Given a set \{1, 2, \ldots, n\} of \(n\) elements.

- Initially each element is in a different set.
- \{1\}, \{2\}, \ldots, \{n\}
- An intermixed sequence of union and find operations is performed.
- A union operation combines two sets into one.
 - Each of the \(n\) elements is in exactly one set at any time.
- A find operation identifies the set that contains a particular element.

Using Arrays And Chains

- See Section 7.7 for applications as well as for solutions that use arrays and chains.
- Best time complexity obtained in Section 7.7 is \(O(n + u \log u + f)\), where \(u\) and \(f\) are, respectively, the number of union and find operations that are done.
- Using a tree (not a binary tree) to represent a set, the time complexity becomes almost \(O(n + f)\) (assuming at least \(n/2\) union operations).

A Set As A Tree

- \(S = \{2, 4, 5, 9, 11, 13, 30\}\)
- Some possible tree representations:

Result Of A Find Operation

- \text{\texttt{find(i)}} is to identify the set that contains element \(i\).
- In most applications of the union-find problem, the user does not provide set identifiers.
- The requirement is that \text{\texttt{find(i)}} and \text{\texttt{find(j)}} return the same value iff elements \(i\) and \(j\) are in the same set.

\text{\texttt{find(i)}} will return the element that is in the tree root.
Strategy For `find(i)`

- Start at the node that represents element `i` and climb up the tree until the root is reached.
- Return the element in the root.
- To climb the tree, each node must have a parent pointer.

Trees With Parent Pointers

Possible Node Structure

- Use nodes that have two fields: `element` and `parent`.
 - Use an array `table[]` such that `table[i]` is a pointer to the node whose element is `i`.
 - To do a `find(i)` operation, start at the node given by `table[i]` and follow parent fields until a node whose parent field is null is reached.
 - Return element in this root node.

Example

(Only some table entries are shown.)
Better Representation

- Use an integer array `parent[]` such that `parent[i]` is the element that is the parent of element `i`.

```
parent[] = [0, 5, 10, 15, 2, 9, 13, 13, 4, 5, 0]
```

Union Operation

- `union(i,j)`
 - `i` and `j` are the roots of two different trees, `i != j`.
 - To unite the trees, make one tree a subtree of the other.
 - `parent[j] = i`

Union Example

- `union(7,13)`

The Find Method

```java
public int find(int theElement)
{
    while (parent[theElement] != 0)
    {
        theElement = parent[theElement]; // move up
    }
    return theElement;
}
```
The Union Method

```java
public void union(int rootA, int rootB)
    {parent[rootB] = rootA;}
```

Time Complexity Of union()

- $O(1)$

Time Complexity of find()

- Tree height may equal number of elements in tree.
 - $\text{union}(2,1)$, $\text{union}(3,2)$, $\text{union}(4,3)$, $\text{union}(5,4)$...

So complexity is $O(u)$.

u Unions and f Find Operations

- $O(u + uf) = O(uf)$
- Time to initialize parent[i] = 0 for all i is $O(n)$.
- Total time is $O(n + uf)$.
- Worse than solution of Section 7.7!
- Back to the drawing board.
Smart Union Strategies

• union(7,13)
• Which tree should become a subtree of the other?

Height Rule

• Make tree with smaller height a subtree of the other tree.
• Break ties arbitrarily.

Weight Rule

• Make tree with fewer number of elements a subtree of the other tree.
• Break ties arbitrarily.

Implementation

• Root of each tree must record either its height or the number of elements in the tree.
• When a union is done using the height rule, the height increases only when two trees of equal height are united.
• When the weight rule is used, the weight of the new tree is the sum of the weights of the trees that are united.
Height Of A Tree

- Suppose we start with single element trees and perform unions using either the height or the weight rule.
- The height of a tree with \(p \) elements is at most \(\text{floor}\left(\log_2 p\right) + 1 \).
- Proof is by induction on \(p \). See text.

Sprucing Up The Find Method

- Do additional work to make future finds easier.

Path Compaction

- Make all nodes on find path point to tree root.
- \(\text{find}(1) \)

Path Splitting

- Nodes on find path point to former grandparent.
- \(\text{find}(1) \)
Path Halving
- Parent pointer in every other node on find path is changed to former grandparent.
- find(1)

Time Complexity
- Ackermann’s function.
 - $A(i, j) = 2^i - 1$ if $i = 1$ and $j = 1$
 - $A(i, j) = A(i-1, A(i-1, A(i-1, A(i-1, ..., A(i-1, j-1), ...,)))$, $i > 1$ and $j = 1$
 - $A(i, j) = A(i-1, A(i-1, A(i-1, A(i-1, ..., A(i-1, j-1), ...,)))$, $i > 1$ and $j > 1$
- Inverse of Ackermann’s function.
 - $A(1, j) = 2^j - 1$
 - $A(i, j) = A(i-1, A(i, j-1))$, $i > 1$ and $j > 1$

A(i,j) = A(i-1,A(i,j-1)), i, j >= 2
A(i,j) = 2

Time Complexity
- Ackermann’s function grows very rapidly as i and j are increased.
 - $A(2,4) = 265,536$
- The inverse function grows very slowly.
 - $A(1, j) = 2^j - 1$
 - $A(1, 4) = A(1,2) >>>> A(2,4)$
- In the analysis of the union-find problem, q is the number, n, of elements; $p = n + f$; and $u >= n/2$.
- For all practical purposes, $A(1, q) < 5.$