Sparse Matrices

sparse … many elements are zero
dense … few elements are zero

Example Of Sparse Matrices

diagonal
tridiagonal
lower triangular (?)

These are structured sparse matrices.
May be mapped into a 1D array so that a
mapping function can be used to locate an
element.

Unstructured Sparse Matrices

Airline flight matrix.
- airports are numbered 1 through n
- $flight(i,j) =$ list of nonstop flights from airport i
to airport j
- $n = 1000$ (say)
- $n \times n$ array of list references \Rightarrow 4 million bytes
- total number of flights $= 20,000$ (say)
- need at most $20,000$ list references \Rightarrow at most
80,000 bytes

Unstructured Sparse Matrices

Web page matrix.
- web pages are numbered 1 through n
- $web(i,j) =$ number of links from page i to page j

Web analysis.
- authority page … page that has many links to it
- hub page … links to many authority pages
Web Page Matrix

- \(n = 2 \text{ billion} \) (and growing by 1 million a day)
- \(n \times n \) array of ints \(\rightarrow 16 \times 10^{18} \) bytes (16 * 10^9 GB)
- each page links to 10 (say) other pages on average
- on average there are 10 nonzero entries per row
- space needed for nonzero elements is approximately 20 billion * 4 bytes = 80 billion bytes (80 GB)

Representation Of Unstructured Sparse Matrices

Single linear list in row-major order.
scan the nonzero elements of the sparse matrix in row-major order
each nonzero element is represented by a triple
(row, column, value)
the list of triples may be an array list or a linked list (chain)

Single Linear List Example

| 0 0 3 0 4 | list = |
| 0 0 5 7 0 | row =
| 0 0 0 0 0 | column =
| 0 2 6 0 0 | value =

Array Linear List Representation

```
row = 1 1 2 2 4 4
list = column = 3 5 3 4 2 3
value = 3 4 5 7 2 6
```

```
element = 0 1 2 3 4 5
row = 1 1 2 2 4 4
column = 3 5 3 4 2 3
value = 3 4 5 7 2 6
```
Chain Representation

Node structure.

One Linear List Per Row

<table>
<thead>
<tr>
<th>row</th>
<th>col</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 3 0 4</td>
<td>1 1 2 2 4 4</td>
<td>(3, 3), (5, 4)</td>
</tr>
<tr>
<td>0 0 5 7 0</td>
<td>3 5 3 4 2 3</td>
<td>(3, 5), (4, 7)</td>
</tr>
<tr>
<td>0 0 0 0 0</td>
<td>3 4 5 7 2 6</td>
<td></td>
</tr>
<tr>
<td>0 2 6 0 0</td>
<td>3 4 3</td>
<td>(2, 2), (3, 6)</td>
</tr>
</tbody>
</table>
Array Of Row Chains

Orthogonal List Representation
Both row and column lists.

Node structure.

Row Lists

Column Lists
Orthogonal Lists

Variations

May use circular lists instead of chains.

Approximate Memory Requirements

- 500 x 500 matrix with 1994 nonzero elements
- 2D array: $500 \times 500 \times 4 = 1$ million bytes
- Single Array List: $3 \times 1994 \times 4 = 23,928$ bytes
- One Chain Per Row: $23,928 + 500 \times 4 = 25,928$

Runtime Performance

- Matrix Transpose: 210 ms
- Single Array List: 6 ms
- One Chain Per Row: 12 ms
Performance

Matrix Addition.
500 x 500 matrices with 1994 and 999 nonzero elements

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D array</td>
<td>880 ms</td>
</tr>
<tr>
<td>Single Array List</td>
<td>18 ms</td>
</tr>
<tr>
<td>One Chain Per Row</td>
<td>29 ms</td>
</tr>
</tbody>
</table>