Trees

Nature Lover’s View Of A Tree

root
branches
leaves

Computer Scientist’s View

root
branches
leaves
nodes

Linear Lists And Trees

• Linear lists are useful for serially ordered data.
 - \((c_0, c_1, c_2, \ldots, c_{n-1})\)
 - Days of week.
 - Months in a year.
 - Students in this class.
• Trees are useful for hierarchically ordered data.
 - Employees of a corporation.
 - President, vice presidents, managers, and so on.
 - Java’s classes.
 - Object is at the top of the hierarchy.
 - Subclasses of Object are next, and so on.

Hierarchical Data And Trees

• The element at the top of the hierarchy is the root.
• Elements next in the hierarchy are the children of the root.
• Elements next in the hierarchy are the grandchildren of the root, and so on.
• Elements that have no children are leaves.

Java’s Classes (Part Of Figure 1.1)
Definition

- A tree t is a finite nonempty set of elements.
- One of these elements is called the root.
- The remaining elements, if any, are partitioned into trees, which are called the subtrees of t.

Subtrees

<table>
<thead>
<tr>
<th>Object</th>
<th>Number</th>
<th>Throwable</th>
<th>OutputStream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>Double</td>
<td>Exception</td>
<td>FileOutputStream</td>
</tr>
<tr>
<td>RuntimeException</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Leaves

<table>
<thead>
<tr>
<th>Object</th>
<th>Number</th>
<th>Throwable</th>
<th>OutputStream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>Double</td>
<td>Exception</td>
<td>FileOutputStream</td>
</tr>
<tr>
<td>RuntimeException</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Levels

<table>
<thead>
<tr>
<th>Object</th>
<th>Number</th>
<th>Throwable</th>
<th>OutputStream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>Double</td>
<td>Exception</td>
<td>FileOutputStream</td>
</tr>
<tr>
<td>RuntimeException</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Caution

- Some texts start level numbers at 0 rather than at 1.
- Root is at level 0.
- Its children are at level 1.
- The grand children of the root are at level 2.
- And so on.
- We shall number levels with the root at level 1.
Tree Degree = Max Node Degree

- Finite (possibly empty) collection of elements.
- A nonempty binary tree has a root element.
- The remaining elements (if any) are partitioned into two binary trees.
- These are called the left and right subtrees of the binary tree.

Binary Tree

- The subtrees of a binary tree are ordered; those of a tree are not ordered.
- Are different when viewed as binary trees.
- Are the same when viewed as trees.
Arithmetic Expressions

- $(a + b) * (c + d) + e - f/g*h + 3.25$
- Expressions comprise three kinds of entities.
 - Operators (+, -, /, *)
 - Operands (a, b, c, d, e, f, g, h, 3.25, (a + b), (c + d), etc.).
 - Delimiters ((),).

Operator Degree

- Number of operands that the operator requires.
- Binary operator requires two operands.
 - a + b
 - c / d
 - e - f
- Unary operator requires one operand.
 - + g
 - - h

Infix Form

- Normal way to write an expression.
- Binary operators come in between their left and right operands.
 - a * b
 - a + b * c
 - a * b / c
 - (a + b) * (c + d) + e - f/g*h + 3.25

Operator Priorities

- How do you figure out the operands of an operator?
 - a + b * c
 - a + b + c / d
- This is done by assigning operator priorities.
 - priority(*) = priority(/) > priority(+) = priority(-)
- When an operand lies between two operators, the operand associates with the operator that has higher priority.

Tie Breaker

- When an operand lies between two operators that have the same priority, the operand associates with the operator on the left.
 - a + b - c
 - a * b / c / d

Delimiters

- Subexpression within delimiters is treated as a single operand, independent from the remainder of the expression.
 - (a + b) * (c - d) / (e - f)
Infix Expression Is Hard To Parse

- Need operator priorities, tie breaker, and delimiters.
- This makes computer evaluation more difficult than is necessary.
- Postfix and prefix expression forms do not rely on operator priorities, a tie breaker, or delimiters.
- So it is easier for a computer to evaluate expressions that are in these forms.

Postfix Form

- The postfix form of a variable or constant is the same as its infix form.
 - a, b, 3.25
- The relative order of operands is the same in infix and postfix forms.
- Operators come immediately after the postfix form of their operands.
 - Infix = a + b
 - Postfix = ab+

Postfix Examples

- Infix = a + b * c
 - Postfix = a b c * +
- Infix = a * b + c
 - Postfix = a b * c +
- Infix = (a + b) * (c − d) / (e + f)
 - Postfix = a b + c d - * e f + /

Unary Operators

- Replace with new symbols.
 - + a => a @
 - + a + b => a @ b +
 - - a => a ?
 - - a-b => a ? b -

Postfix Evaluation

- Scan postfix expression from left to right pushing operands on to a stack.
- When an operator is encountered, pop as many operands as this operator needs; evaluate the operator; push the result on to the stack.
- This works because, in postfix, operators come immediately after their operands.
Postfix Evaluation

- \((a + b) \cdot (c - d) / (e + f)\)
- \(ab + cd - ef +/\)

Stack

- \((a + b)\)
- \(a b + c d - e f +/\)
- \(a b + c d - e f +/\)
- \(a b + c d - e f +/\)
- \(a b + c d - e f +/\)
- \(a b + c d - e f +/\)
- \(a b + c d - e f +/\)
- \(a b + c d - e f +/\)
- \(a b + c d - e f +/\)

Prefix Form

- The prefix form of a variable or constant is the same as its infix form.
 - \(a, b, 3.25\)
- The relative order of operands is the same in infix and prefix forms.
- Operators come immediately before the prefix form of their operands.
 - Infix = \(a + b\)
 - Postfix = \(ab+\)
 - Prefix = \(+ab\)

Binary Tree Form

- \(a + b\)
- \(-a\)
Binary Tree Form

- \((a + b) \times (c - d) / (e + f)\)

Merits Of Binary Tree Form

- Left and right operands are easy to visualize.
- Code optimization algorithms work with the binary tree form of an expression.
- Simple recursive evaluation of expression.