Graph Operations And Representation

Sample Graph Problems
- Path problems.
- Connectedness problems.
- Spanning tree problems.

Path Finding
Path between 1 and 8.

Path length is 20.

Another Path Between 1 and 8

Path length is 28.

Example Of No Path

No path between 2 and 9.

Connected Graph
- Undirected graph.
- There is a path between every pair of vertices.
Example Of Not Connected

Connected Graph Example

Connected Components

Connected Component

• A maximal subgraph that is connected.
 • Cannot add vertices and edges from original graph and retain connectedness.
 • A connected graph has exactly 1 component.

Not A Component

Communication Network

Each edge is a link that can be constructed (i.e., a feasible link).
Communication Network Problems

- Is the network connected?
 - Can we communicate between every pair of cities?
- Find the components.
- Want to construct smallest number of feasible links so that resulting network is connected.

Cycles And Connectedness

- Removal of an edge that is on a cycle does not affect connectedness.

Cycles And Connectedness

Connected subgraph with all vertices and minimum number of edges has no cycles.

Tree

- Connected graph that has no cycles.
- n vertex connected graph with n-1 edges.

Spanning Tree

- Subgraph that includes all vertices of the original graph.
- Subgraph is a tree.
 - If original graph has n vertices, the spanning tree has n vertices and n-1 edges.

Minimum Cost Spanning Tree

- Tree cost is sum of edge weights/costs.
A Spanning Tree

Spanning tree cost = 51.

Minimum Cost Spanning Tree

Spanning tree cost = 41.

A Wireless Broadcast Tree

Source = 1, weights = needed power. Cost = 4 + 8 + 5 + 6 + 7 + 8 + 3 = 41.

Graph Representation

- Adjacency Matrix
- Adjacency Lists
 - Linked Adjacency Lists
 - Array Adjacency Lists

Adjacency Matrix

- 0/1 n x n matrix, where n = # of vertices
- A(i,j) = 1 iff (i,j) is an edge

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Adjacency Matrix Properties

- Diagonal entries are zero.
- Adjacency matrix of an undirected graph is symmetric.
- A(i,j) = A(j,i) for all i and j.
Adjacency Matrix (Digraph)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Diagonal entries are zero.
- Adjacency matrix of a digraph need not be symmetric.

Adjacency Matrix

- n^2 bits of space
- For an undirected graph, may store only lower or upper triangle (exclude diagonal).
 - $(n-1)n/2$ bits
- $O(n)$ time to find vertex degree and/or vertices adjacent to a given vertex.

Adjacency Lists

- Adjacency list for vertex i is a linear list of vertices adjacent from vertex i.
- An array of n adjacency lists.

 - $aList[1] = (2,4)$
 - $aList[2] = (1,5)$
 - $aList[3] = (5)$
 - $aList[4] = (5,1)$
 - $aList[5] = (2,4,3)$

Linked Adjacency Lists

- Each adjacency list is a chain.

Array Adjacency Lists

- Each adjacency list is an array list.

Weighted Graphs

- Cost adjacency matrix.
 - $C(i,j) =$ cost of edge (i,j)
- Adjacency lists \Rightarrow each list element is a pair (adjacent vertex, edge weight)

Array Length = n

- # of list elements = $2e$ (undirected graph)
- # of list elements = e (digraph)

Array Length = n

- # of chain nodes = $2e$ (undirected graph)
- # of chain nodes = e (digraph)
Number Of Java Classes Needed

- Graph representations
 - Adjacency Matrix
 - Adjacency Lists
 ➢ Linked Adjacency Lists
 ➢ Array Adjacency Lists
 - 3 representations
- Graph types
 - Directed and undirected.
 - Weighted and unweighted.
 - $2 \times 2 = 4$ graph types
 - $3 \times 4 = 12$ Java classes

Abstract Class Graph

```java
package dataStructures;
import java.util.*;
public abstract class Graph
{
    // ADT methods come here
    public abstract Iterator iterator(int i);
    // create an iterator for vertex i
    public abstract Iterator iterator(int i);
    // implementation independent methods come here
}
```

Abstract Methods Of Graph

```java
// ADT methods
public abstract int vertices();
public abstract int edges();
public abstract boolean existsEdge(int i, int j);
public abstract void putEdge(Object theEdge);
public abstract void removeEdge(int i, int j);
public abstract int degree(int i);
public abstract int inDegree(int i);
public abstract int outDegree(int i);
```