Linear Lists And Trees

- Linear lists are useful for serially ordered data.
 - $(e_0, e_1, e_2, \ldots, e_{n-1})$
 - Days of week.
 - Months in a year.
 - Students in this class.
- Trees are useful for hierarchically ordered data.
 - Employees of a corporation.
 - President, vice presidents, managers, and so on.
 - Java’s classes.
 - Object is at the top of the hierarchy.
 - Subclasses of Object are next, and so on.
Hierarchical Data And Trees

- The element at the top of the hierarchy is the root.
- Elements next in the hierarchy are the children of the root.
- Elements next in the hierarchy are the grandchildren of the root, and so on.
- Elements that have no children are leaves.

Definition

- A tree t is a finite nonempty set of elements.
- One of these elements is called the root.
- The remaining elements, if any, are partitioned into trees, which are called the subtrees of t.
• Some texts start level numbers at 0 rather than at 1.
• Root is at level 0.
• Its children are at level 1.
• The grand children of the root are at level 2.
• And so on.
• We shall number levels with the root at level 1.
height = depth = number of levels

Node Degree = Number Of Children

Tree Degree = Max Node Degree

Binary Tree

- Finite (possibly empty) collection of elements.
- A nonempty binary tree has a root element.
- The remaining elements (if any) are partitioned into two binary trees.
- These are called the left and right subtrees of the binary tree.
Differences Between A Tree & A Binary Tree

• No node in a binary tree may have a degree more than 2, whereas there is no limit on the degree of a node in a tree.
• A binary tree may be empty; a tree cannot be empty.

Differences Between A Tree & A Binary Tree

• The subtrees of a binary tree are ordered; those of a tree are not ordered.
• Are different when viewed as binary trees.
• Are the same when viewed as trees.

Arithmetic Expressions

• (a + b) * (c + d) + e – f/g*h + 3.25
• Expressions comprise three kinds of entities.
 ▪ Operators (+, -, /, *).
 ▪ Operands (a, b, c, d, e, f, g, h, 3.25, (a + b), (c + d), etc.).
 ▪ Delimiters (,,).

Operator Degree

• Number of operands that the operator requires.
• Binary operator requires two operands.
 ▪ a + b
 ▪ c/d
 ▪ e - f
• Unary operator requires one operand.
 ▪ + g
 ▪ - h
Infix Form

• Normal way to write an expression.
• Binary operators come in between their left and right operands.
 • a * b
 • a + b * c
 • a * b / c
 • (a + b) * (c + d) + e – f / g * h + 3.25

Operator Priorities

• How do you figure out the operands of an operator?
 • a + b * c
 • a * b + c / d
• This is done by assigning operator priorities.
 • priority(*) = priority(/) > priority(+) = priority(-)
• When an operand lies between two operators, the operand associates with the operator that has higher priority.

Tie Breaker

• When an operand lies between two operators that have the same priority, the operand associates with the operator on the left.
 • a + b - c
 • a * b / c / d

Delimiters

• Subexpression within delimiters is treated as a single operand, independent from the remainder of the expression.
 • (a + b) * (c – d) / (e – f)
Infix Expression Is Hard To Parse

- Need operator priorities, tie breaker, and delimiters.
- This makes computer evaluation more difficult than is necessary.
- Postfix and prefix expression forms do not rely on operator priorities, a tie breaker, or delimiters.
- So it is easier for a computer to evaluate expressions that are in these forms.

Postfix Form

- The postfix form of a variable or constant is the same as its infix form.
 - \(a, b, 3.25 \)
- The relative order of operands is the same in infix and postfix forms.
- Operators come immediately after the postfix form of their operands.
 - Infix = \(a + b \)
 - Postfix = \(ab+ \)

Postfix Examples

- Infix = \(a + b * c \)
 - Postfix = \(a b c * + \)
- Infix = \(a * b + c \)
 - Postfix = \(a b * c + \)
- Infix = \((a + b) * (c - d) / (e + f) \)
 - Postfix = \(a b + c d - * e f + / \)

Unary Operators

- Replace with new symbols.
 - \(+ a => a @ \)
 - \(+ a + b => a @ b + \)
 - \(- a => a ? \)
 - \(- a-b => a ? b - \)
Postfix Evaluation

- Scan postfix expression from left to right pushing operands on to a stack.
- When an operator is encountered, pop as many operands as this operator needs; evaluate the operator; push the result on to the stack.
- This works because, in postfix, operators come immediately after their operands.

```
(a + b) * (c – d) / (e + f)
```

```
(a + b) * (c – d) / (e + f)
a b + c d - * e f + /
a b + c d - * e f + /
a b + c d - * e f + /
a b + c d - * e f + /
```

```
stack
(a + b)
```

```
(c – d)
```

```
stack
(a + b)
```
Postfix Evaluation

- \((a + b) \cdot (c - d) / (e + f)\)
- \(a + b + c d - * e f + /\)
- \(a + b + c d - * e f + /\)
- \(a + b + c d - * e f + /\)
- \(a + b + c d - * e f + /\)
- \(f\)
- \(e\)
- \((a + b) \cdot (c - d)\)

Prefix Form

- The prefix form of a variable or constant is the same as its infix form.
 - a, b, 3.25
- The relative order of operands is the same in infix and prefix forms.
- Operators come immediately before the prefix form of their operands.
 - Infix = \(a + b\)
 - Postfix = \(ab+\)
 - Prefix = \(+ab\)

Binary Tree Form

- \(a + b\)
- \(-a\)
Binary Tree Form

• \((a + b) \times (c - d) / (e + f)\)

Merits Of Binary Tree Form

• Left and right operands are easy to visualize.
• Code optimization algorithms work with the binary tree form of an expression.
• Simple recursive evaluation of expression.