Balanced Binary Search Trees

• height is $O(\log n)$, where n is the number of elements in the tree
• AVL (Adelson-Velsky and Landis) trees
• red-black trees
• get, put, and remove take $O(\log n)$ time

Balanced Binary Search Trees

• Indexed AVL trees
• Indexed red-black trees
• Indexed operations also take $O(\log n)$ time

Balanced Search Trees

• weight balanced binary search trees
• 2-3 & 2-3-4 trees
• AA trees
• B-trees
• BBST
• etc.

AVL Tree

• binary tree
• for every node x, define its balance factor
 balance factor of $x = \text{height of left subtree of } x - \text{height of right subtree of } x$
• balance factor of every node x is -1, 0, or 1

Balance Factors

Height

The height of an AVL tree that has n nodes is at most $1.44 \log_2 (n+2)$.

The height of every n node binary tree is at least $\log_2 (n+1)$.

This is an AVL tree.
AVL Search Tree

RR imbalance => new node is in right subtree of right subtree of blue node (node with bl = -2)

RR rotation.

AVL Rotations

- RR
- LL
- RL
- LR

Red Black Trees

Colored Nodes Definition
- Binary search tree.
- Each node is colored red or black.
- Root and all external nodes are black.
- No root-to-external-node path has two consecutive red nodes.
- All root-to-external-node paths have the same number of black nodes
Red Black Trees

Colored Edges Definition

- Binary search tree.
- Child pointers are colored red or black.
- Pointer to an external node is black.
- No root to external node path has two consecutive red pointers.
- Every root to external node path has the same number of black pointers.

Red Black Tree

- The height of a red black tree that has \(n \) (internal) nodes is between \(\log_2(n+1) \) and \(2\log_2(n+1) \).
- `java.util.TreeMap` => red black tree

Graphs

- \(G = (V,E) \)
- \(V \) is the vertex set.
- Vertices are also called nodes and points.
- \(E \) is the edge set.
- Each edge connects two different vertices.
- Edges are also called arcs and lines.
- Directed edge has an orientation \((u,v)\).
- Undirected edge has no orientation \((u,v)\).
- Undirected graph \(\Rightarrow \) no oriented edge.
- Directed graph \(\Rightarrow \) every edge has an orientation.
Undirected Graph

Directed Graph (Digraph)

Applications—Communication Network
- Vertex = city, edge = communication link.

Driving Distance/Time Map
- Vertex = city, edge weight = driving distance/time.

Street Map
- Some streets are one way.

Complete Undirected Graph
- Has all possible edges.

 \[n = 1 \quad n = 2 \quad n = 3 \quad n = 4 \]
Number Of Edges—Undirected Graph

- Each edge is of the form \((u, v)\), \(u \neq v\).
- Number of such pairs in an \(n\) vertex graph is \(n(n-1)\).
- Since edge \((u, v)\) is the same as edge \((v, u)\), the number of edges in a complete undirected graph is \(n(n-1)/2\).
- Number of edges in an undirected graph is \(\leq n(n-1)/2\).

Number Of Edges—Directed Graph

- Each edge is of the form \((u, v)\), \(u \neq v\).
- Number of such pairs in an \(n\) vertex graph is \(n(n-1)\).
- Since edge \((u, v)\) is not the same as edge \((v, u)\), the number of edges in a complete directed graph is \(n(n-1)\).
- Number of edges in a directed graph is \(\leq n(n-1)\).

Vertex Degree

Number of edges incident to vertex.

- \(\text{degree}(2) = 2\), \(\text{degree}(5) = 3\), \(\text{degree}(3) = 1\)

Sum Of Vertex Degrees

Sum of degrees = \(2e\) (\(e\) is number of edges)

In-Degree Of A Vertex

- In-degree is number of incoming edges
- \(\text{indegree}(2) = 1\), \(\text{indegree}(8) = 0\)

Out-Degree Of A Vertex

- Out-degree is number of outbound edges
- \(\text{outdegree}(2) = 1\), \(\text{outdegree}(8) = 2\)
Sum Of In- And Out-Degrees

each edge contributes 1 to the in-degree of some vertex and 1 to the out-degree of some other vertex

sum of in-degrees = sum of out-degrees = e,
where e is the number of edges in the digraph