Stacks

- Linear list.
- One end is called top.
- Other end is called bottom.
- Additions to and removals from the top end only.

Stack Of Cups

- Add a cup to the stack.
- Remove a cup from new stack.
- A stack is a LIFO list.
The Interface Stack

```java
public interface Stack {
    public boolean empty();
    public Object peek();
    public void push(Object theObject);
    public Object pop();
}
```

Parentheses Matching

- $(((a+b)\cdot(c+d-e))/(f+g)-(h+j)\cdot(k-l))/(m-n)$
 - Output pairs (u,v) such that the left parenthesis at position u is matched with the right parenthesis at v.
 - $(2,6)$ $(1,13)$ $(15,19)$ $(21,25)$ $(27,31)$ $(0,32)$ $(34,38)$
- $(a+b)\cdot((c+d)$
 - $(0,4)$
 - right parenthesis at 5 has no matching left parenthesis
 - $(8,12)$
 - left parenthesis at 7 has no matching right parenthesis
Parentheses Matching

- scan expression from left to right
- when a left parenthesis is encountered, add its position to the stack
- when a right parenthesis is encountered, remove matching position from stack

Example

- \(((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)\)
Example

• \(((a+b)\times(c+d-e))/(f+g)-(h+j)\times(k-l))/(m-n)\)
Example

• \(((a+b)\cdot c+d-e)/(f+g)-(h+j)\cdot (k-l))/(m-n)\)

• and so on
Towers Of Hanoi/Brahma

- 64 gold disks to be moved from tower A to tower C
- each tower operates as a stack
- cannot place big disk on top of a smaller one

Towers Of Hanoi/Brahma

- 3-disk Towers Of Hanoi/Brahma
3-disk Towers Of Hanoi/Brahma
• 3-disk Towers Of Hanoi/Brahma
- 3-disk Towers Of Hanoi/Brahma
Towers Of Hanoi/Brahma

- 3-disk Towers Of Hanoi/Brahma
- 7 disk moves

Recursive Solution

- $n > 0$ gold disks to be moved from A to C using B
- move top $n-1$ disks from A to B using C
Recursive Solution

- move top disk from A to C

Recursive Solution

- move top \(n-1 \) disks from B to C using A
Recursive Solution

- moves(n) = 0 when n = 0
- moves(n) = 2*movess(n-1) + 1 = 2^n-1 when n > 0

Towers Of Hanoi/Brahma

- moves(64) = 1.8 * 10^{19} (approximately)
- Performing 10^9 moves/second, a computer would take about 570 years to complete.
- At 1 disk move/min, the monks will take about 3.4 * 10^{13} years.
Chess Story

- 1 grain of rice on the first square, 2 for next, 4 for next, 8 for next, and so on.
- Surface area needed exceeds surface area of earth.

- 1 penny for the first square, 2 for next, 4 for next, 8 for next, and so on.
- 3.6×10^{17} (federal budget ~ 2×10^{12}).
Routing region

Routing A 2-pin Net

Routing for pins 1-3 and 18-40 is confined to lower left region.

Routing for pins 5 through 16 is confined to upper right region.
(u,v), u < v is a 2-pin net.

u is start pin.
v is end pin.

Examine pins in clockwise order beginning with pin 1.

Start pin => push onto stack.
End pin => start pin must be at top of stack.
Method Invocation And Return

```java
public void a()
{ …; b(); …}
public void b()
{ …; c(); …}
public void c()
{ …; d(); …}
public void d()
{ …; e(); …}
public void e()
{ …; c(); …}
```

Try-Throw-Catch

- When you enter a `try` block, push the address of this block on a stack.
- When an exception is thrown, pop the `try` block that is at the top of the stack (if the stack is empty, terminate).
- If the popped `try` block has no matching `catch` block, go back to the preceding step.
- If the popped `try` block has a matching `catch` block, execute the matching `catch` block.
Rat In A Maze

- Move order is: right, down, left, up
- Block positions to avoid revisit.
Rat In A Maze

- Move order is: right, down, left, up
- Block positions to avoid revisit.

Rat In A Maze

- Move backward until we reach a square from which a forward move is possible.
• Move down.

• Move left.
- Move down.

- Move backward until we reach a square from which a forward move is possible.
• Move backward until we reach a square from which a forward move is possible.
• Move downward.

• Move right.
• Backtrack.
Rat In A Maze

- Move downward.

Rat In A Maze

- Move right.
Rat In A Maze

- Move one down and then right.

Rat In A Maze

- Move one up and then right.
Rat In A Maze

- Move down to exit and eat cheese.
- Path from maze entry to current position operates as a stack.