Binary Tree Properties & Representation

Minimum Number Of Nodes
- Minimum number of nodes in a binary tree whose height is h.
- At least one node at each of first h levels.

Maximum Number Of Nodes
- All possible nodes at first h levels are present.

Number Of Nodes & Height
- Let n be the number of nodes in a binary tree whose height is h.
- $h \leq n \leq 2^h - 1$
- $\log_2(n+1) \leq h \leq n$

Minimum number of nodes is h

Maximum number of nodes

$= 1 + 2 + 4 + 8 + \ldots + 2^{h-1}$

$= 2^h - 1$
Full Binary Tree

- A full binary tree of a given height h has $2^h - 1$ nodes.

Height 4 full binary tree.

Numbering Nodes In A Full Binary Tree

- Number the nodes 1 through $2^h - 1$.
- Number by levels from top to bottom.
- Within a level number from left to right.

Node Number Properties

- Parent of node i is node $i / 2$, unless $i = 1$.
- Node 1 is the root and has no parent.

Node Number Properties

- Left child of node i is node $2i$, unless $2i > n$, where n is the number of nodes.
- If $2i > n$, node i has no left child.
Node Number Properties

- Right child of node \(i \) is node \(2i+1 \), unless \(2i+1 > n \), where \(n \) is the number of nodes.
- If \(2i+1 > n \), node \(i \) has no right child.

Complete Binary Tree With \(n \) Nodes

- Start with a full binary tree that has at least \(n \) nodes.
- Number the nodes as described earlier.
- The binary tree defined by the nodes numbered 1 through \(n \) is the unique \(n \) node complete binary tree.

Example

- Complete binary tree with 10 nodes.

Binary Tree Representation

- Array representation.
- Linked representation.
Array Representation

- Number the nodes using the numbering scheme for a full binary tree. The node that is numbered \(i \) is stored in \(\text{tree}[i] \).

```
0 1 2 3 4 5 6 7 8 9 10
```

- Right-Skewed Binary Tree

- An \(n \) node binary tree needs an array whose length is between \(n+1 \) and \(2^n \).

```
0 1 2 3 4 5 6 7
```

Linked Representation

- Each binary tree node is represented as an object whose data type is \texttt{BinaryTreeNode}.
- The space required by an \(n \) node binary tree is \(n \times (\text{space required by one node}) \).

```java
package dataStructures;
public class BinaryTreeNode {
    Object element;
    BinaryTreeNode leftChild; // left subtree
    BinaryTreeNode rightChild; // right subtree
    // constructors and any other methods
    // come here
}
```
Some Binary Tree Operations

- Determine the height.
- Determine the number of nodes.
- Make a clone.
- Determine if two binary trees are clones.
- Display the binary tree.
- Evaluate the arithmetic expression represented by a binary tree.
- Obtain the infix form of an expression.
- Obtain the prefix form of an expression.
- Obtain the postfix form of an expression.

Binary Tree Traversal

- Many binary tree operations are done by performing a traversal of the binary tree.
- In a traversal, each element of the binary tree is visited exactly once.
- During the visit of an element, all action (make a clone, display, evaluate the operator, etc.) with respect to this element is taken.

Binary Tree Traversal Methods

- Preorder
- Inorder
- Postorder
- Level order