 1

Be greedy on capacity utilization.
- Select items in increasing order of weight.
 n = 2, c = 7
 w = [3, 6]
 p = [2, 10]
 only item 1 is selected
 profit (value) of selection is 2
 not best selection!
Greedy Attempt 2

Be greedy on profit earned.
- Select items in decreasing order of profit.

\(n = 3, \ c = 7 \)
\(w = [7, 3, 2] \)
\(p = [10, 8, 6] \)

only item 1 is selected
profit (value) of selection is 10
not best selection!

Greedy Attempt 3

Be greedy on profit density (\(p/w \)).
- Select items in decreasing order of profit density.

\(n = 2, \ c = 7 \)
\(w = [1, 7] \)
\(p = [10, 20] \)

only item 1 is selected
profit (value) of selection is 10
not best selection!

Greedy Attempt 3

Be greedy on profit density (\(p/w \)).
- Select items in decreasing order of profit density, if next item doesn’t fit take a fraction so as to fill knapsack.

\(n = 2, \ c = 7 \)
\(w = [1, 7] \)
\(p = [10, 20] \)

item 1 and \(6/7 \) of item 2 are selected

0/1 Knapsack Greedy Heuristics

- Select a subset with \(\leq k \) items.
- If the weight of this subset is \(> c \), discard the subset.
- If the subset weight is \(\leq c \), fill as much of the remaining capacity as possible by being greedy on profit density.
- Try all subsets with \(\leq k \) items and select the one that yields maximum profit.

<table>
<thead>
<tr>
<th>(k)</th>
<th>0%</th>
<th>1%</th>
<th>5%</th>
<th>10%</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>239</td>
<td>390</td>
<td>528</td>
<td>583</td>
<td>600</td>
</tr>
<tr>
<td>1</td>
<td>360</td>
<td>527</td>
<td>598</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>483</td>
<td>581</td>
<td>600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of solutions (out of 600) within \(x\% \) of best.