Arrays

1D Array Representation In Java, C, and C++

- 1-dimensional array: \(x = [a, b, c, d] \)
- Map into contiguous memory locations
- \(\text{location}(x[i]) = \text{start} + i \)

Space Overhead

- Memory: \(\text{space overhead} = 4 \text{ bytes for start} + 4 \text{ bytes for x.length} = 8 \text{ bytes} \)

(excludes space needed for the elements of \(x \))

2D Arrays

- The elements of a 2-dimensional array \(a \) declared as:
 \[
 \text{int }[][]a = \text{new int}[3][4];
 \]
 may be shown as a table:
 \[
 \begin{align*}
 & a[0][0] & a[0][1] & a[0][2] & a[0][3] \\
 a[1][0] & a[1][1] & a[1][2] & a[1][3] \\
 \end{align*}
 \]

Rows Of A 2D Array

- \(a[0][0] \rightarrow a[0][1] \rightarrow a[0][2] \rightarrow a[0][3] \) row 0
- \(a[1][0] \rightarrow a[1][1] \rightarrow a[1][2] \rightarrow a[1][3] \) row 1
- \(a[2][0] \rightarrow a[2][1] \rightarrow a[2][2] \rightarrow a[2][3] \) row 2

Columns Of A 2D Array

- \(a[0][0] \rightarrow a[0][1] \rightarrow a[0][2] \rightarrow a[0][3] \) column 0
- \(a[1][0] \rightarrow a[1][1] \rightarrow a[1][2] \rightarrow a[1][3] \) column 1
- \(a[2][0] \rightarrow a[2][1] \rightarrow a[2][2] \rightarrow a[2][3] \) column 2
2D Array Representation In Java, C, and C++

2-dimensional array \(x \)

\[
\begin{align*}
 & a, b, c, d \\
 & e, f, g, h \\
 & i, j, k, l \\
\end{align*}
\]

view 2D array as a 1D array of rows

\(x = [\text{row0}, \text{row1}, \text{row2}] \)

\(\text{row0} = [a, b, c, d] \)

\(\text{row1} = [e, f, g, h] \)

\(\text{row2} = [i, j, k, l] \)

and store as 4 1D arrays

\(x[0].length = x[1].length = x[2].length = 4 \)

Space Overhead

space overhead = overhead for 4 1D arrays

\[= 4 \times 8 \text{ bytes} \]

\[= 32 \text{ bytes} \]

\[= (\text{number of rows} + 1) \times 8 \text{ bytes} \]

Row-Major Mapping

- Example 3 x 4 array:

\[
\begin{align*}
 & a \ b \ c \ d \\
 & e \ f \ g \ h \\
 & i \ j \ k \ l \\
\end{align*}
\]

- Convert into 1D array \(y \) by collecting elements by rows.
- Within a row elements are collected from left to right.
- Rows are collected from top to bottom.
- We get \(y[] = \{a, b, c, d, e, f, g, h, i, j, k, l\} \)

Locating Element \(x[i][j] \)

- assume \(x \) has \(r \) rows and \(c \) columns
- each row has \(c \) elements
- \(i \) rows to the left of row \(i \)
- so \(ic \) elements to the left of \(x[i][0] \)
- so \(x[i][j] \) is mapped to position \(ic + j \) of the 1D array
Space Overhead

<table>
<thead>
<tr>
<th>row 0</th>
<th>row 1</th>
<th>row 2</th>
<th>row i</th>
</tr>
</thead>
</table>

- 4 bytes for start of 1D array +
- 4 bytes for length of 1D array +
- 4 bytes for c (number of columns)

= 12 bytes

(number of rows = length / c)

Disadvantage

Need contiguous memory of size rc.

Column-Major Mapping

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>i</td>
<td>j</td>
<td>k</td>
<td>l</td>
</tr>
</tbody>
</table>

- Convert into 1D array y by collecting elements by columns.
- Within a column elements are collected from top to bottom.
- Columns are collected from left to right.
- We get $y = \{a, e, i, b, f, j, c, g, k, d, h, l\}$

Matrix

Table of values. Has rows and columns, but numbering begins at 1 rather than 0.

- row 0: $a \ b \ c \ d$
- row 1: $e \ f \ g \ h$
- row 3: $i \ j \ k \ l$

- Use notation $x(i,j)$ rather than $x[i][j]$.
- May use a 2D array to represent a matrix.

Shortcomings Of Using A 2D Array For A Matrix

- Indexes are off by 1.
- Java arrays do not support matrix operations such as add, transpose, multiply, and so on.
 - Suppose that x and y are 2D arrays. Can’t do $x + y$, $x - y$, $x * y$, etc. in Java.
- Develop a class Matrix for object-oriented support of all matrix operations. See text.

Diagonal Matrix

An $n \times n$ matrix in which all nonzero terms are on the diagonal.
Diagonal Matrix

```
1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4
```

- \(x(i,j) \) is on diagonal iff \(i = j \)
- Number of diagonal elements in an \(n \times n \) matrix is \(n \)
- Non diagonal elements are zero
- Store diagonal only vs \(n^2 \) whole

Lower Triangular Matrix

An \(n \times n \) matrix in which all nonzero terms are either on or below the diagonal.

```
1 0 0 0
2 3 0 0
4 5 6 0
7 8 9 10
```

- \(x(i,j) \) is part of lower triangle iff \(i \geq j \).
- Number of elements in lower triangle is \(1 + 2 + \ldots + n = \frac{n(n+1)}{2} \).
- Store only the lower triangle

Array Of Arrays Representation

Use an irregular 2-D array … length of rows is not required to be the same.

Creating And Using An Irregular Array

```java
// declare a two-dimensional array variable
// and allocate the desired number of rows
int [][] irregularArray = new int [numberOfRows][];

// now allocate space for the elements in each row
for (int i = 0; i < numberOfRows; i++)
    irregularArray[i] = new int [size[i]];

// use the array like any regular array
irregularArray[2][3] = 5;
irregularArray[4][6] = irregularArray[2][3] + 2;
irregularArray[1][1] += 3;
```

Map Lower Triangular Array Into A 1D Array

Use row-major order, but omit terms that are not part of the lower triangle.

For the matrix

```
1 0 0 0
2 3 0 0
4 5 6 0
7 8 9 10
```

we get

```
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
```

Index Of Element \([i][j]\)

- Order is: row 1, row 2, row 3, …
- Row \(i \) is preceded by rows 1, 2, …, \(i-1 \)
- Size of row \(i \) is \(i \)
- Number of elements that precede row \(i \) is \(1 + 2 + 3 + \ldots + i-1 = \frac{i(i-1)}{2} \)
- So element \((i,j)\) is at position \(i(i-1)/2 + j - 1 \) of the 1D array.