1D Array Representation In Java, C, and C++

1-dimensional array:
\[x = [a, b, c, d] \]

- Map into contiguous memory locations:
 - Location(x[i]) = start + i

Space Overhead

- Space overhead = 4 bytes for start + 4 bytes for \(x.\text{length} \) = 8 bytes (excludes space needed for the elements of \(x \))

2D Arrays

The elements of a 2-dimensional array \(a \) declared as:
\[
\text{int [][]} a = \text{new int}[3][4];
\]
may be shown as a table:
\[
\begin{array}{cccc}
a[0][0] & a[0][1] & a[0][2] & a[0][3] \\
a[1][0] & a[1][1] & a[1][2] & a[1][3] \\
\end{array}
\]
Rows Of A 2D Array

<table>
<thead>
<tr>
<th>a[0][0]</th>
<th>a[0][1]</th>
<th>a[0][2]</th>
<th>a[0][3]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a[1][0]</td>
<td>a[1][1]</td>
<td>a[1][2]</td>
<td>a[1][3]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>row 0</td>
<td>row 1</td>
<td>row 2</td>
<td></td>
</tr>
</tbody>
</table>

Columns Of A 2D Array

<table>
<thead>
<tr>
<th>a[0][0]</th>
<th>a[0][1]</th>
<th>a[0][2]</th>
<th>a[0][3]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a[1][0]</td>
<td>a[1][1]</td>
<td>a[1][2]</td>
<td>a[1][3]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>column 0</td>
<td>column 1</td>
<td>column 2</td>
<td>column 3</td>
</tr>
</tbody>
</table>

2D Array Representation In Java, C, and C++

2-dimensional array `x`

```
<table>
<thead>
<tr>
<th>a, b, c, d</th>
</tr>
</thead>
<tbody>
<tr>
<td>e, f, g, h</td>
</tr>
<tr>
<td>i, j, k, l</td>
</tr>
</tbody>
</table>
```

view 2D array as a 1D array of rows

```
x = [row0, row1, row 2]
row 0 = [a, b, c, d]
row 1 = [e, f, g, h]
row 2 = [i, j, k, l]
```

and store as 4 1D arrays

```
x.length = 3
x[0].length = x[1].length = x[2].length = 4
```
Space Overhead

\[
\text{space overhead} = \text{overhead for 4 1D arrays} \\
= 4 \times 8 \text{ bytes} \\
= 32 \text{ bytes} \\
= (\text{number of rows} + 1) \times 8 \text{ bytes}
\]

Array Representation In Java, C, and C++

- This representation is called the \textit{array-of-arrays} representation.
- Requires contiguous memory of size 3, 4, 4, and 4 for the 4 1D arrays.
- 1 memory block of size \text{number of rows} and \text{number of rows} blocks of size \text{number of columns}

Row-Major Mapping

- Example 3 x 4 array:

 \[
 \begin{array}{cccc}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & l \\
 \end{array}
 \]

 - Convert into 1D array \(y \) by collecting elements by rows.
 - Within a row, elements are collected from left to right.
 - Rows are collected from top to bottom.
 - We get \(y[] = \{a, b, c, d, e, f, g, h, i, j, k, l\} \)

Locating Element \(x[i][j] \)

- Assume \(x \) has \(r \) rows and \(c \) columns
- Each row has \(c \) elements
- \(i \) rows to the left of row \(i \)
- So \(ic \) elements to the left of \(x[i][0] \)
- So \(x[i][j] \) is mapped to position \(ic + j \) of the 1D array
Space Overhead

<table>
<thead>
<tr>
<th>row 0</th>
<th>row 1</th>
<th>row 2</th>
<th>row i</th>
</tr>
</thead>
</table>

4 bytes for start of 1D array +
4 bytes for length of 1D array +
4 bytes for c (number of columns)
= 12 bytes

(number of rows = length / c)

Disadvantage

Need contiguous memory of size rc.

Column-Major Mapping

\[
\begin{array}{cccc}
\text{a} & \text{b} & \text{c} & \text{d} \\
\text{e} & \text{f} & \text{g} & \text{h} \\
\text{i} & \text{j} & \text{k} & \text{l}
\end{array}
\]

• Convert into 1D array y by collecting elements by columns.
• Within a column elements are collected from top to bottom.
• Columns are collected from left to right.
• We get \(y = \{a, e, i, b, f, j, c, g, k, d, h, l\}\)

Matrix

Table of values. Has rows and columns, but numbering begins at 1 rather than 0.

\[
\begin{array}{cccc}
\text{a} & \text{b} & \text{c} & \text{d} \\
\text{e} & \text{f} & \text{g} & \text{h} \\
\text{i} & \text{j} & \text{k} & \text{l}
\end{array}
\]

• Use notation \(x(i, j)\) rather than \(x[i][j]\).
• May use a 2D array to represent a matrix.
Shortcomings Of Using A 2D Array For A Matrix

- Indexes are off by 1.
- Java arrays do not support matrix operations such as add, transpose, multiply, and so on.
 - Suppose that x and y are 2D arrays. Can’t do x + y, x – y, x * y, etc. in Java.
- Develop a class Matrix for object-oriented support of all matrix operations. See text.

Diagonal Matrix

An n x n matrix in which all nonzero terms are on the diagonal.

Diagonal Matrix

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

- x(i,j) is on diagonal iff i = j
- number of diagonal elements in an n x n matrix is n
- non diagonal elements are zero
- store diagonal only vs n^2 whole

Lower Triangular Matrix

An n x n matrix in which all nonzero terms are either on or below the diagonal.

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
2 & 3 & 0 & 0 \\
4 & 5 & 6 & 0 \\
7 & 8 & 9 & 10
\end{bmatrix}
\]

- x(i,j) is part of lower triangle iff i >= j.
- number of elements in lower triangle is 1 + 2 + ... + n = n(n+1)/2.
- store only the lower triangle
Array Of Arrays Representation

Use an irregular 2-D array … length of rows is not required to be the same.

Creating And Using An Irregular Array

```c
// declare a two-dimensional array variable
// and allocate the desired number of rows
int[][] irregularArray = new int[numberOfRows][];

// now allocate space for the elements in each row
for (int i = 0; i < numberOfRows; i++)
    irregularArray[i] = new int[size[i]];

// use the array like any regular array
irregularArray[2][3] = 5;
irregularArray[4][6] = irregularArray[2][3] + 2;
irregularArray[1][1] += 3;
```

Map Lower Triangular Array Into A 1D Array

Use row-major order, but omit terms that are not part of the lower triangle.

For the matrix

```
1 0 0
2 3 0
4 5 6
7 8 9 10
```

we get

```
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
```

Index Of Element [i][j]

- Order is: row 1, row 2, row 3, …
- Row i is preceded by rows 1, 2, …, i-1
- Size of row i is i.
- Number of elements that precede row i is

 \[1 + 2 + 3 + \ldots + i-1 = i(i-1)/2\]
- So element (i,j) is at position i(i-1)/2 + j -1 of the 1D array.