Balanced Binary Search Trees

- height is $O(\log n)$, where n is the number of elements in the tree
- AVL (Adelson-Velsky and Landis) trees
- red-black trees
- get, put, and remove take $O(\log n)$ time

Balanced Binary Search Trees

- Indexed AVL trees
- Indexed red-black trees
- Indexed operations also take $O(\log n)$ time

Balanced Search Trees

- weight balanced binary search trees
- 2-3 & 2-3-4 trees
- AA trees
- B-trees
- BBST
- etc.

AVL Tree

- binary tree
- for every node x, define its balance factor
 \[\text{balance factor of } x = \text{height of left subtree of } x - \text{height of right subtree of } x \]
- balance factor of every node x is -1, 0, or 1
This is an AVL tree.

The height of an AVL tree that has \(n \) nodes is at most \(1.44 \log_2 (n+2) \).

The height of every \(n \) node binary tree is at least \(\log_2 (n+1) \).
RR imbalance => new node is in right subtree of right subtree of blue node (node with \(bf = -2 \))

AVL Rotations

- RR
- LL
- RL
- LR

Red Black Trees

Colored Nodes Definition

- Binary search tree.
- Each node is colored red or black.
- Root and all external nodes are black.
- No root-to-external-node path has two consecutive red nodes.
- All root-to-external-node paths have the same number of black nodes.
Example Red Black Tree

Red Black Trees

Colored Edges Definition
- Binary search tree.
- Child pointers are colored red or black.
- Pointer to an external node is black.
- No root to external node path has two consecutive red pointers.
- Every root to external node path has the same number of black pointers.

Example Red Black Tree

Red Black Tree

- The height of a red black tree that has \(n \) (internal) nodes is between \(\log_2(n+1) \) and \(2\log_2(n+1) \).
- java.util.TreeMap => red black tree
Graphs

- $G = (V,E)$
- V is the vertex set.
- Vertices are also called nodes and points.
- E is the edge set.
- Each edge connects two different vertices.
- Edges are also called arcs and lines.
- Directed edge has an orientation (u,v).

\[u \rightarrow v \]

Graphs

- Undirected edge has no orientation (u,v).

\[u \rightarrow v \]

- Undirected graph \Rightarrow no oriented edge.
- Directed graph \Rightarrow every edge has an orientation.

Undirected Graph

![Undirected Graph Diagram]

Directed Graph (Digraph)

![Directed Graph (Digraph) Diagram]
Applications—Communication Network

- Vertex = city, edge = communication link.

Driving Distance/Time Map

- Vertex = city, edge weight = driving distance/time.

Street Map

- Some streets are one way.

Complete Undirected Graph

Has all possible edges.
Number Of Edges—Undirected Graph

- Each edge is of the form \((u,v)\), \(u \neq v\).
- Number of such pairs in an \(n\) vertex graph is \(n(n-1)\).
- Since edge \((u,v)\) is the same as edge \((v,u)\), the number of edges in a complete undirected graph is \(n(n-1)/2\).
- Number of edges in an undirected graph is \(\leq n(n-1)/2\).

Number Of Edges—Directed Graph

- Each edge is of the form \((u,v)\), \(u \neq v\).
- Number of such pairs in an \(n\) vertex graph is \(n(n-1)\).
- Since edge \((u,v)\) is not the same as edge \((v,u)\), the number of edges in a complete directed graph is \(n(n-1)\).
- Number of edges in a directed graph is \(\leq n(n-1)\).

Vertex Degree

- Number of edges incident to vertex.
- \(\text{degree}(2) = 2\), \(\text{degree}(5) = 3\), \(\text{degree}(3) = 1\)

Sum Of Vertex Degrees

- Sum of degrees = \(2e\) (\(e\) is number of edges)
In-Degree Of A Vertex

- in-degree is number of incoming edges
- indegree(2) = 1, indegree(8) = 0

Out-Degree Of A Vertex

- out-degree is number of outbound edges
- outdegree(2) = 1, outdegree(8) = 2

Sum Of In- And Out-Degrees

- each edge contributes 1 to the in-degree of some vertex and 1 to the out-degree of some other vertex
- sum of in-degrees = sum of out-degrees = e, where e is the number of edges in the digraph