Cryptography and Network Security Chapter 15

Fifth Edition by William Stallings

Lecture slides by Lawrie Brown

Chapter 15 – User Authentication

We cannot enter into alliance with neighboring princes until we are acquainted with their designs.

-The Art of War, Sun Tzu

User Authentication

- > fundamental security building block
 - basis of access control & user accountability
- ➤ is the process of verifying an identity claimed by or for a system entity
- ➤ has two steps:
 - identification specify identifier
 - •verification bind entity (person) and identifier
- ➤ distinct from message authentication

Means of User Authentication

- > four means of authenticating user's identity
- ➤ based one something the individual
 - knows e.g. password, PIN
 - possesses e.g. key, token, smartcard
 - is (static biometrics) e.g. fingerprint, retina
 - does (dynamic biometrics) e.g. voice, sign
- > can use alone or combined
- ➤ all can provide user authentication
- ➤ all have issues

Authentication Protocols

- used to convince parties of each others identity and to exchange session keys
- · may be one-way or mutual
- · key issues are
 - confidentiality to protect session keys
 - timeliness to prevent replay attacks

Replay Attacks

- where a valid signed message is copied and later resent
 - simple replay
 - repetition that can be logged
 - repetition that cannot be detected
 - backward replay without modification
- countermeasures include
 - use of sequence numbers (generally impractical)
 - timestamps (needs synchronized clocks)
 - challenge/response (using unique nonce)

One-Way Authentication

- required when sender & receiver are not in communications at same time (eg. email)
- have header in clear so can be delivered by email system
- may want contents of body protected & sender authenticated

Using Symmetric Encryption

- as discussed previously can use a two-level hierarchy of keys
- usually with a trusted Key Distribution Center (KDC)
 - each party shares own master key with KDC
 - KDC generates session keys used for connections between parties
 - master keys used to distribute these to them

Needham-Schroeder Protocol

- original third-party key distribution protocol
- for session between A B mediated by KDC
- protocol overview is:
 - 1. A->KDC: $ID_A \mid \mid ID_B \mid \mid N_1$
 - **2**. KDC -> A: $E(K_{a}, [K_s | | ID_B | | N_1 | | E(K_b, [K_s | | ID_A])])$
 - **3.** A -> B: $E(K_b, [K_s | | ID_A])$
 - **4.** B -> A: E(K_s, [N₂])
 - 5. A -> B: E(K_s, [f(N₂)])

Needham-Schroeder Protocol

- used to securely distribute a new session key for communications between A & B
- but is vulnerable to a replay attack if an old session key has been compromised
 - then message 3 can be resent convincing B that is communicating with A
- modifications to address this require:
 - timestamps in steps 2 & 3 (Denning 81)
 - using an extra nonce (Neuman 93)

One-Way Authentication

- use refinement of KDC to secure email
 since B no online, drop steps 4 & 5
- protocol becomes:
 - **1.** A->KDC: $ID_A \mid \mid ID_B \mid \mid N_1$
 - **2**. KDC -> A: $E(K_a, [K_s | |ID_B| | N_1 | | E(K_b, [K_s | |ID_A])])$
 - **3.** A -> B: $E(K_b, [K_s | ID_A]) | E(K_s, M)$
- provides encryption & some authentication
- does not protect from replay attack

Kerberos

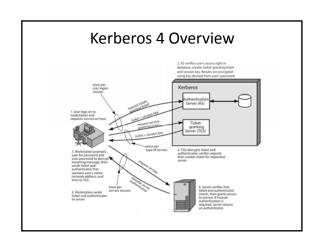
- >trusted key server system from MIT
- provides centralised private-key third-party authentication in a distributed network
 - allows users access to services distributed through network
 - without needing to trust all workstations
 - rather all trust a central authentication server
- > two versions in use: 4 & 5

Kerberos Requirements

- its first report identified requirements as:
 - secure
 - reliable
 - transparent
 - scalable
- implemented using an authentication protocol based on Needham-Schroeder

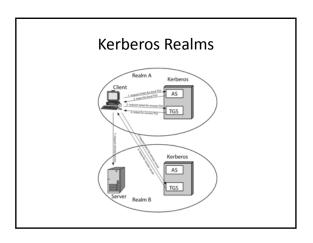
Kerberos v4 Overview

➤ a basic third-party authentication scheme


have an Authentication Server (AS)

- •users initially negotiate with AS to identify self
- AS provides a non-corruptible authentication credential (ticket granting ticket TGT)

➤ have a Ticket Granting server (TGS)


- users subsequently request access to other services from TGS on basis of users TGT
- ➤ using a complex protocol using DES

Kerberos Realms

- a Kerberos environment consists of:
 - a Kerberos server
 - a number of clients, all registered with server
 - application servers, sharing keys with server
- this is termed a realm
 - typically a single administrative domain
- if have multiple realms, their Kerberos servers must share keys and trust

Kerberos Version 5

- developed in mid 1990's
- specified as Internet standard RFC 1510
- provides improvements over v4
 - addresses environmental shortcomings
 - encryption alg, network protocol, byte order, ticket lifetime, authentication forwarding, interrealm auth
 - and technical deficiencies
 - double encryption, non-std mode of use, session keys, password attacks

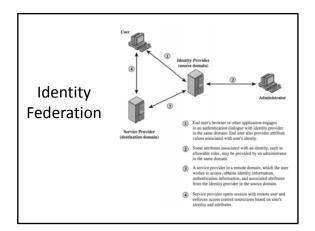
Kerberos v5 Dialogue

(1) C → AS Options || ID_e || Realm_e || ID_{QS} || Times || Nonce₁
(2) AS → C Realm_e || ID_C || Ticket_{RS} || E(K_e, ||K_{eSR})|| Times || Nonce₁ || Realm_{RS} || ID_{QS} || Ticket_{RS} = E(K_{RS}, ||Flagt || K_{eSR} || Realm_e || ID_C || AD_C || Times ||)

(5) C → V Options 8 Tricket, 8 Authenticator_c
(6) V → C B_{QC,V} [TS₂ 8 Subkey 8 Soq#]
Tricket, = EW_c [Plage 8 K_C, 9 Realm, 8 ID_C 8 AD_C 8 Times))
Authenticator = EW_c (Plage 1 Realm, 18 Jg 8 Subkey 8 Soq#)
(c) Clear Newsy Authentication Fechanon to Adhina service

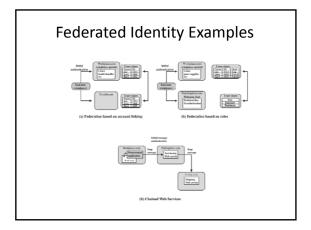
Remote User Authentication

- in Ch 14 saw use of public-key encryption for session key distribution
 - assumes both parties have other's public keys
 - may not be practical
- have Denning protocol using timestamps
 - uses central authentication server (AS) to provide public-key certificates
 - requires synchronized clocks
- have Woo and Lam protocol using nonces
- care needed to ensure no protocol flaws


One-Way Authentication

- ➤ have public-key approaches for email
 - encryption of message for confidentiality, authentication, or both
 - must now public keys
 - using costly public-key alg on long message
- ➤ for confidentiality encrypt message with onetime secret key, public-key encrypted
- ➤ for authentication use a digital signature
 - may need to protect by encrypting signature
- > use digital certificate to supply public key

Federated Identity Management


- > use of common identity management scheme
 - across multiple enterprises & numerous applications
 - supporting many thousands, even millions of users
- > principal elements are:
 - authentication, authorization, accounting, provisioning, workflow automation, delegated administration, password synchronization, self-service password reset, federation
- > Kerberos contains many of these elements

Identity Management Administrator Phicipal Phicipal Phicipal Phicipal Altribute service Date consumers apply related to the consumer of the consumer of

Standards Used

- ➤ Security Assertion Markup Language (SAML)
 - XML-based language for exchange of security information between online business partners
- part of OASIS (Organization for the Advancement of Structured Information Standards) standards for federated identity management
 - e.g. WS-Federation for browser-based federation
- ➤ need a few mature industry standards

Summary

- ➤ have considered:
 - remote user authentication issues
 - authentication using symmetric encryption
 - the Kerberos trusted key server system
 - authentication using asymmetric encryption
 - federated identity management