
CHAPTER 6: DISTRIBUTED

FILE SYSTEMS

Chapter outline

• DFS design and implementation issues: system structure, file access,
and sharing semantics

• Transaction and concurrency control: serializability and concurrency
control protocols

• Replicated data management: one-copy serializability and coherency
control protocols

Why is DFS important and interesting?

• It is one of the two important components (process and file) in any
distributed computation.

• It is a good example for illustrating the concept of transparency and
client/server model.

• File sharing and data replication present many interesting research
problems.

1

Structure of and access to a file system

read / write files and get / set attributes

system service

authorization service

directory service

basic

transaction

service

file

device, cache, and block management

concurrency and replication management

capability and / or access control list

name resolution, add and deletion of files

File Service Interactions

Servers

clients

service

system

service

file

service

authorization

service

directory

2

• File: sequential, direct, indexed, indexed-sequential

• File System: flat, hierarchical

File Structures

FCB

other
file
attr

Primary Indirect

other
file
attr

FAT

Disk Blocks Disk Blocks Disk Blocks

Dir Entry

FAT approach

FCB

other
file
attr

Direct

Sequential

Dir Entry

attr

other

Disk Blocks

Secondary Indirect

attr
file

other

FCB

file

Disk Blocks

3

Mounting protocols and NFS

• Explicit mounting

• Boot mounting

• Auto mounting

security

server

remote

client

local

export

mount

DSMDFS

OS

root

bookpaper

chow

root

Stateful and stateless file servers

• Opened files and their clients

• File descriptors and file handles

• Current file position pointers

• Mounting information

• Lock status

• Session keys

• Cache or buffer

4

Semantics of sharing in DFS

down/up load

access

concurrency

control

not applicable not applicable ignore sharing

coherency

control

coherency

control

coherency and

concurrency

coherency and

concurrency

no true sharing

access

space
time

simple RW

transaction

session

remote

access

cache

sharing

• Unix semantics - currentness

• Transaction semantics - consistency

• Session semantics - efficiency

replication

• Write policies: write-through and write back

• cache coherence control: write-invalidate and write-update

• Version control (immutable files): ignore conflict, resolve version con-
flict, resolve serializability conflict

5

Transaction and concurrency control

clients
transaction

scheduler
object

objects

clients
transaction

scheduler
object

objects

TM SCH OM

manager manager

manager manager

Coordinator

Participants

Communication

transaction processing system (TPS)

• Transaction manager (TM)

• Scheduler (SCH)

• Object manager (OM)

atomicity

• All or none: TM, two-phase commit

• Indivisible (serializable): SCH, concurrency control protocols

• Atomic update: OM, replica management

6

Serializability

IF the interleaved execution of transactions is to be equivalent to a serial
execution in some order, then all conflicting operations in the interleaved se-
rializable schedule must also be executed in the same order at all object sites.

t0 : bt Write A=100, Write B=20 et
t1 : bt Read A, Read B, 1: Write sum in C, 2: Write diff in D et
t2 : bt Read A, Read B, 3: Write diff in C, 4: Write sum in D et

Sched Interleave Log in C Log in D Result (C,D) 2PL Timestamp

1 1, 2, 3, 4 W1 = 120 W1 = 80 (80, 120) feasible feasible
W2 = 80 W2 = 120 consistent

2 3, 4, 1, 2 W2 = 80 W2 = 120 (120, 80) feasible t1 aborts
W1 = 120 W1 = 80 consistent and restarts

3 1, 3, 2, 4 W1 = 120 W1 = 80 (80, 120) not feasible
W2 = 80 W2 = 120 consistent feasible

4 3, 1, 4, 2 W2 = 80 W2 = 120 (120, 80) not t1 aborts
W1 = 120 W1 = 80 consistent feasible and restarts

5 1, 3, 4, 2 W1 = 120 W2 = 120 (80, 80) not cascade
W2 = 80 W1 = 80 inconsistent feasible aborts

6 3, 1, 2, 4 W2 = 80 W1 = 80 (120, 120) not t1 aborts
W1 = 120 W2 = 120 inconsistent feasible and restarts

Banzai Timestamp Protocol

1. Get timestamp TS from TM at bt

2. When performing an operation on object O,
if (read and WR(O) < TS) {do read; RD(O) = max(RS(O), TS)}
if (write and max(RD(O),WR(O) < TS) {do write; WR(O) = TS}
else abort

3. if any writes were performed before aborting, any other transactions
that read the value written by that write must also be aborted

7

Concurrency control protocols

Two-phase locking

• locking and shrinking phases of requesting and releasing objeccts

• concurrency versus serializability

• rolling abort, strict two-phase locking

Timestamp ordering

do tentative writeabort

waitOKabort

waiting reads

tentative writes

RD

WR

RD

min

min

minT

T

T

Commit

Abort

Write

Read

abort transactions

cannot commit a waiting read

WR

RD

remove transaction from waiting list

WR

• May delay transaction completion (waiting reads)

• Prevents cascading abort (reads wait until tentative write resolved)

8

Optimistic concurrency control

• Execution phase

• Validation phase:

1. Validation of transaction ti is rejected if TVi < TVk. All transac-
tions must be serialized with respect to TV .

2. Validation of transaction ti is accepted if it does not overlap with
any tk. ti is already serialized with respect to tk.

3. The execution phase of ti overlaps with the update phase of tk,
and tk completes its update phase before TVi. Validation of ti is
accepted if Ri ∩ Wk = φ.

4. The execution phase of ti overlaps with the validation and update
phases of tk, and tk completes its execution phase before TSi.
Validation of ti is accepted if Ri ∩ Wk = φ and Wi ∩ Wk = φ.

• Update phase

accept

accept if no

r−w & w−w

conflict

accept if no

r−w

conflictTV

TVk

TV TV

TS

TV

i

i i i ireject

execution

phase

validation

phase

update

phase

9

Data and file replication

Architecture of a replica manager

clients

clients

FSA

FSA

RM

RM RM

RM

RM : Replica ManagerFSA : File Service Agent

read operations

• Read-one-primary

• Read-one

• Read-quorum

write operation

• Write-one-primary

• Write-all

• Write-all-available

• Write-quorum

• Write-gossip

10

One-copy serializability

The execution of transactions on replicated objects is equivalent to the ex-
ecution of the same transactions on nonreplicated objects. Some approaches:

• read-one-primary/write-one-primary

• read-one/write-all

• read-one/write-all-available

failures

Failures can cause problems with one-copy serializability. For example:

t0 : bt W (X) W (Y) et
t1 : bt R(X) W (Y) et
t2 : bt R(Y) W (X) et

t1 : bt R(Xa) (Yd fails) W (Yc) et
t2 : bt R(Yd) (Xa fails) W (Xb) et

11

Quorum voting

From read-one/write-all-available to read-quorum/write quorum:

1. Write-write conflict: 2 ∗ W (d) > V (d).

2. Read-write conflict : R(d) + W (d) > V (d).

8

8
8

8
86

7
7

6
: RMs

: Witnesses

6, 7, 8 are version numbers.

R (d) = 5 (d) = 5W

Question: What happens if the read contacts a witness (dashed box)
instead of the RM with the actual version 8 copy of the object?

12

Gossip update propagation

Lazy update propagation: read-one/write-gossip

• Basic gossip protocol: read/overwrite

• Causal order gossip protocol: read/modify-update

update

Read − modify

Read

Gossip Gossip

RM RM RM

V

R

V

R

V

R

log log logL LL

TS < TS TS < TSi jf i

updates

FSA

update update update

value value value

Client

r

ur

ur

1

2

= 000= 100 ,

= 100= 110 ,

ur

ur11 = 000= 100 , u

u

L :L :L :

, 100, 100
, 000

1

2

32

1

1

2

3

= 000= 100 ,

= 100= 110 ,

= 100= 101 ,r

321 RMRMRM

Gossip

Gossip

V

32
1 uu

u

update logupdate logupdate log

= 111

= 000

= 110

= 000

R

V

R

V

= 100R

= 100

13

