Given a set \(\{1, 2, \ldots, n\} \) of \(n \) elements.

- Initially each element is in a different set.
 - \(\{1\}, \{2\}, \ldots, \{n\} \)
- An intermixed sequence of union and find operations is performed.
- A union operation combines two sets into one.
 - Each of the \(n \) elements is in exactly one set at any time.
- A find operation identifies the set that contains a particular element.

A set as a tree

- \(S = \{2, 4, 5, 9, 11, 13, 30\} \)
- Some possible tree representations:

 ![Tree Representation of S]({})

Result of a find operation

- `find(i)` is to identify the set that contains element \(i \).
- In most applications of the union-find problem, the user does not provide set identifiers.
- The requirement is that \(\text{find}(i) \) and \(\text{find}(j) \) return the same value iff elements \(i \) and \(j \) are in the same set.

Strategy for find(i)

- Start at the node that represents element \(i \) and climb up the tree until the root is reached.
- Return the element in the root.
- To climb the tree, each node must have a parent pointer.

Using Arrays and Chains

- See Section 7.7 for applications as well as for solutions that use arrays and chains.
- Best time complexity obtained in Section 7.7 is \(O(n + u \log u + f) \), where \(u \) and \(f \) are, respectively, the number of union and find operations that are done.
- Using a tree (not a binary tree) to represent a set, the time complexity becomes almost \(O(n + f) \) (assuming at least \(n/2 \) union operations).

Trees with parent pointers

- The requirement is that \(\text{find}(i) \) and \(\text{find}(j) \) return the same value iff elements \(i \) and \(j \) are in the same set.
Possible Node Structure

- Use nodes that have two fields: element and parent.
 - Use an array table[] such that table[i] is a pointer to the node whose element is i.
 - To do a find(i) operation, start at the node given by table[i] and follow parent fields until a node whose parent field is null is reached.
 - Return element in this root node.

Example

(Only some table entries are shown.)

Better Representation

- Use an integer array parent[] such that parent[i] is the element that is the parent of element i.

Union Operation

- union(i,j)
 - i and j are the roots of two different trees, i ≠ j.
 - To unite the trees, make one tree a subtree of the other.
 - parent[j] = i

Union Example

- union(7,13)

The Find Method

```java
public int find(int theElement)
{
    while (parent[theElement] != 0)
        theElement = parent[theElement]; // move up
    return theElement;
}
```
The Union Method

```java
public void union(int rootA, int rootB)
    {parent[rootB] = rootA;}
```

Time Complexity Of union()

• \(O(1) \)

Time Complexity of find()

• Tree height may equal number of elements in tree.
 • union(2,1), union(3,2), union(4,3), union(5,4)...

So complexity is \(O(u) \).

Smart Union Strategies

• union(7,13)
• Which tree should become a subtree of the other?

Time Complexity Of union()

• \(O(1) \)

u Unions and f Find Operations

• \(O(u + uf) = O(uf) \)
• Time to initialize parent[i] = 0 for all i is \(O(n) \).
• Total time is \(O(n + uf) \).
• Worse than solution of Section 7.7!
• Back to the drawing board.

Height Rule

• Make tree with smaller height a subtree of the other tree.
• Break ties arbitrarily.

union(7,13)
Weight Rule
- Make tree with fewer number of elements a subtree of the other tree.
- Break ties arbitrarily.

![Weight Rule Diagram]

Implementation
- Root of each tree must record either its height or the number of elements in the tree.
- When a union is done using the height rule, the height increases only when two trees of equal height are united.
- When the weight rule is used, the weight of the new tree is the sum of the weights of the trees that are united.

Height Of A Tree
- Suppose we start with single element trees and perform unions using either the height or the weight rule.
- The height of a tree with \(p \) elements is at most \(\lfloor \log_2 p \rfloor + 1 \).
- Proof is by induction on \(p \). See text.

Sprucing Up The Find Method
- Do additional work to make future finds easier.

Path Compaction
- Make all nodes on find path point to tree root.
- \(\text{find}(1) \)

Path Splitting
- Nodes on find path point to former grandparent.
- \(\text{find}(1) \)

Path Splitting
- \(\text{find}(1) \)

![Path Compaction Diagram]

![Path Splitting Diagram]
Path Halving
- Parent pointer in every other node on find path is changed to former grandparent.
- \(\text{find}(1) \)

Time Complexity
- Ackermann’s function.
 - \(A(i,j) = 2, \ i = 1 \) and \(j \geq 1 \)
 - \(A(i,j) = A(i-1,2), \ i \geq 2 \) and \(j = 1 \)
 - \(A(i,j) = A(i-1,A(i,j-1)), \ i, j \geq 2 \)
- Inverse of Ackermann’s function.
 - \(\alpha(p,q) = \min \{z \geq 1 \mid A(z, p/q) > \log_2 \}, \ p \geq q \geq 1 \)

In the analysis of the union-find problem, \(u \) are increased.

For all practical purposes, \(\alpha(p,q) < 5 \).

Theorem 12.2 [Tarjan and Van Leeuwen]
Let \(T(f,u) \) be the maximum time required to process any intermixed sequence of \(f \) finds and \(u \) unions. Assume that \(u \geq n/2 \).

\[a^*(n + \alpha(n,n)) \leq T(f,u) \leq b^*(n + \alpha(n,n)) \]
where \(a \) and \(b \) are constants.

These bounds apply when we start with singleton sets and use either the weight or height rule for unions and any one of the path compression methods for a find.