Computer and Network Security
Trusted Operating Systems

R. E. Newman

Computer & Information Sciences & Engineering
University Of Florida
Gainesville, Florida 32611-6120
nemo@cise.ufl.edu
Trusted Operating Systems (Pfleeger Ch. 7)

Security Models and Policies

Software Engineering!
1 Definitions

1.1 Security vs. assurance vs. trust

- Security is binary, absolute, intrinsic
- Assurance is performance relative to expectations
- Trust is receiver-centric, based on history, relative, graded

1.2 Certification vs. accreditation

- Enforcement of security policy
- Sufficiency of controls
- Evaluation - in assumed environment vs. as deployed
2 Policies

2.1 Military - Multilevel Compartmented System (MLS)

2.1.1 Sensitivity

- TS/S/C/R/U = rank or level - hierarchical

2.1.2 Compartmented

- need-to-know categories (set-based) - non-hierarchical

2.1.3 Labels = \langle level, category set \rangle

- Objects - Classification
- Subjects - Clearance
2.1.4 Dominance

\[L_1 = \langle R_1, C_1 \rangle \geq \langle R_2, C_2 \rangle = L_2 \]

(L1 dominates L2) iff

\[R_1 \geq R_2 \text{ and } C_1 \subseteq C_2 \]

Subject S with label L1 is only allowed to read an object O with label L2 if \(L_1 \geq L_2 \)
2.2 Commercial

2.2.1 Clark-Wilson

- Based on well-formed transactions
- Users
- Constrained data items
- Transformation procedures
- Access triples \(<user ID, TP_i, \{CDI_{i1}, CDI_{i2}, \ldots\}\>\)

2.2.2 Separation of Duty

- Application specific
- Same person not allowed to perform too many operations in a process
- Requires history of who has done what on a per-operation basis
- e.g., multi-signature authorization

2.2.3 Chinese Wall (Conflict of Interest)

- Objects associated with entities
- Entities associated with zero or more Conflict Groups
- Users who have accessed objects associated with some entity may not access objects associated with an entity in the same conflict group
• Requires history of access
3 Models

3.1 MLS

3.1.1 Lattice model

Lattice \(\langle S, \leq \rangle \) is a partially ordered set (poset) \(S \) with partial order \(\leq \) (transitive and antisymmetric) such that for any \(s_1, s_2 \in S \), there exists

- a least upper bound (LUB) \(u \),

\[
s_1 \leq u \text{ and } s_2 \leq u, \text{ and for all } u' \text{ where } s_1, s_2 \leq u', u \leq u';
\]

- and a greatest lower bound (GLB) \(l \),

\[
l \leq s_1, l \leq s_2 \text{ and for all } l' \text{ where } l' \leq s_1, s_2, l' \leq l;
\]
3.1.2 BLP

Used for confidentiality of information

- MLS lattice-based labels, \(l(s), l(o) \)
- Simple Security Property (no read up): A subject \(s \) may read object \(o \) iff \(l(s) \geq l(o) \)
- \(*\)-Property (no write down): A subject \(s \) who may read object \(o \) may also write object \(p \) iff \(l(p) \geq l(o) \)
3.1.3 Biba

Used for integrity of information

- MLS lattice-based labels $I(s)$, $I(o)$
Figure 3: A simple example MLS lattice with labels
• Simple Integrity Property (no write up): A subject s may write object o iff $I(s) \geq I(o)$

• Integrity *-Property (no read down): A subject s who may read object o may also write object p iff $I(o) \geq I(p)$
3.2 Theoretical Limitations

3.2.1 Graham-Denning

- Classic ACM model
- Eight primitive actions
 1. Create/destroy object
 2. Create/destroy subject
 3. Read access rights - determine $A(s, o)$
 4. Grant access right - owner s of o may modify $A(s', o)$
 5. Delete access right - if s is owner of o or s controls s'
 then s may remove access right from $A(s', o)$
 6. Transfer access right - if $A(s, o)$ contains r^* then s
 may copy r^* (or r if limited) to $A(s', o)$
3.2.2 Harrison-Ruzzo-Ullman

- Similar to GD model
- Command = Condition then Operation Sequence
- Operation sequence based on primitives (similar to GD)
- Question: Can s obtain access right r to o?
 - If single operation per command, then decidable
 - Otherwise, not decidable
3.2.3 Take-Grant

- Graphical version of ACM models
- Grant arcs - allow s to grant any right r that s has to o to s' if s has a grant arc to s'
- Take arcs - allows s to take (i.e., give to s) any right r that s' has to o if s has a take arc to s'
3.3 RBAC

- Named roles associates with rights
- Subjects may bind to roles according to role-binding rights
- Roles in hierarchy with inheritance
4 Design

4.1 Design elements

4.1.1 Least privilege

4.1.2 Economy of mechanism

4.1.3 Open design

4.1.4 Complete mediation

4.1.5 Permission-based

4.1.6 Separation of privilege

4.1.7 Least common mechanism
4.2 Features

4.2.1 User authentication
4.2.2 Memory protection
4.2.3 File & device I/O access control
4.2.4 Object allocation & access control
4.2.5 Sharing enforcement
4.2.6 Fairness
4.2.7 IPC/synchronization
4.2.8 OS protection (esp. protection data protection)
4.3 Trusted OS Features

4.3.1 User I&A

4.3.2 DAC

4.3.3 MAC

4.3.4 Object reuse protection

4.3.5 Complete mediation

4.3.6 Audit/audit reduction

4.3.7 Trusted path

4.3.8 IDS
4.4 Kernelized Design

4.4.1 Reference Monitor

1. tamperproof
2. always invoked
3. small enough to be trusted
4.4.2 TCB

- consists of
 1. H/W
 2. files
 3. protected memory
 4. IPC
- monitors
 1. process activation
 2. execution domain switching
 3. memory protection
 4. I/O operation
4.5 Separation/Isolation

4.6 Virtualization

4.7 Layered Design

1. Layered trust
2. Ring systems
3. Gates
5 Assurance

5.1 Flaws

5.2 Assurance methods

1. Software engineering practice - design/validation
2. Testing
3. Penetration testing (tiger teams)
4. Formal verification

5.3 Evaluation
5.3.1 TCSEC - Orange Book

1. Effort to provide standardized terminology and levels of features and assurance for computing systems

2. Four basic levels: A, B, C, D
 (a) D: Minimal Protection
 (b) C: Discretionary Protection
 i. C1: Discretionary Security Protection
 ii. C2: Controlled Access Protection
 (c) B: Mandatory Protection
 i. B1: Labeled Security Protection
 ii. B2: Structured Protection
 iii. B3: Security Domains
 (d) A: Verified Protection
 i. A1: Verified Design
 (e)

3. Assurance and features placed on linear scale

4. Limited success

5. Starting point for modern efforts
5.3.2 Green Book

1. Separates assurance from feature set

2. Ten feature sets, including five modeling C1 through B3=A1 plus five new ones for communications, databases

3. Eight assurance (quality) levels, Q_1 to Q_6 correspond to TCSEC C1 through A1; Q_7 goes beyond A1 assurance

4. Supported evaluation by independent, commercial evaluation facilities
5.3.3 British Evaluation

1. Foundation of Common Criteria

2. Claims language = action phrases and target phrases with parameters

3. Six assurance levels

4. Sets of claims expected to be bundled for popular features

5. Process specifications for licensed independent evaluators
5.3.4 European ITSEC Evaluation
- combined British and German

5.3.5 Canadian Criteria
- merged into CC

5.3.6 US Combined Federal Criteria
- combined ITSEC and Canadian - merged into CC
5.3.7 Common Criteria

1. Defines classes of interest to security
2. Classes parent families of functions/assurance needs
3. Components combined to make packages for families
4. Packages combined into requirement sets/assertions for products
5. Target of Evaluation (TOE)
5.4 Non-assurance

1. Yelling louder
2. Security through Obscurity
3. Internal penetrate and patch
4. Challenges (external p&p)