Computer and Network Security

©Copyright 2000 R. E. Newman

Computer & Information Sciences & Engineering
University Of Florida
Gainesville, Florida 32611-6120
nemo@cise.ufl.edu
Network Security Protocols
Network Security Protocols
OSI, GSSAPI, IPSO, SSL

R. E. Newman
nemo@cise.ufl.edu
352–392–1488

Security Protocol Locations

<table>
<thead>
<tr>
<th>Network</th>
<th>Transport</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>FTP</td>
<td>SMTP</td>
</tr>
<tr>
<td>TCP</td>
<td>SSL/TLS</td>
<td>TCP</td>
</tr>
<tr>
<td>IP/IPsec</td>
<td>IP</td>
<td>UDP</td>
</tr>
</tbody>
</table>

Kerberos | HTTP | SMTP |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>IP</td>
<td></td>
</tr>
</tbody>
</table>
OSI Reference Architecture Layers

7 – Application
 - underlying OS security
 - interoperation
 - multiple applications

6 – Presentation
 - compression, encryption, common coding

5 – Session
 - managing multiple related streams

4 – Transport
 - end-to-end

3 – Network
 - host identification only
 - per-packet OH if datagram service
 - higher level entities are treated same

2 – Link
 - only useful for immediate neighbors

1 – Physical

OSI Security Services – Classes

1. Peer entity authentication service – no replay
 Data origin authentication service – no modification/duplication prot.

2. Access control service

3. Connection confidentiality service
 Connectionless confidentiality service
 Selected field confidentiality service
 Traffic flow confidentiality service

4. Connection integrity service with recovery
 Connection integrity service without recovery
 Selected field connection integrity service
 Connectionless integrity service
 Selected field connectionless integrity service

5. Non-repudiation with proof of origin
 Non-repudiation with proof of delivery
TCP Packet Format

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>10</th>
<th>16</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>source port</td>
<td>destination port</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sequence number</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acknowledgment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hdr len</td>
<td>reserved</td>
<td>window size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP checksum</td>
<td>urgent pointer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>options (if any)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data (if any)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UDP Packet Format

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>10</th>
<th>16</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>source port</td>
<td>destination port</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UDP length</td>
<td>UDP checksum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data (if any)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IPSO – IP Security Option

RFC 1825 – Overview of IP Security Architecture
RFC 1826 – Packet Authentication Extension to IP
RFC 1827 – Packet Encryption Extension to IP
RFC 1828 – A Specific Authentication Mechanism (MD5)
RFC 1829 – A Specific Encryption Algorithm

IPv4 – optional
IPv6 – support is mandatory
Both – features implemented in extension headers following
main IP header
 – authentication: Authentication Header (AH)
 – privacy: Encapsulating Security Payload (ESP) header
 (optional authentication)

Security Association:
 – one–way relationship between sender and receiver
 (if two–way desired, then two SA’s needed)
 – SA uniquely identified by IP address and SPI
 (Security Parameter Index)
 – More than one sender can share same SA with receiver
 – Either ESP or AH, but not both

IPSO – Authentication Header

<table>
<thead>
<tr>
<th>0</th>
<th>8</th>
<th>16</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Header</td>
<td>Length</td>
<td>Reserved</td>
<td>SPI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sequence number</td>
<td></td>
<td>Authentication data (variable number of 32–bit words)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPv4 – immediately follows IPv4 header
IPv6 – after fragmentation and end–to–end headers, before ESP
and transport level headers

Next Header = Type of following header
Length = number of 32–bit words in this header
SPI = Security Parameter Index – identifies SA – 0 = none exists
1–255 = reserved
Authentication data = depends on authentication algorithm
 – must not use crypto–weak checksum like CRC
 – calculated on entire IP packet, excluding dynamic fields (TTL,...)
 – performed before fragmentation/after assembly
 – if intermediate authentication desired => MTU discovery needed

see RFC 1828 – MD5–based authentication – <p,Ksa>MD5

(c) copyright 1998 Richard E. Newman Department of Computer & Information Science & Engineering University of Florida, Gainesville, FL USA
IPSO – Security Association

Defining Parameters:

- Authentication algorithm and algorithm mode in AH (req)
- Key(s) used with authentication algorithm (req)
- Encryption algorithm, mode and transform in ESP (req)
- Key(s) for ESP (req)
- Flag and size of crypto synch or IV for ESP (req)
- Authentication algorithm and mode for ESP (rec)
- Authentication keys for ESP (rec)
- Key lifetime (rec)
- SA lifetime (rec)
- Source address(es) of SA (wildcard if >1 source) (rec)
- Sensitivity level of protected data (req for MLS, rec o/w)
 (see RFC 1108 – DoD Security Options – labels
 and whose rules are to be used for protection)

IPSO – Key Management

Manual – sysadmin configures keys

Automated – on-demand key creations for SAs, support of large systems

ISAKMP/Oakley – default automated key management protocol

Oakley – Key determination protocol – based on Diffie–Hellman

ISAKMP – Internet Security Association and Key Management Protocol
 framework for key management
 provides specific formats, negotiation protocols
IPSO – Encapsulating Security Payload

Transport Mode

Tunnel Mode

IP Packet Format

<table>
<thead>
<tr>
<th>Field</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>0-3</td>
</tr>
<tr>
<td>hdr len</td>
<td>4-7</td>
</tr>
<tr>
<td>Type of Svc</td>
<td>8-11</td>
</tr>
<tr>
<td>total length (bytes)</td>
<td>12-15</td>
</tr>
<tr>
<td>datagram identifier</td>
<td>16-19</td>
</tr>
<tr>
<td>flags</td>
<td>20-23</td>
</tr>
<tr>
<td>fragment offset (13 bits)</td>
<td>24-31</td>
</tr>
<tr>
<td>TTL (sec)</td>
<td>0-3</td>
</tr>
<tr>
<td>next protocol</td>
<td>4-7</td>
</tr>
<tr>
<td>header checksum</td>
<td>8-11</td>
</tr>
<tr>
<td>source IP address</td>
<td>32-47</td>
</tr>
<tr>
<td>destination IP address</td>
<td>48-63</td>
</tr>
<tr>
<td>options (if any)</td>
<td>64-79</td>
</tr>
<tr>
<td>data</td>
<td>80-255</td>
</tr>
</tbody>
</table>

(c) copyright 1999 Richard E. Newman
Department of Computer & Information Science & Engineering
University of Florida, Gainesville, FL USA
IPSO – Encapsulating Security Payload

SPI = security parameters index
data = transport level segment (transport mode) or IP packet (tunnel mode)
Must support DES in CBC mode
IDs for 3–key 3DES, RC5, IDEA, 3–key 3IDEA, CAST, Blowfish
MAC default length 96 bits, must support HMAC–MD5–96 and HMAC–SHA–1–96

IPSO – ESP Modes in IPv4 and IPv6

IPv4

```
Orig IP hdr|ESP hdr|TCP hdr| data  | ESP Trlr|ESP auth
```

IPv6

```
Orig IP hdr|hop d.r.f|ESP hdr|dest TCP hdr| data  | ESP Trlr|ESP auth
```

Transport Mode

IPv4

```
New IP hdr|ESP hdr|Orig IP hdr|TCP hdr| data  | ESP Trlr|ESP auth
```

IPv6

```
new IP hdr|ext hdrs|ESP hdr|Orig IP hdr|ext hdrs TCP| data  | ESP Trlr|ESP auth
```

Tunnel Mode
IPSO – ISAKMP

Establish, negotiate, modify, delete IPSO SAs

Defines payloads for key generation and authentication data independent of particular key exchange protocol, encryption algorithm, or authentication protocol

Five default exchanges –

- Base exchange (4) – key and authentication data sent together – gives ID
- ID protection (6) – protects IDs by establishing SA first, then key, then auth
- Authentication only (3) – establish AH SA
- Aggressive (3) – authentication and key exchange, reveals IDs
- Informational (1) – one-way transmission of info for SA management

IPSO – ISAKMP Payload Types

SA payload – begin establishment of SA – DOI – situation (reqts)

Transform payload – Transform # – Transform ID – parameters defines specific transform, e.g., 3DES, HMAC–MD5–96

Key Exchange payload – KE data – depends on key exchange algorithm

Identification payload – ID data – usually IPv4 or IPv6 address

Certificate payload – transfers public key certificate (e.g., PGP, X.509,...)

Certificate Request payload – acceptable types, CAs

Hash payload – for integrity, authentication

Signature payload – digital signature data – integrity, nonrepudiation

Nonce payload – for liveness, replay prevention

Notification payload – error or status information

Delete payload – one or more SAs that are no longer valid
IPSO – Oakley Key Determination Protocol

Based on Diffie–Hellman

Uses cookies to defeat Denial of Service attacks

- start by sending cookies before DH exponentiation work
- can only force target to send ACKs on spoofed sessions
- cookies depend on source, dest IP/port and secret values

Supports groups (preset g, n for DH exchange)

Uses nonces to prevent replays

Enables DH public key value exchange

Authenticates DH key determination to prevent bucket–brigade attack

- digital signatures
- public key encryption
- symmetric key encryption

Supports various sequences for key exchange (e.g., aggressive, 3–msg)

RFC−1509: GSS−API bindings for C

– Provide interoperability for systems with different sets of security mechanisms
– Be independent of communication protocol, protocol association constructs

GSS (Acquire|Release|Inquire)−cred() – credential management

GSS (Init|Accept|Delete)−sec_context() – context management

GSS_Context_time()

GSS (Sign|Verify|Seal|Unseal)−msg() – per−message calls

GSS_Display_status() – support calls

GSS_Indicate_mechs()

GSS (Compare|Display|Import|Release)−name()

GSS_Release (buffer|oid_set)()

GSS−API caller accepts (uninterpreted) tokens provided by local GSS−API implementation, sends these to remote peer, who passes them to its impl. Calls return a "more" or "done" status to indicate if further processing needed.
SESAME Application View

SACM = Secure Association Context Manager
SMIB = Security Management Information Base
PVF = PAC Validation Facility
APA = Authentication and Privilege Attribute

CSF = Cryptographic Support Facility
PKM = Public Key Management

SESAME

CA = Cert. Authority
CCA = offline Cert. Auth. Agent
LRA = Local Reg’n. Auth.

AS = Authen. Svr.
KDS = Key Distrib. Svr.
DSS = Domain Sec. Svr.

authenticate
get privilege
get server key (like TGS)
Secure Socket Layer
Protocol Stack

<table>
<thead>
<tr>
<th>SSL Handshake</th>
<th>SSL Change Cipher Spec</th>
<th>SSL Alert</th>
<th>HTTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL Record protocol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connection – OSI transport; peer-to-peer, transient relationship
Each connection associated with one session

Session – client–server association created by Handshake Protocol
Set of cryptographic security parameters to be used over many connections

SSL Connection State

Client and Server Random – random bytes chosen for each connection
Server write MAC secret – secret key used by server in MACs
Client write MAC secret – secret key used by client in MACs
Server write key – symmetric key used by server to encrypt data
Client write key – symmetric key used by client to encrypt data
Initialization vectors – IV for each key used with CBC mode
 Initialized by Handshake Protocol, then last ciphertext block from each record used as IV for next record
Sequence numbers – each party has its own 64–bit sequence numbers
 Change cipher spec messages (sent or received) reset these to 0
 Sequence numbers may not wrap around
SSL Record Protocol Payload Formats

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Length</td>
<td>Content</td>
</tr>
</tbody>
</table>

Change Cipher Spec

Handshake

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Alert</td>
</tr>
</tbody>
</table>

Alert

upper layer content

other upper layer protocol

SSL Record Protocol

Provides –
Confidentiality (SSL Handshake Protocol defines symmetric keys)
Message Integrity (Handshake Protocol defines MAC secrets)

Steps –
Fragment – into 16384-byte (max) chunks
Compress – lossless, no expansion more than 1024 bytes (default null)
Add MAC – H(MWS | pad−2 | H(MWS | pad−1| seq # | SSL−comp−type | SSL−comp−length | SSL−compressed−fragment))
Encrypt – may not increase length by more than 1024 bytes
Prepend header – Content type (8), Major version (8), Minor version (8), Compressed length (16 bits)
Content type is change_cipher_spec, alert, handshake, or application_data
SSL Session State

Session ID – for server to identify active or resumable state info
Peer certificate – X.509.v3 certificate of peer (may be null)
Compression method – for pre-encryption compression
Cipher spec – bulk encryption algorithm, hash algorithm, other parameters (e.g., hash length)
Master Secret – 48-byte secret shared between client and server
Is-resumable Flag – indicates whether the session may be used to initiate new connections

SSL Handshake Protocol

Client
negotiate
server_hello
authenticate & key exchange
client_hello
server_key_exchange*
certificate_request*
sender_hello_done
server
authenticate & key exchange
client
certificate*
client_key_exchange
certificate_verify*
change_cipher_spec
finished
change_cipher_spec
finished

(c) copyright 1998 Richard E. Newman
Department of Computer & Information Science & Engineering
University of Florida, Gainesville, FL, USA