• EKE: Encrypted Key Exchange

 − Motivation: Users choose bad passwords, which are often vulnerable to dictionary attacks.

 − An attacker simply encrypts a large list of such passwords as the actual passwords are encrypted, and checks for matches.
 * Names and nicknames of family and friends: 50%
 * Sports, TV, and Pop Stars: 30%
 * “Self Obsessed” (sex, stud, goddess, etc): 11%
 * Secure Passwords: only 9%

 − Basic Ideas
 * Use a weak password as an encryption key for a session key.
 * Make an attacker devote significant resources to each password guess.

 − An implementation using Diffie-Hellman Key Exchange

0. Alice and Bob share knowledge of α and β, the Diffie-Hellman base and modulus, respectively, and P, an encryption key deterministically generated from Alice’s (potentially weak) password.

1. Alice selects a random R_A and transmits (“Alice”, $\{\alpha^{R_A} \mod \beta\}_P$) to Bob.

2. Bob selects a random R_B and a challenge c_B, and calculates the session key $K = \alpha^{R_A R_B} \mod \beta$. He then transmits ($\{\alpha^{R_B} \mod \beta\}_P, \{c_B\}_K$) to Alice.

3. Alice calculates K and uses it to decrypt C_B, then selects c_A and sends ($\{c_A, c_B\}_K$) to Bob.

4. Bob uses K to decrypt c_A and transmits ($\{c_A\}_K$) to Alice.

 − Why It Works
 * The message encrypted by the password is indistinguishable from a random number.
 * Even if an attacker guesses the correct password, all he gets is a public key — not enough to recover the session key.
 * An attacker must go all the way through a cryptanalytic attack to confirm a putative password.

 − Implementation Subtleties
 * When to encrypt?
 * Depending on the protocol, one of the two encryptions with P can be omitted: Bob isn’t authenticating himself at this point, and Alice can only calculate the session key if she knows P.
This can help to avoid leaking information about P, which could be used to recover K without a full cryptanalytic attack.

However, if done incorrectly, this can compromise the protocol.

See [BM92] for details.

* Avoiding easy guess elimination
 * If the scheme used to encrypt the public key requires an odd key, the attacker can eliminate half of the passwords, just by seeing if a password guess encrypts to an even number. (You can send $(n + 1)/2$ in this case).
 * Similarly, if the scheme requires a prime key, you might send it unencrypted to avoid leaking information.

* Examples
 * RSA: see [BM92]
 * ElGamal: see [BM92]

- Attacks on EKE
 * Number Theoretic Attacks [Pat97]
 * Parallel Session Attack [CJ97]

- Other Topics
 - Other Secure Password Protocols (SPPs)
 * SPEKE: Simple Password Exponential Key Exchange (Jablon)
 * SRP: Simple Remote Password (Wu)
 * PDM: Password-Derived Moduli (Kaufman and Perlman)
 - Augmented SPPs
 * Basic ideas
 * Utilize signatures as well as public-key encryption.
 * Protect Alice from man-in-the-middle attacks caused by password file compromise.
 * Augmented Encrypted Key Exchange (AEKE): an extension of the protocol given above:
 1. Alice and Bob share knowledge of α and β, the Diffie-Hellman base and modulus, respectively, and V_P, a key deterministically generated from Alice’s (potentially weak) password, which is used as both the verification key for a signature algorithm (denoted $[M]_{V_P}$) and the encryption key for a symmetric cipher (denoted $\{M\}_{V_P}$).
 2. Alice selects a random R_A and transmits (“Alice”, $\{\alpha^{R_A} \mod \beta\}_P$) to Bob.
 3. Bob selects a random R_B and a challenge c_B, and calculates the session key $K = \alpha^{R_A R_B} \mod \beta$. He then transmits ($\{\alpha^{R_B} \mod \beta\}_{V_P}, \{c_B\}_K$) to Alice.
3. Alice calculates K and uses it to decrypt C_B, then selects c_A and sends $(\{c_A, c_B\}_K)$ to Bob.
4. Bob uses K to decrypt c_A and transmits $(\{c_A\}_K)$ to Alice.
 * (Up until this point, we’ve done basically the same thing as in EKE; the only change is a requirement that P be usable as V_P, a verification key for a signature scheme)
5. Alice sends $(\{[K]_{S_P}\}_K)$, and the protocol concludes successfully only if Bob can verify that $\{\{[K]_{S_P}\}_K\}^{k-1}_{V_P} = K$.
 * For further details and a security analysis, see [BM93]
 * SPEKE and PDM have augmented forms as well, using similar techniques. Choice of whether to use them depends on resources available and security needed.
 * SRP had augmented form built in, which is always used.

- Bibliography

CJ96 Clark, J. and Jacob, J. ”A survey of authentication protocol literature.” Manuscript. August, 1996.

