Two kinds of priority queues:
• Min priority queue.
• Max priority queue.

Min Priority Queue

• Collection of elements.
• Each element has a priority or key.
• Supports following operations:
  ▪ isEmpty
  ▪ size
  ▪ add/put an element into the priority queue
  ▪ get element with min priority
  ▪ remove element with min priority
Max Priority Queue

- Collection of elements.
- Each element has a priority or key.
- Supports following operations:
  - `isEmpty`
  - `size`
  - `add/put` an element into the priority queue
  - `get` element with max priority
  - `remove` element with max priority

Complexity Of Operations

Two good implementations are heaps and leftist trees.

- `isEmpty`, `size`, and `get` => $O(1)$ time
- `put` and `remove` => $O(\log n)$ time
  where $n$ is the size of the priority queue
Applications

Sorting
- use element key as priority
- put elements to be sorted into a priority queue
- extract elements in priority order
  - if a min priority queue is used, elements are extracted in ascending order of priority (or key)
  - if a max priority queue is used, elements are extracted in descending order of priority (or key)

Sorting Example
Sort five elements whose keys are 6, 8, 2, 4, 1 using a max priority queue.
- Put the five elements into a max priority queue.
- Do five remove max operations placing removed elements into the sorted array from right to left.
After Putting Into Max Priority Queue

Sorted Array

Max Priority Queue

8 4 6
1 2

After First Remove Max Operation

Sorted Array

Max Priority Queue

1 4 6
2

8
After Second Remove Max Operation

Sorted Array

Max Priority Queue

After Third Remove Max Operation

Sorted Array

Max Priority Queue
After Fourth Remove Max Operation

Max Priority Queue

Sorted Array

After Fifth Remove Max Operation

Max Priority Queue

Sorted Array
Complexity Of Sorting

Sort $n$ elements.
- $n$ put operations $\Rightarrow$ $O(n \log n)$ time.
- $n$ remove max operations $\Rightarrow$ $O(n \log n)$ time.
- total time is $O(n \log n)$.
- compare with $O(n^2)$ for sort methods of Chapter 2.

Heap Sort

Uses a max priority queue that is implemented as a heap.

Initial put operations are replaced by a heap initialization step that takes $O(n)$ time.
Machine Scheduling

- $m$ identical machines (drill press, cutter, sander, etc.)
- $n$ jobs/tasks to be performed
- assign jobs to machines so that the time at which the last job completes is minimum

Machine Scheduling Example

3 machines and 7 jobs
job times are [6, 2, 3, 5, 10, 7, 14]
possible schedule

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time ------------>
Machine Scheduling Example

Finish time = 21
Objective: Find schedules with minimum finish time.

LPT Schedules

Longest Processing Time first.
Jobs are scheduled in the order
14, 10, 7, 6, 5, 3, 2
Each job is scheduled on the machine on which it finishes earliest.
LPT Schedule

[14, 10, 7, 6, 5, 3, 2]

A

B

C

Finish time is 16!

LPT Schedule

- LPT rule does not guarantee minimum finish time schedules.
- \( \frac{(LPT \text{ Finish Time})}{(Minimum \text{ Finish Time})} \leq \frac{4}{3} - \frac{1}{3m} \) where \( m \) is number of machines.
- Usually LPT finish time is much closer to minimum finish time.
- Minimum finish time scheduling is NP-hard.
NP-hard Problems

• Infamous class of problems for which no one has developed a polynomial time algorithm.
• That is, no algorithm whose complexity is \( O(n^k) \) for any constant \( k \) is known for any NP-hard problem.
• The class includes thousands of real-world problems.
• Highly unlikely that any NP-hard problem can be solved by a polynomial time algorithm.

NP-hard Problems

• Since even polynomial time algorithms with degree \( k > 3 \) (say) are not practical for large \( n \), we must change our expectations of the algorithm that is used.
• Usually develop fast heuristics for NP-hard problems.
  ▪ Algorithm that gives a solution close to best.
  ▪ Runs in acceptable amount of time.
• LPT rule is good heuristic for minimum finish time scheduling.
Complexity Of LPT Scheduling

- Sort jobs into decreasing order of task time.
  - $O(n \log n)$ time ($n$ is number of jobs)
- Schedule jobs in this order.
  - assign job to machine that becomes available first
  - must find minimum of $m$ ($m$ is number of machines) finish times
  - takes $O(m)$ time using simple strategy
  - so need $O(mn)$ time to schedule all $n$ jobs.

Using A Min Priority Queue

- Min priority queue has the finish times of the $m$ machines.
- Initial finish times are all 0.
- To schedule a job remove machine with minimum finish time from the priority queue.
- Update the finish time of the selected machine and put the machine back into the priority queue.
Using A Min Priority Queue

- \( m \) put operations to initialize priority queue
- 1 remove min and 1 put to schedule each job
- each put and remove min operation takes \( O(\log m) \) time
- time to schedule is \( O(n \log m) \)
- overall time is \( O(n \log n + n \log m) = O(n \log (mn)) \)

Huffman Codes

Useful in lossless compression.
May be used in conjunction with LZW method.
Read from text.
Min Tree Definition

Each tree node has a value.
Value in any node is the minimum value in the subtree for which that node is the root.
Equivalently, no descendent has a smaller value.

Min Tree Example

Root has minimum element.
Max Tree Example

Root has maximum element.

Min Heap Definition

- complete binary tree
- min tree
Complete binary tree with 9 nodes.

Complete binary tree with 9 nodes that is also a min tree.
Max Heap With 9 Nodes

Complete binary tree with 9 nodes that is also a max tree.

Heap Height

Since a heap is a complete binary tree, the height of an \( n \) node heap is \( \log_2 (n+1) \).
A Heap Is Efficiently Represented As An Array

Moving Up And Down A Heap
Putting An Element Into A Max Heap

Complete binary tree with 10 nodes.

New element is 5.
Putting An Element Into A Max Heap

New element is 20.

Putting An Element Into A Max Heap

New element is 20.
New element is 20.
Putting An Element Into A Max Heap

Complete binary tree with 11 nodes.

New element is 15.
Putting An Element Into A Max Heap

New element is 15.

Putting An Element Into A Max Heap

New element is 15.
Complexity Of Put

Complexity is $O(\log n)$, where $n$ is heap size.

Removing The Max Element

Max element is in the root.
Removing The Max Element

After max element is removed.

Heap with 10 nodes.
Reinsert 8 into the heap.
Removing The Max Element

Reinsert 8 into the heap.

Removing The Max Element

Reinsert 8 into the heap.
Removing The Max Element

Max element is 15.

Reinsert 8 into the heap.
Removing The Max Element

Heap with 9 nodes.

After max element is removed.
Removing The Max Element

Reinsert 7.

Removing The Max Element

Reinsert 7.
Removing The Max Element

Reinsert 7.

Complexity Of Remove Max Element

Complexity is $O(\log n)$. 