CHAPTER 6: DISTRIBUTED
FILE SYSTEMS

Chapter outline

e DFS design and implementation issues: system structure, file access,
and sharing semantics

e Transaction and concurrency control: serializability and concurrency
control protocols

e Replicated data management: one-copy serializability and coherency
control protocols

Why is DFS important and interesting?

e It is one of the two important components (process and file) in any
distributed computation.

e [t is a good example for illustrating the concept of transparency and
client /server model.

e File sharing and data replication present many interesting research
problems.

Structure of and access to a file system

directory service

name resolution, add and deletion of files

authorization service

capability and /or access control list

file transaction

concurrency and replication management

service]
basic

read / write files and get/ set attributes

system service

device, cache, and block management

File Service Interactions

directory

service
A

vV

authorization
service
T

oA Server:
Vo

file

clients

service

system
service

e File: sequential, direct, indexed, indexed-sequential

e File System: flat, hierarchical

File Structures

Disk Blocks Disk Blocks Disk Blocks
FCB FCB Dir Entry FAT
other other other R
file file file g
attr attr attr AN
- - e 4

/
//
|

|- =
N N
Direct Primary Indirect FAT approach
Disk Blocks Disk Blocks
[
[l
FCB Dir Entry
other other [
file file i
attr ™ attr
d
\
LN
E——
-~
—1 [l
”7
N
Secondary Indirect Sequential

Mounting protocols and NFS

e Explicit mounting
e Boot mounting

e Auto mounting

root root
chow export -- OS
paper book L DFS DSM security
mount
local remote
client server

Stateful and stateless file servers

e Opened files and their clients

e File descriptors and file handles
e Current file position pointers

e Mounting information

e Lock status

e Session keys

e Cache or buffer

Semantics of sharing in DFS

e Unix semantics - currentness

e Transaction semantics - consistency

e Session semantics - efficiency

replication

e Write policies: write-through and write back

space remote cache down/up load
time access access access
. . coherency coherency
simple RW no true sharing
control control
) concurrency coherency and| coherency and
transaction
control concurrency concurrency
session not applicable not applicable ignore sharin
sharing

e cache coherence control: write-invalidate and write-update

(

e Version control (immutable files): ignore conflict, resolve version con-

flict, resolve serializability conflict

Transaction and concurrency control

Coordinator

- transaction object
@ manager | scheduler — manager
|
Communication |
|
Participants !
- transaction object
@ manager [| Scheduler ™ manager
™ SCH oM

transaction processing system (TPS)

e Transaction manager (TM)
e Scheduler (SCH)

e Object manager (OM)

atomicity

e All or none: TM, two-phase commit

e Indivisible (serializable): SCH, concurrency control protocols

e Atomic update: OM, replica management

Serializability

IF the interleaved execution of transactions is to be equivalent to a serial
execution in some order, then all conflicting operations in the interleaved se-
rializable schedule must also be executed in the same order at all object sites.

to : bt Write A=100, Write B=20 et
t; : bt Read A, Read B, 1: Write sum in C, 2: Write diff in D et
ty : bt Read A, Read B, 3: Write diff in C, 4: Write sum in D et

Sched | Interleave | Log in C | Log in D | Result (C,D) | 2PL Timestamp

1 1,2,3,4 | Wy =120 | W; =80 (80,120) feasible feasible
Wy =80 | Wy =120 | consistent

2 3,4,1,2 | Wy =80 | Wy =120 (120, 80) feasible | t; aborts
Wi, =120 | W; =80 consistent and restarts

3 1,3,2,4 | Wy =120 | W; =80 (80, 120) not feasible
Wy =80 | Wy =120 | consistent | feasible

4 3,1,4,2 | Wy =80 | Wy =120 (120, 80) not t; aborts
Wi, =120 | W; =80 consistent | feasible | and restarts

5 1,3,4,2 | Wy =120 | W5 =120 (80, 80) not cascade
Wy =80 | W7 =80 inconsistent | feasible aborts

6 3,1,2,4 | Wy,=80 | W; =80 (120, 120) not t; aborts
Wi =120 | W5 =120 | inconsistent | feasible | and restarts

Banzai Timestamp Protocol

1. Get timestamp T'S from TM at bt

2. When performing an operation on object O,
if (read and WR(O) < T'S) {do read; RD(O) = max(RS(O),TS)}
if (write and maxz(RD(O),WR(O) < T'S) {do write; WR(O) =TS}
else abort

3. if any writes were performed before aborting, any other transactions

that read the value written by that write must also be aborted

Concurrency control protocols

Two-phase locking

e locking and shrinking phases of requesting and releasing objeccts
e concurrency versus serializability

e rolling abort, strict two-phase locking

Timestamp ordering

abort OK wait
Read <-------- | === - R hEREE R
RD waiting reads
I I I
I I I I I
, WR Tmin tentative writes
Write < -------- il >
abort do tentative write

RD F-mmmmm e
Abort | | | | | | | |
WR Tmin
RD cannot commit a waiting read
Commit | | | | | A] |
WR Tmin
< m—m———— om0 — — .

abort transactions

e May delay transaction completion (waiting reads)

e Prevents cascading abort (reads wait until tentative write resolved)

Optimistic concurrency control

e Execution phase
e Validation phase:
1. Validation of transaction ¢; is rejected if T'V; < T'Vj. All transac-
tions must be serialized with respect to T'V.

2. Validation of transaction t; is accepted if it does not overlap with
any tp. t; is already serialized with respect to .

3. The execution phase of t; overlaps with the update phase of ty,
and t, completes its update phase before T'V;. Validation of ¢; is
accepted if R; N W = ¢.

4. The execution phase of t; overlaps with the validation and update
phases of t;, and t, completes its execution phase before T'S;.
Validation of ¢; is accepted if R; N Wy, = ¢ and W; N W), = ¢.

e Update phase

accept if no accept if no
r-w & w-w r-w
reject TV, conflict TV conflict TV; accept TV,
EREEEEEEEEE S REEEEEEEEEEE | = ==]
| | | TS
execution TV validation update
phase phase phase

Data and file replication

Architecture of a replica manager

Cclients >——= FSA RM RM
H FSA RM RM

FSA : File Service Agent RM : Replica Manager

read operations
e Read-one-primary
e Read-one

e Read-quorum

write operation
e Write-one-primary

Write-all

Write-all-available

Write-quorum

Write-gossip

10

One-copy serializability

The execution of transactions on replicated objects is equivalent to the ex-
ecution of the same transactions on nonreplicated objects. Some approaches:
e read-one-primary/write-one-primary
e read-one/write-all

e read-one/write-all-available

failures

Failures can cause problems with one-copy serializability. For example:

to - bt W(X) W(Y) et
t1: bt R(X) W(Y) et
ty: bt R(Y) W(X) et

t : bt R(X,) (Yq fails) W(Y,) et
to 1 bt R(Yy) (X, fails) W(X,) et

11

Quorum voting

From read-one/write-all-available to read-quorum/write quorum:

1. Write-write conflict: 2 x W (d) > V(d).
2. Read-write conflict : R(d) + W (d) > V(d).

: RMs

. 1 Witnesses

6, 7, 8 are version numbe

R(d)=5 W(d)=5

Question: What happens if the read contacts a witness (dashed box)
instead of the RM with the actual version 8 copy of the object?

12

Gossip update propagation

Lazy update propagation: read-one/write-gossip

e Basic gossip protocol: read/overwrite

e Causal order gossip protocol: read/modify-update

TSr<T§‘ TSi<TSj‘

. Read
Client —| FSA update RM RM RM
T T T
1 Gossip 1 Gossip 1
| | |
value value value
Read — modify V \% \Y
updates | R R R
update update updat
log L log L log L
RM ¢ RM 5, RM 5
u,, 000
v u,, 100 | us, 100 |
1 Gossip
G*Sip
V = 100 V = 000 V = 000
R = 100 R = 110 R =111
update logL : update logL : update loglL :

r,=100,u, =000 r,=110,u, =100
r1:100,u1:000

13

r; =101,u, =10C
r2:110,u2 =10C

r, =100, u, =00C

