In a traversal of a binary tree, each element of the binary tree is visited exactly once. During the visit of an element, all action (make a clone, display, evaluate the operator, etc.) with respect to this element is taken.

Binary Tree Traversal Methods

- Preorder
- Inorder
- Postorder
- Level order

Preorder Traversal

```java
public static void preOrder(BinaryTreeNode t)
{
    if (t != null)
    {
        visit(t);
        preOrder(t.leftChild);
        preOrder(t.rightChild);
    }
}
```

Preorder Example (visit = print)

```
   a
    \\
   b   c
```

```
Preorder Example (visit = print)

Preorder Of Expression Tree

Inorder Traversal

Inorder Example (visit = print)
Inorder Example (visit = print)

Inorder By Projection (Squishing)

Inorder Of Expression Tree

Gives infix form of expression (sans parentheses)!

Postorder Traversal

```java
public static void postOrder(BinaryTreeNode t)
{
 if (t != null)
 {
 postOrder(t.leftChild);
 postOrder(t.rightChild);
 visit(t);
 }
}
```
Postorder Example (visit = print)

Postorder Example (visit = print)

Postorder Of Expression Tree

Traversal Applications

- Make a clone.
- Determine height.
- Determine number of nodes.
**Level Order**

Let $t$ be the tree root.

```java
while (t != null) {
 visit t and put its children on a FIFO queue;
 remove a node from the FIFO queue and call it t;
 // remove returns null when queue is empty
}
```

---

**Binary Tree Construction**

- Suppose that the elements in a binary tree are distinct.
- Can you construct the binary tree from which a given traversal sequence came?
- When a traversal sequence has more than one element, the binary tree is not uniquely defined.
- Therefore, the tree from which the sequence was obtained cannot be reconstructed uniquely.

---

**Some Examples**

- **Preorder**
  - $= ab$

- **Inorder**
  - $= ab$

- **Postorder**
  - $= ab$

- **Level Order**
  - $= ab$
Binary Tree Construction

- Can you construct the binary tree, given two traversal sequences?
- Depends on which two sequences are given.

Preorder And Postorder

preorder = ab
postorder = ba

- Preorder and postorder do not uniquely define a binary tree.
- Nor do preorder and level order (same example).
- Nor do postorder and level order (same example).

Inorder And Preorder

- inorder = gdhbeiafjc
- preorder = abdghiecfj
- Scan the preorder left to right using the inorder to separate left and right subtrees.
- a is the root of the tree; gdhbei are in the left subtree; fjc are in the right subtree.

Inorder And Preorder

- preorder = abdghiecfj
- b is the next root; gdh are in the left subtree; ei are in the right subtree.
Inorder And Preorder

- Preorder = a b d g h e i c f j
- d is the next root; g is in the left subtree; h is in the right subtree.

Inorder And Postorder

- Scan postorder from right to left using inorder to separate left and right subtrees.
- Inorder = g d h b e i a f j c
- Postorder = g h d i e b j f c a
- Tree root is a; gdhbei are in left subtree; fjc are in right subtree.

Inorder And Level Order

- Scan level order from left to right using inorder to separate left and right subtrees.
- Inorder = g d h b e i a f j c
- Level order = a b c d e f g h i j
- Tree root is a; gdhbei are in left subtree; fjc are in right subtree.