Overflow Handling

- An overflow occurs when the home bucket for a new pair (key, element) is full.
- We may handle overflows by:
 - Search the hash table in some systematic fashion for a bucket that is not full.
 - Linear probing (linear open addressing).
 - Quadratic probing.
 - Random probing.
 - Eliminate overflows by permitting each bucket to keep a list of all pairs for which it is the home bucket.
 - Array linear list.
 - Chain.

Linear Probing – Get And Put

- divisor = b (number of buckets) = 17.
- Home bucket = key % 17.

0 4 8 12 16

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>0</td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Put in pairs whose keys are 6, 12, 29, 28, 11, 23, 7, 0, 33, 30, 45

Linear Probing – Remove

- remove(0)

0 4 8 12 16

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Search cluster for pair (if any) to fill vacated bucket.

0 4 8 12 16

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Linear Probing – remove(34)

- remove(34)

0 4 8 12 16

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>0</td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Search cluster for pair (if any) to fill vacated bucket.

0 4 8 12 16

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Linear Probing – remove(29)

- Search cluster for pair (if any) to fill vacated bucket.

Performance Of Linear Probing

- Worst-case get/put/remove time is $\Theta(n)$, where n is the number of pairs in the table.
- This happens when all pairs are in the same cluster.

Expected Performance

- $S_n \sim \frac{1}{2}(1 + 1/(1 - \alpha))$
- $U_n \sim \frac{1}{2}(1 + 1/(1 - \alpha)^2)$
- Note that $0 \leq \alpha \leq 1$.

Alpha ≤ 0.75 is recommended.
Hash Table Design

- Performance requirements are given, determine maximum permissible loading density.
- We want a successful search to make no more than 10 compares (expected).
 - \(S_s \sim \frac{1}{2}(1 + 1/(1 - \alpha)) \)
 - \(\alpha \leq 18/19 \)
- We want an unsuccessful search to make no more than 13 compares (expected).
 - \(U_u \sim \frac{1}{2}(1 + 1/(1 - \alpha)^2) \)
 - \(\alpha \leq 4/5 \)
- So \(\alpha \leq \min\{18/19, 4/5\} = 4/5 \).

Hash Table Design

- Dynamic resizing of table.
 - Whenever loading density exceeds threshold (4/5 in our example), rehash into a table of approximately twice the current size.
- Fixed table size.
 - Know maximum number of pairs.
 - No more than 1000 pairs.
 - Loading density \(\leq 4/5 \Rightarrow b = \frac{5}{4} \times 1000 = 1250 \).
 - Pick \(b \) (equal to divisor) to be a prime number or an odd number with no prime divisors smaller than 20.

Linear List Of Synonyms

- Each bucket keeps a linear list of all pairs for which it is the home bucket.
- The linear list may or may not be sorted by key.
- The linear list may be an array linear list or a chain.

Sorted Chains

- Put in pairs whose keys are 6, 12, 34, 29, 28, 11, 23, 7, 0, 33, 30, 45
- Home bucket = key \(\% 17 \).
Expected Performance

- Note that $\alpha \geq 0$.
- Expected chain length is α.
- $S_n \sim 1 + \alpha/2$.
- $U_n \leq \alpha$, when $\alpha < 1$.
- $U_n \sim 1 + \alpha/2$, when $\alpha \geq 1$.

java.util.Hashtable

- Unsorted chains.
- Default initial $b = \text{divisor} = 101$
- Default $\alpha \leq 0.75$
- When loading density exceeds max permissible density, rehash with $\text{newB} = 2b+1$.